

LiSWA Wastewater Treatment Reclamation Facility Improvements Project

CEQA Addendum to the 2013 Midwestern Placer Regional Sewer Project Environmental Impact Report and Subsequent 2017 Addendum

July 2025

Prepared for:

Lincoln-SMD1 Wastewater Authority (LiSWA) 1245 Fiddyment Road Lincoln, California 95648

Prepared by:

Stantec Consulting Services Inc. 101 Providence Mine Road, Suite 202 Nevada City, California 95942 This CEQA Addendum to the 2013 Midwestern Placer Regional Sewer Project Environmental Impact Report and Subsequent 2017 Addendum was prepared by Stantec Consulting Services Inc. (Stantec) for the account of Lincoln-SMD1 Wastewater Authority (LiSWA) (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule, and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by:	Signature C. Eppins
	Emily C. Eppinger – Environmental Compliance Specialist
	Printed Name
Reviewed by:	M. Bernedett Berg
	Signature
	Bernadette Bezy – Regulatory Compliance Specialist
	Printed Name

Table of Contents

ACR	ONYMS		II			
1.0	INTROD	OUCTION AND OVERVIEW	1			
1.1		um Organization				
1.2		a Environmental Quality Act				
1.3	Previous CEQA Documents					
1.3 1.4						
1.4	Scope of Environmental Review					
2.0	PROJECT DESCRIPTION					
2.1	Project (ect Overview4				
2.2	•	ect Location5				
2.3	•	Proposed Project Improvements				
0	2.3.1					
	2.3.2					
	2.3.3					
2.4	Propose	d Schedule				
2.5		d Preliminary Environmental Commitments/Best Management Practices.				
2.0		NMENTAL IMPACT ASSESSMENT				
3.0 3.1		bry Updates				
	•	·				
3.2		mental Setting Updates				
3.3		nental Impact Analysis				
	3.3.1	Land Use and Planning				
	3.3.2	Agricultural and Forestry Resources				
	3.3.3	Recreation				
	3.3.4 3.3.5	Aesthetics				
	3.3.6	Air QualityGreenhouse Gas Emissions				
	3.3.7	Noise				
	3.3.8	Geology and Soils				
	3.3.9	Mineral Resources				
	3.3.10	Hydrology and Water Quality				
	3.3.11	Water Resources				
	3.3.12	Biological Resources				
	3.3.13	Fisheries Resources				
	3.3.14	Cultural Resources				
	3.3.15	Hazards and Hazardous Materials				
	3.3.16	Public Services and Utilities	23			
	3.3.17	Population and Housing	25			
	3.3.18	Transportation and Traffic	25			
	3.3.19	Energy Resources				
	3.3.20	Tribal Cultural Resources				
	3.3.21	Wildfire	28			
4.0	LIST OF	STANTEC PREPARERS	29			
5.0	RFFFRF	NCFS	29			

i

LIST OF TABLES

Table 3-1:	Impacts Comparison and Proposed Project Required Mitigation Measures
LIST OF FIGU	IRES
Figure 2-2:	LiSWA WWTRF 2025 Improvements Project

LIST OF APPENDICES

Appendix A: Mitigation Monitoring and Reporting Program
Appendix B: LiSWA WWTRF Phase I Improvements Project

Appendix C: Database Search Results

Appendix D: Cultural Resources Records Search Results and Technical Memo

Acronyms

% percent

2013 EIR 2013 Midwestern Placer Regional Sewer Project Environmental Impact Report

AB 52 Assembly Bill 52

ADWF average daily weather flow BDR Basis of Design Report best management practice

CDFW California Department of Fish and Wildlife
CEQA California Environmental Quality Act

City City of Lincoln

CRHR California Register of Historical Resources

DWR Department of Water Resources
EIR Environmental Impact Report

ft feet

GHG greenhouse gas gpm gallons per minute

GSP Groundwater Sustainability Plan

LiSWA The Lincoln-SMD1 Wastewater Authority

LOS level of service

Mgal/d Million gallons per day

NAHC
Native American Heritage Commission
NCIC
North Central Information Center
NOA
naturally occurring asbestos

NPDES National Pollutant Discharge Elimination System
PCAPCD Placer County Air Pollution Control District

PCCP Placer County Conservation Plan
PCSP Placer County Sustainability Plan

PM particulate matter
PRC Public Resources Code

Project Midwestern Placer Regional Sewer Project Environmental Impact Report proposed project improvements LiSWA Wastewater Treatment Reclamation Facility Improvements Project

SCH State Clearinghouse

SGMA Sustainable Groundwater Management Act

Stantec Stantec Consulting Services Inc.
UAIC United Auburn Indian Community
USFWS U.S. Fish and Wildlife Service

UV ultraviolet

WWTRF Wastewater Treatment and Reclamation Facility

1.0 INTRODUCTION AND OVERVIEW

The Lincoln-SMD1 Wastewater Authority (LiSWA) is upgrading its existing Wastewater Treatment and Reclamation Facility (WWTRF). The upgrade was initially analyzed by the City of Lincoln (City), now LiSWA, in the 2013 Midwestern Placer Regional Sewer Project Environmental Impact Report (2013 EIR) (State Clearinghouse No. 2012052083) (City of Lincoln 2013) pursuant to the California Environmental Quality Act (CEQA). The Midwestern Placer Regional Sewer Project (Project) underwent a few minor modifications, which were then analyzed and disclosed in an EIR Addendum in November 2017. LiSWA is now proposing additional upgrades to the LiSWA WWTRF, which will be further described here as the LiSWA WWTRF Improvements Project (proposed project improvements). The proposed project improvements add to and further modify the previously approved Project with minor upgrades; as such, the analysis in the 2013 EIR and 2017 Addendum directly applies to the proposed project improvements and provides the basis for use of this Addendum in accordance with CEQA Guidelines Section 15164.

All modifications included as part of the proposed project improvements would take place within the current footprint of the WWTRF and within areas that were previously analyzed for environmental impacts under the 2013 EIR and subsequent 2017 Addendum. The purpose of this CEQA Addendum is to cover the minor project modifications associated with the now proposed WWTRF improvements in accordance with CEQA Guidelines Section 15164.

1.1 ADDENDUM ORGANIZATION

This document is organized as follows pursuant to the requirements of the CEQA Guidelines:

- Chapter 1, Introduction and Overview, introduces the proposed project improvements, describes
 the organization of the Addendum, and explains the CEQA process, including the rationale and
 scope of the Addendum.
- Chapter 2, Project Description, describes the background of the proposed project and the existing CEQA documentation; it describes the location and details of the proposed project.
- Chapter 3, Environmental Impact Assessment, evaluates whether the proposed project improvements would result in new or substantially more severe significant environmental impacts compared with the impacts disclosed in the previous environmental documents.
- Chapter 4, List of Preparers, lists LiSWA and consultant staff who prepared the Addendum.
- Chapter 5, References, lists the documents and individuals consulted during the preparation of the Addendum.

1.2 CALIFORNIA ENVIRONMENTAL QUALITY ACT

As described in CEQA Guidelines Section 15164, a lead agency shall prepare an Addendum to a previously certified EIR if some changes or additions are necessary but none of the conditions described below for preparation of a subsequent EIR have occurred (CEQA Guidelines Section 15162):

- 1. Substantial changes are proposed in the project which will require major revisions of the previous EIR or negative declaration due to the involvement of new significant environmental effects or a substantial increase in the severity of previously identified significant effects;
- 2. Substantial changes occur with respect to the circumstances under which the project is undertaken which will require major revisions of the previous EIR or Negative Declaration due to the involvement of new significant environmental effects or a substantial increase in the severity of previously identified significant effects; or
- 3. New information of substantial importance, which was not known and could not have been known with the exercise of reasonable diligence at the time the previous EIR was certified as complete or the Negative Declaration was adopted, shows any of the following:
 - a. The project will have one or more significant effects not discussed in the previous EIR or negative declaration;
 - b. Significant effects previously examined will be substantially more severe than shown in the previous EIR;
 - c. Mitigation measures or alternatives previously found not to be feasible would in fact be feasible, and would substantially reduce one or more significant effects of the project but the project proponents decline to adopt the mitigation measure or alternative; or
 - d. Mitigation measures or alternatives which are considerably different from those analyzed in the previous EIR would substantially reduce one or more significant effects on the environment, but the project proponents decline to adopt the mitigation measure or alternative.

Based on the analysis conducted and provided herein, this Addendum concludes that the proposed project does not warrant subsequent environmental review as required by Section 15162. The proposed project does not include substantial changes to assumed improvements to the project area, and no other circumstances have changed that would meet the criteria set forth in CEQA Guidelines Section 15162 that would require the preparation of a subsequent EIR. Therefore, a subsequent EIR is not required for the proposed project improvements, and preparation of an Addendum to the certified 2013 EIR and 2017 Addendum is appropriate pursuant to CEQA.

1.3 PREVIOUS CEQA DOCUMENTS

The City of Lincoln (City) has studied and prepared four environmental documents analyzing the environmental impacts of growth, development, and operation of its WWTRF, including one that specifically addresses planned growth within the City. This Addendum evaluates the minor changes and additions to the previously certified 2013 EIR and 2017 Addendum (the latter of which included

- (1) internal mechanical additions within the existing project facilities, (2) an additional effluent storage and disposal facility in a disturbed area at the WWTRF to expand the recycled water capacity and, (3) the addition of a 10-acre solar field, also in a disturbed area at the WWTRF to increase energy efficiency). The associated CEQA documents listed below are therefore incorporated by reference here and provide the initial analysis for the proposed project improvements:
 - The Wastewater Treatment and Reclamation Facility EIR (1999), State Clearinghouse (SCH)
 Number 1998122071
 - The 2050 Lincoln General Plan Update Environmental Impact Report (2006), SCH Number 2005112003
 - The Gravity Sewer and Reclamation Project Initial Study/Mitigated Negative Declaration (2012), SCH Number 2012012043
 - The Midwestern Placer Regional Sewer Project EIR (2013), SCH Number 2012052083

In summary, the proposed project improvements do not increase the total capacity disclosed and analyzed in the Programmatic EIR (1999), nor do they increase the Project-specific permitted capacity disclosed in the 2013 EIR. The 2013 EIR analyzed growth in the region, acknowledging that the additional capacity will be on a first-come, first-served basis. Since Auburn is not currently participating in the Midwestern Placer Regional Sewer Project, regionally, the planned growth will likely occur within Lincoln, in accordance with their General Plan, the impacts of which were disclosed in the 2050 General Plan Update and associated General Plan EIR (2006) and the Administrative Draft Placer County Conservation Plan (February 2011). The previous CEQA documents mentioned above also cover water recycling, reclamation areas, incremental changes in flows at Auburn Ravine, and the WWTRF operation. The proposed project improvements, subject to this Addendum, add minor upgrades and improvements to the existing LiSWA WWTRF as described in Section 2.3 below.

1.4 SCOPE OF ENVIRONMENTAL REVIEW

This Addendum evaluates whether the proposed project improvements would result in new or substantially more severe significant environmental impacts compared to the impacts disclosed in the certified 2013 EIR and subsequent 2017 Addendum in accordance with the evaluation required by CEQA Guidelines Section 15162(a). The certified 2013 EIR and subsequent 2017 Addendum established that the approved Midwestern Placer Regional Sewer Project would result in less than significant or no impacts related to the following environmental issue areas:

- Land Use and Planning
- Agriculture Resources
- Recreation
- Greenhouse Gas Emissions
- Water Resources
- Mineral Resources
- Population and Housing
- Energy Resources

The certified 2013 EIR established that, with mitigation (Appendix A), the approved Midwestern Placer Regional Sewer Project would result in less-than-significant impacts related to the following environmental issue areas:

- Aesthetics
- Air Quality
- Noise and Vibration
- Geology and Soils
- Hydrology and Water Quality
- Biological Resources
- Fisheries Resources
- Cultural Resources
- Hazards and Hazardous Materials
- Public Services and Utilities
- Transportation and Traffic
- Tribal Cultural Resources
- Wildfire

The certified 2013 EIR and subsequent 2017 Addendum established that no significant and unavoidable impacts would occur. Based on the evaluation in the following sections of this Addendum, no new significant impacts would occur as a result of the proposed project improvements. Nor would there be any substantial increase in the severity of any previously identified adverse environmental impacts. In addition, no new information of substantial importance shows that mitigation measures or alternatives that were previously found not to be feasible or that are considerably different from those analyzed in the previous EIR would substantially reduce one or more significant effects on the environment alternative. Therefore, none of the conditions described in Section 15162 of the CEQA Guidelines have occurred. For this reason, an Addendum is the appropriate document to comply with CEQA requirements.

2.0 PROJECT DESCRIPTION

2.1 PROJECT OVERVIEW

This chapter of the Addendum describes the most recent proposed modifications to the Project by LiSWA. This Project Description is intended to provide the Project background and previous CEQA documentation that has been completed; disclose the project location; provide the specific project components to be evaluated as the whole project in this Addendum; to provide details on the modifications that were not previously covered in the existing environmental documentation described in the Project background; provide the project schedule; and document the project environmental commitments that apply to the proposed project improvements. This Project Description aims to describe the proposed project improvements as a whole, while delineating the project components not previously evaluated for clear evaluation within the environmental impact assessment in Chapter 3.0.

2.2 PROJECT LOCATION

The location of the proposed project improvements would remain unchanged from the 2013 EIR and would be located within the existing 733-acre LiSWA WWTRF property within City limits in western Placer County. All proposed project improvement activities would occur at the LiSWA WWTRF.

2.3 PROPOSED PROJECT IMPROVEMENTS

Upgrades and improvements to the LiSWA WWTRF include the following and are described herein as well as in the project's Basis of Design Report (BDR) (Stantec 2024) (Appendix B) (Figure 2-1 and Figure 2-2):

- Influent and effluent pump stations upgrades
- Installation of a 50-million-gallon-per-day (Mgal/d) grit removal basin
- Upgrades to the maturation ponds' pump station
- Filter feed pump station modifications and filter system upgrades
- Ultraviolet (UV) disinfection system upgrades
- Installation of oxidation ditch and appurtenances
- Installation of secondary clarifier and appurtenances
- Structural and electrical improvements
- Site paving and grading

Growth associated with the WWTRF is in accordance with the Lincoln 2050 General Plan Update (City of Lincoln 2008), the Placer County Conservation Plan (Placer County 2011), and was addressed in the associated Lincoln General Plan EIR (2006).

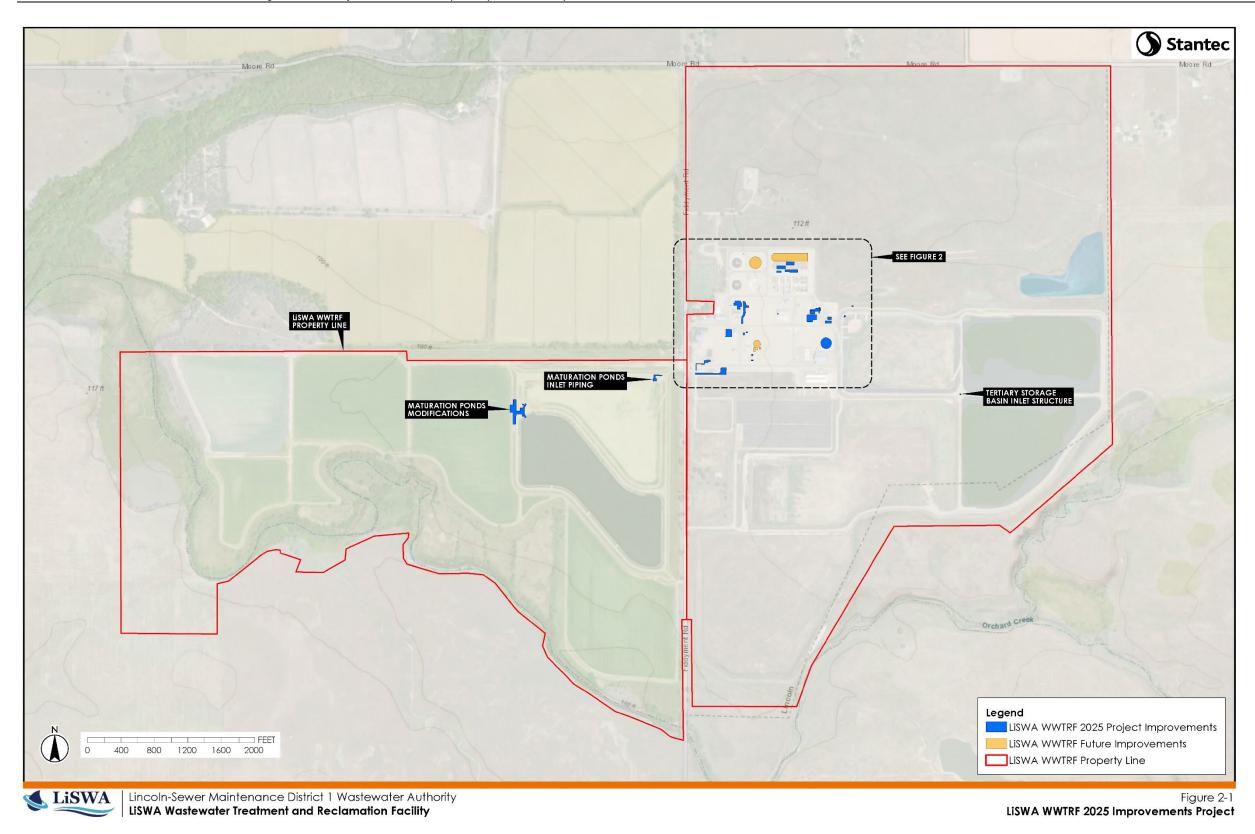


Figure 2-1: LiSWA WWTRF 2025 Improvements Project

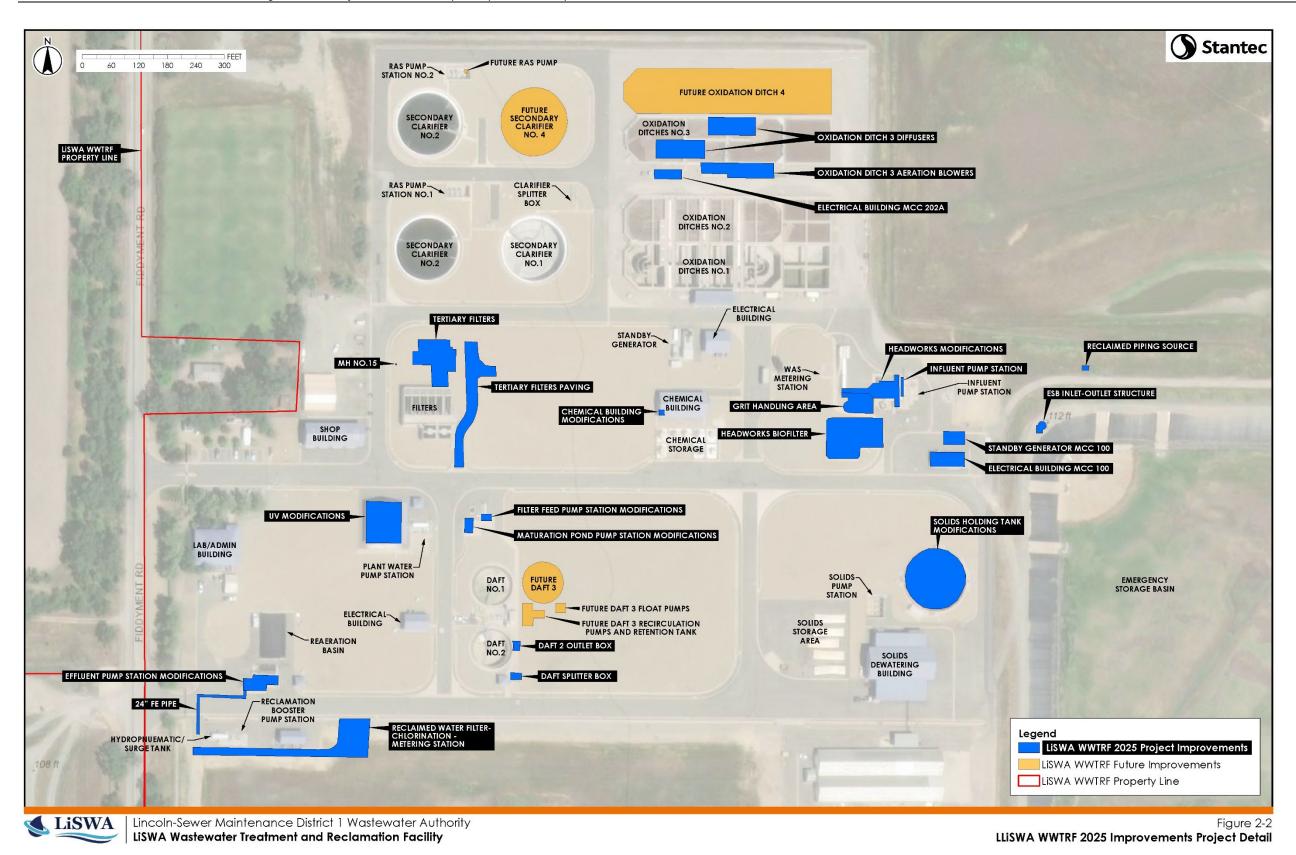


Figure 2-2: LiSWA WWTRF 2025 Improvements Project Detail

(

.

2.3.1 Proposed Project Components

The proposed project improvement components described below are all within the existing project footprint, and increased energy demands would be offset by the added solar component. Please refer to Figure 2.1 and Figure 2.2 for project component locations.

Pump Station Upgrades

The proposed project improvements include minor modifications to both the influent and effluent pump stations. The current Influent Pump Station has space for a total of six pumps, including five large pumps, each rated at 5,500 gallon per minute (gpm), and one small pump rated at 2,250 gpm. With one large pump out of service, the reliable pump station capacity is 34.8 Mgal/d. The estimated peak hour influent flow is 49.6 Mgal/d for the proposed project, and therefore, the proposed project improvements will replace all existing pumps with six submersible pumps, each with a capacity of 6,945 gpm (10 Mgal/d), resulting in a total reliable capacity of 50 Mgal/d.

Effluent from the maturation ponds discharges through two existing maturation pond outlet structures before reaching the maturation pond level control structure, where it is then diverted to the dissolved air flotation system. When levels in the ponds are too low for gravity flow, two existing submersible pumps within the outlet structures are used to convey additional flow. These pumps each have a capacity of 4.0 Mgal/d, which is much less than the design peak monthly flow required (plus plant recycle flows) of 20.6 Mgal/d. Therefore, the proposed project improvements include three new pumps, which will result in a total of five pumps with a reliable capacity of about 19.32 Mgal/d.

Grit Removal

The proposed project improvements include the installation of one larger 50 Mgal/d grit removal basin located between the influent screens and the Parshall flow meter.

Maturation Ponds Pump Station

The maturation pond pump station has space for five mixed flow pumps, which are currently filled with five identical pumps, providing a reliable capacity (with one pump out of service) of 35.1 Mgal/d. Based on the peak hour flows, this capacity is not adequate for a target 8 Mgal/d average dry weather flow (ADWF). Therefore, all five pumps will be replaced to attain a total reliable capacity of 50.4 Mgal/d, which is adequate for the 8.0 Mgal/d ADWF plant.

Filter Feed Pump Station

The current filter feed pump station has spaces for five mixed flow pumps, but four are currently installed: two large and two small pumps, with a reliable capacity of 15.9 Mgal/d. Since peak plant influent flows are equalized in the maturation ponds, the new design peak flow for the filter feed pumps is 20.6 Mgal/d, which is equal to peak month flows plus plant recycle flow. The proposed project improvements include the replacement of two existing small pumps with two large pumps and the addition of one additional large pump, which will result in a total of five large pumps with a reliable capacity of approximately 28.5 Mgal/d.

The existing filter system was laid out to accommodate six filter cells on both sides of a common mudwell (12 cells total). Only six filter cells on one side of the mudwell exist, with each filter cell with a surface area of 384 square feet. Therefore, the reliable filter area (one cell out of service) is 1,920 square feet. Using a maximum loading rate of 5 gpm/ft², the maximum allowable filter influent flow is 13.8 Mgal/d. The proposed project improvements will expand the filters to 18.4 Mal/d plus 12 percent (%) in-plant recycle (20.6 Mgal/d total). In addition to filter cells, the proposed project improvements will install one rapid mixing basin and two flocculation basins.

Ultraviolet Disinfection

The current UV disinfection system is comprised of six channels, with five of them equipped to meet current disinfection targets. The system has a current design capacity of 17.5 Mgal/d based on delivering a minimum UV dose of 100 Megajoules/centimeter² at a design minimum UV transmittance of 70%. The proposed project improvements will upgrade and expand the UV system to 20.6 Mgal/d with the newest version of the Wedeco (a Xylem brand) TAK55 system, including an in-channel cleaning system and control equipment. All six UV channels will receive new UV equipment (banks, modules, lamps, quartz sleeves, pneumatically driven automatic wiping systems, ballast and ballast enclosures, instrumentation, junction boxes, etc.) Additionally, a new control cabinet with redundant Allen Bradley ControlLogix programmable logic controllers will be provided to improve operation reliability and flexibility.

Oxidation Ditch

An oxidation ditch is an extended aeration activated sludge process that utilizes long solids retention times to remove biodegradable organics. Tertiary filters may be required after clarification, depending on the effluent requirements. Disinfection is required, and reaeration may be necessary prior to final discharge. Flow to the oxidation ditch is aerated and mixed with return sludge from a secondary clarifier.

Secondary Clarifier

The purpose of a secondary clarifier is to allow solid particles to settle out of water using gravity. A secondary clarifier reduces turbidity, improves water quality, and makes downstream processes more efficient by removing suspended solids early in the treatment process. The result allows for solids to accumulate at the bottom of the tank and a cleaner stream with fewer suspended solids, so they may be removed and managed separately.

Structural and Electrical Improvements

Design of structures, structural components, and equipment anchorages will comply with the design codes, standards, and project references within the project's Basis of Design Report (Stantec 2024).

The LiSWA WWTRF's existing electrical distribution system was designed to facilitate planned future upgrades and, where feasible, existing switchboard and motor control center spares or space will be used to serve the added loads. Anticipated electrical improvements required for the proposed project improvements are described in the project's Basis of Design Report (Appendix B).

Site Paving, Grading, and Storm Drainage

Site grading will ensure proper stormwater drainage and capture of spills. Paved access will be provided for operational needs, with subgrade preparation to ensure stability. All buildings will be situated above the 100-year flood plain elevation, continuing the existing WWTRF concepts in the proposed project improvements. Most improvements will be implemented within the footprint of existing facilities and do not require paving or grading improvements.

Stormwater will be managed through existing conveyance systems and stored in the Stormwater Detention Basin. The system is designed to handle specified storm events and ensure controlled discharge to Orchard Creek, continuing to the existing WWTRF concepts in the proposed project. Piping will maintain flow requirements with appropriate slopes and materials. The drainage network will include cleanouts and manholes for maintenance, continuing the existing WWTRF concepts in the project.

2.3.2 Proposed Project Construction

Implementation of the proposed project improvements would follow similar methods and require similar construction equipment as disclosed in the 2003 EIR. Staging would be conducted on the existing WWTRF site, and access would be maintained through existing access roads on the WWTRF site.

2.3.3 Proposed Project Operation and Maintenance

LiSWA will continue to operate the WWTRF to minimize cost and maximize efficiency. In general, operation and maintenance activities at the LiSWA WWTRF would be similar to existing activities.

2.4 PROPOSED SCHEDULE

The current proposed project improvements schedule began with facility planning, preliminary design, funding applications, environmental documentation, and then permitting in 2017. The planning, design, and environmental compliance activities described within this CEQA Addendum are targeted to conclude with the approval of this Addendum, the permitting process, and a funding commitment by 2025 or 2026.

2.5 PROPOSED PRELIMINARY ENVIRONMENTAL COMMITMENTS/BEST MANAGEMENT PRACTICES

The 2013 EIR describes various environmental commitments and best management practices (BMPs) that were incorporated into the design of the Project. The following measures have been tailored to and incorporated into the design of the current proposed project improvements. The following commitments would be executed prior to and during the proposed project implementation and have been incorporated into the project design:

Environmental Commitment EC-1: Ensure Staging Area Will Not Affect Environmental
Resources. Staging areas for the proposed project improvements are within the existing footprint
of the LiSWA WWTRF. Any additional staging areas shall be selected with priority given to
proximity to the project to reduce traffic impacts, previously disturbed areas, or areas with little or
no vegetation, areas that lacked trees, wetland, elderberry bushes, vernal pools, obvious cultural
resources, or other sensitive resources. If additional, temporary staging areas are necessary, the

same screening and environmental clearance methods will be employed. Therefore, any additional staging areas will be sited to avoid environmental impacts. In the event that additional environmental impacts are identified, LiSWA will complete the appropriate environmental review process.

- Environmental Commitment EC-2: Vernal Pool Avoidance. Where construction is located in the vicinity of vernal pools, the Contractor will remain on the pavement with proper runoff control BMPs to avoid indirect impact to vernal pools located within 250 feet of the WWTRF. The proposed project improvements were sited based on its documented lack of vernal pools or biological resources, minimal vernal pools on adjacent properties, and the existing runoff control system to avoid potential hydrology impacts to vernal pools. If, for any reason, construction must occur within 250 feet of a vernal pool that is not hydrologically separated from the construction area (i.e., upland of construction), additional consultations with the USFWS will be required to ensure compliance with Section 7 of the Federal Endangered Species Act.
- Environmental Commitment EC-4: Wetland/Drainage Avoidance. The proposed project improvements will avoid impacts to all wetlands. The potential WWTRF Effluent Reclamation Field Sites are currently used for agriculture. However, the proposed project improvements do not entail construction impacts to waters of the U.S. or waters of the State. If there are design modifications or proposed work within or immediately adjacent to jurisdictional waters of the U.S. or waters of the State, the Lead Agency will obtain the appropriate United States Army Corps of Engineers, Regional Water Quality Control Board, and California Department of Fish and Wildlife (CDFW) permits. These permits include Clean Water Act Section 401 and 404 compliance and/or a Lake and Streambed Alteration Agreement.
- Environmental Commitment EC-8: Construction-Related Erosion Control BMPs. The Contractor will be required to implement multiple erosion and sediment control BMPs in areas with the potential to drain to any stream, creek, or associated tributaries. The proposed project improvements do not entail construction impacts to any drainage.
- Environmental Commitment EC-11: Prior to Construction, Delineate Cultural Resources to be
 avoided. The Contractor shall have a qualified archaeologist delineate any areas mapped by
 LiSWA within the proposed project footprint as having known cultural resources. If present, these
 areas shall be delineated by orange exclusion fencing and shall have signage denoting "culturally
 sensitive area."

3.0 ENVIRONMENTAL IMPACT ASSESSMENT

3.1 REGULATORY UPDATES

The Placer County General Plan, adopted August 16, 1994, has been updated since the approval of the 2013 EIR. The new Placer County General Plan was adopted in May 2013 and does not have any significant changes in goals or policies that would substantially impact the proposed modifications within this Addendum.

The proposed project improvements are in accordance with the Lincoln General Plan, the impacts of which were disclosed in the 2050 General Plan Update and associated General Plan EIR (2006) as well as the 2020 Placer County Conservation Plan (PCCP).

The Placer County Air Pollution Control District CEQA Air Quality Handbook was updated in 2017 since the approval of the 2013 EIR. The GHG threshold within the 2017 CEQA handbook is 10,000 Metric Tons Carbon Dioxide Equivalent per year and is the same threshold that was used for the 2013 EIR, "BAAQMD 2009 CEQA Thresholds of Significance for Stationary Sources (used for the proposed project operational GHG emissions analysis) = 10,000 Metric Tons CO2e/year" (Placer County 2017).

Additionally, the Sunset Industrial Area Plan that was adopted on May 21, 2005, has since been updated and approved on December 10, 2019. This new plan does not have any significant goals or policies that would substantially impact the proposed project improvements other than what was found in the 2013 EIR.

Following the approval of the 2013 EIR, Assembly Bill 52 (AB 52) was enacted in 2015. AB 52 changes sections of the Public Resources Code (PRC) to add consideration of Native American culture within CEQA. AB 52 applies to all CEQA projects with a Notice of Preparation filed on or after July 1, 2015. The 2013 EIR pre-dates this requirement.

No other regulatory framework has been updated since the certification of the 2013 EIR.

3.2 ENVIRONMENTAL SETTING UPDATES

There are no new additions to the environmental setting, except where noted in the specific impact analyses below, because the footprint of the proposed project improvements falls within the 2013 EIR boundaries. This boundary was considered in all the impact analyses.

3.3 ENVIRONMENTAL IMPACT ANALYSIS

This Addendum evaluates the potential for the proposed project improvements to result in new or substantially more severe significant impacts compared to the impacts disclosed in the certified 2013 EIR. This Addendum updates and verifies information from the 2013 EIR, noting any relevant changes to regulations, environmental setting, or impacts, and thus is intended to update the analysis in the 2013 EIR for the proposed project improvements. Table 3-1 summarizes the mitigation measures from the 2013 EIR (Appendix A) applicable to the proposed project improvements. The impact analysis of each of the resource sections is reviewed below and updated as necessary.

Table 3-1: Impacts Comparison and Proposed Project Required Mitigation Measures

Issue Categories Evaluated ^{1,2}	2013 EIR	2025 Addendum	Mitigation Measures Applicable to the Proposed Project
Land Use and Planning	Less than Significant	No Change	None
Agricultural and Forestry Resources	Less than Significant	No Change	None
Recreation	Less than Significant	No Change	None
Aesthetics	Less than Significant with Mitigation	No Change	AES-3, AES-4, AES-5
Air Quality	Less than Significant with Mitigation	No Change	AIR-1
Greenhouse Gas Emissions	Less than Significant	No Change	None
Noise and Vibration	Less than Significant with Mitigation	Less than Significant	None
Geology and Soils	Less than Significant with Mitigation	No Change	HYDRO-1, CULT-1
Mineral Resources	Less than Significant with Mitigation	No Change	None
Hydrology and Water Quality ¹	Less than Significant with Mitigation	No Change	HYDRO-1, HYDRO-2, WQ-1
Water Resources ²	Less than Significant	No Change	None
Biological Resources	Less than Significant with Mitigation	No Change	BIO-9
Fisheries Resources ²	Less than Significant with Mitigation	Less than Significant	None
Cultural Resources	Less than Significant with Mitigation	No Change	CULT-1, CULT-2, CULT-3
Hazards and Hazardous Materials	Less than Significant with Mitigation	No Change	HAZ-2
Public Services and Utilities	Less Than Significant with Mitigation	No Change	PUB-1
Population and Housing	Less than Significant	No Change	None
Transportation and Traffic	Less than Significant with Mitigation	No Change	TRANS-1, TRANS-2
Energy Resources ¹	Not previously analyzed	Less than Significant	None
Tribal Cultural Resources ¹	Not previously analyzed	Less than Significant with Mitigation	CULT-1, CULT-2, CULT-3
Wildfire ¹	Not previously analyzed	Less than Significant with Mitigation	HAZ-2

Notes:

EIR = Environmental Impact Report

¹ Issue category has been updated and/or added per 2025 CEQA Guidelines, Appendix G (AEP 2025)

² Issue category from the 2013 EIR.

As shown in Table 3-1 above, the following analysis indicates that the previously identified 2013 EIR mitigation measures would reduce impacts to less than significant levels. The 2013 EIR mitigation measures that are applicable to the proposed project improvements are provided in the following sections. The 2013 EIR references that the applicant would be required to implement the identified mitigation measures to reduce impacts to a less than significant level.

3.3.1 Land Use and Planning

Level of Significance: No change - Less than significant

The proposed project improvements would not:

- Physically divide an established community since all modifications are located within the existing WWTRF boundaries.
- Cause a significant environmental impact due to a conflict with any applicable land use plan, policy, or regulation adopted to avoid or mitigate an environmental effect, since there have been no new context changes to the applicable regulatory framework.
- Conflict with any applicable habitat conservation plan or natural community conservation plan since changes to the PCCP have not changed the draft PCCP designation of the WWTRF, as it was disclosed in the 2013 EIR. The proposed project improvements would not impact the longterm conservation goals contained in the County's General Plan and the PCCP.

3.3.2 Agricultural and Forestry Resources

Level of Significance: No change - Less than significant

- Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use since the proposed project improvements are within the footprint of impacts analyzed with the 2013 EIR and do not require any change in land use.
- Conflict with existing zoning for agricultural use, or a Williamson Act contract, since the proposed project improvements are within the footprint of impacts analyzed within the 2013 EIR and are not designated as agricultural land or Williamson Act land.
- Conflict with existing zoning for, or cause rezoning of, forest land, timberland, or timberland zoned
 Timberland Production since the proposed project improvements are within the footprint of
 impacts analyzed with the 2013 EIR and are not within forest land, timberland, or timber
 production zone.
- Result in the loss of forest land or conversion of forest land to non-forest use since the proposed project improvements are within the footprint of impacts analyzed with the 2013 EIR and are not within forest land.

• Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland to non-agricultural use or conversion of forest land to non-forest use. The proposed project improvements are within the footprint of impacts analyzed with the 2013 EIR and would therefore not result in the conversion of farmland or forest land.

3.3.3 Recreation

Level of Significance: No change – Less than significant

The proposed project improvements would not:

Increase the use of existing neighborhood and regional parks or other recreational facilities such
that substantial physical deterioration of the facility would occur or be accelerated; or include
recreational facilities or require the construction or expansion of recreational facilities which might
have an adverse physical effect on the environment since the proposed project improvements
would be located within the footprint of the existing LiSWA WWTRF as evaluated in the 2013 EIR
and would not have an impact on recreational facilities.

3.3.4 Aesthetics

Level of Significance: No change - Less than significant with mitigation incorporated

Mitigation Measures: AES-3 Select colors and finishes for above-ground elements that blend with their existing visual environment; AES-4 Include landscaping that is adequate to screen views of major new above-ground facilities; AES-5 Use BMPs to minimize lighting impacts from construction and operation.

- Have a substantial adverse effect on a scenic vista. The proposed LiSWA WWTRF improvements
 are within the boundaries of the area evaluated in the 2013 EIR, which would not be visible from
 any locally designated scenic roadway or scenic vista. Therefore, there would not be any change
 to the impacts evaluated in the 2013 EIR.
- Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and
 historic buildings within a state scenic highway, since no officially designated or eligible state
 scenic highways have been designated in the vicinity of the LiSWA WWTRF since the
 certification of the 2013 EIR. Therefore, there would be no change to the conclusions in the 2013
 EIR. No mitigation measures would be required.
- Substantially degrade the existing visual character or quality of public views of the site and its surroundings. The proposed project improvements would be located within the boundaries of the LiSWA WWTRF, which is a previously developed area characterized visually by industrial-appearing structures and relatively large retention basins. The 2013 EIR concluded that development associated with the proposed Project would be similar to existing facilities in character, color, materials, form, height, and mass. With the implementation of Mitigation Measure (MM) AES-3 (colors and finishes) and MM AES-4 (landscaping), the impact was determined to be less than significant. The impacts associated with the proposed project

improvements are similar to what is described in the 2013 EIR. New improvements would appear alongside facilities and would be similar in appearance, scale, and form.

Create a new source of substantial light or glare that would adversely affect day or nighttime
views in the area. The 2013 EIR concluded that impacts related to light and glare would be less
than significant with the implementation of BMPs intended to minimize the effects of lighting (MM
AES-5). The proposed project improvements are within the footprint of the previously analyzed
area and, with implementation of MM AES-3, would not be a new source of substantial light that
would affect nighttime views in the area.

3.3.5 Air Quality

Level of Significance: No change – Less than significant with mitigation incorporated

Mitigation Measures: AIR-1 Construction Emission/Dust Control Plan

- Conflict with or obstruct implementation of the applicable air quality plan. The proposed project improvements are relatively small, and construction impacts would be less than those analyzed in the 2013 EIR since the proposed project improvements are much smaller than the model project described in the 2013 EIR. However, as stated in the 2013 EIR and subsequent 2017 Addendum, the proposed project improvements include the addition and upgrading of an influent pump station, a maturation pond pump station, and a filter feed pump station. Pump stations typically include the use of backup generators, subject to Placer County Air Pollution Control District (PCAPCD) permitting. Any project that includes the use of equipment capable of releasing emissions to the atmosphere may require permits(s) from the PCAPCD prior to construction. Additionally, during construction, the LiSWA shall require the construction contractor to implement MM AIR-1 to maintain potential construction-related air emissions at acceptable levels. This project would be consistent with the goals of the PCAPCD through the implementation of MM AIR-1. Therefore, potential air quality impacts with the proposed project improvements remain less than significant with mitigation incorporated.
- Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or California ambient air quality standard (including releasing emissions which exceed quantitative thresholds for Ozone precursors). As stated in the 2013 EIR and subsequent 2017 Addendum, Placer County is currently in non-attainment for State and federal Ozone, State PM10, and federal PM2.5. As a result, an incremental increase in background Ozone or PM levels would be considered a significant impact. The proposed project improvement impacts to cumulatively considerable net increases of any criteria pollutants would be less than what was analyzed in the 2013 EIR and subsequent 2017 Addendum, since construction duration and scale are less and would not be considered significant. The construction for the proposed project improvements would not exceed NOx thresholds, and therefore, any potential cumulative project-related impacts are considered less than significant with no mitigation required.

- Expose sensitive receptors to substantial pollutant concentrations. Since, as stated in the 2013 EIR and subsequent 2017 Addendum, the nearest sensitive receptor for the LiSWA WWTRF is over one mile away, and as such, the proposed project improvements would not expose sensitive receptors to substantial pollutant concentrations. The proposed project improvements would occur within the footprint of the 2013 EIR, and no additional sensitive receptors have been found in the project area. However, naturally occurring asbestos (NOA) is known to occur in some parts of Placer County. According to the Placer County NOA Hazard Maps, the project location is in an area of Placer County that is least likely to contain NOA (Placer County 2008). Air emissions impacts would be minimal with MM AIR-1 incorporated. MM AIR-1 includes PCAPCD requirements for NOA. Therefore, MM AIR-1 would be implemented to reduce the concentrations of pollutants to a less than significant level.
- Result in other emissions (such as those leading to odors) adversely affecting a substantial
 number of people. Specifically, there would be no new impacts to objectionable odors with the
 implementation of the proposed project improvements beyond what was previously analyzed in
 the 2013 EIR. As such, the impacts would still be less than significant, and no mitigation would be
 required.

3.3.6 Greenhouse Gas Emissions

Level of Significance: No change - Less than significant

The proposed project improvements would not:

- Generate greenhouse gas (GHG) emissions, either directly or indirectly, that may have a
 significant impact on the environment. Since the proposed project improvements would be minor
 and would be less than what was analyzed in the 2013 EIR, there would be no impacts to GHG
 emissions beyond what was discussed for the 2013 EIR and subsequent 2017 Amendment.
 There would be no significant impacts and no mitigation required.
- Conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the
 emissions of greenhouse gases. Since the approval of the 2013 EIR, the Placer County Air
 Pollution Control District CEQA Air Quality Handbook has also been updated, and the new GHG
 thresholds are more stringent than what was analyzed in the 2013 EIR. Proposed project
 improvements are minor and would have limited construction impacts, and there are no additional
 conflicts with the new or old thresholds for GHG emissions. As such, no impact would be
 associated with the proposed project improvements, and thus no mitigation measures would be
 required.

3.3.7 **Noise**

Level of Significance: Less than significant

The proposed project improvements would not:

 Expose people to or generate noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies. The proposed project improvements are within the boundaries of the LiSWA WWTRF, and therefore, the exposure to

people of noise levels in excess of standards established in local general plans or noise ordinances is the same as what was analyzed in the 2013 EIR. There remain to be no sensitive receptors within 200 feet of the WWTRF, and therefore, the proposed project improvements would result in a less-than-significant impact, and no mitigation would be required.

- Expose people to or generate excessive ground-borne vibration or ground-borne noise levels. The proposed project improvements would have a similar, if not less than, impact as what was described in the 2013 EIR. Some construction activities may cause ground-borne vibration, but there are no sensitive receptors near the LiSWA WWTRF, and these would be short-term activities. The proposed project improvements would result in a less-than-significant impact, and no mitigation measures would be required.
- Expose people residing or working in the project area to excessive noise levels (for projects located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, within the vicinity of a private airstrip). As stated in the 2013 EIR, there are no private airstrips in the vicinity of the LiSWA WWTRF, and therefore, no impact would occur.

3.3.8 Geology and Soils

Level of Significance: No change - Less than significant with mitigation incorporated

Mitigation Measures: HYDRO-1 Prepare an Erosion Control and Stormwater Pollution Prevention Plan; CULT-1 Proper Handling of Inadvertent Discovery of Cultural and Paleontological Resources

The proposed project improvements would not:

- Directly or indirectly cause potential substantial adverse effects, including the risk of loss, injury, or death involving:
 - Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo
 Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other
 substantial evidence of a known fault (refer to Division of Mines and Geology Special
 Publication 42)
 - Strong seismic ground shaking
 - Seismic-related ground failure, including liquefaction
 - Landslides

The proposed project improvements would occur within the footprint of the previously analyzed 2013 EIR, and no additional impacts would occur. Therefore, this would be a less-than-significant impact.

Result in substantial soil erosion or the loss of topsoil. Proposed upgrades to the LiSWA WWTRF would occur within the bounds of the WWTRF, and therefore, the improvements have been previously planned for and are generally accounted for in the facility's stormwater system. However, there would still be the potential for erosion associated with earthwork occurring during construction. Therefore, implementation of MM HYDRO-1 is necessary to prevent erosion of exposed soils during construction, which would reduce the potential for substantial erosion to less than significant with mitigation.

- Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the proposed project improvements, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction, or collapse. Since the proposed project improvements are within the footprint of the previously analyzed 2013 EIR, no further impact would occur beyond what was previously identified. Any improvements at the WWTRF would be designed in accordance with the Uniform Building Code (1994) specifications and standards. Therefore, impacts would be less than significant.
- Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial direct or indirect risks to life or property. Since the proposed project modifications are within the footprint of the previously analyzed 2013 EIR, there would be no additional impacts beyond what was described in the 2013 EIR. Where foundations are necessary for construction, they would be comprised of engineered fill at adequate depths to reduce any potential expansion of adjacent soils. Therefore, impacts would be less than significant.
- Have soils incapable of adequately supporting the use of septic tanks or alternative wastewater
 disposal systems where sewers are not available for the disposal of wastewater. As stated in the
 2013 EIR, the proposed project improvements would not incorporate additional septic tanks or
 alternative wastewater disposal systems. Therefore, impacts would remain less than significant.
- Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature.
 As stated in the 2013 EIR, there are no known paleontological resources or unique geologic
 features in the proposed project area. However, there is always the possibility, however remote,
 that previously unknown paleontological resources could be encountered during construction
 activities. Therefore, MM CULT-1 would still be required to reduce impacts to a less than
 significant level.

3.3.9 Mineral Resources

Level of Significance: No change – Less than significant

- Result in the loss of availability of a known mineral resource that would be of value to the region
 and the residents of the state. As stated in the 2013 EIR, there are no known significant mineral
 resources located at the WWTRF site. Therefore, the proposed project improvements would not
 have a significant impact to the loss of mineral resources that would be valuable to the region and
 the residents. No mitigation measures would be required.
- Result in the loss of availability of a locally important mineral resource recovery site delineated on
 a local general plan, specific plan, or other land use plan. As stated in the 2013 EIR, there are no
 mineral resource recovery sites delineated within 300 feet of the project. Furthermore, since the
 proposed project improvements are within the LiSWA WWTRF footprint, no impact would occur.

3.3.10 Hydrology and Water Quality

Level of Significance: No change – Less than significant with mitigation incorporated

Mitigation Measures: WQ-1 Avoid/Minimize Potential Water Quality Impacts from Construction Activities; HYDRO-1 Prepare an Erosion Control and Stormwater Pollution Prevention Plan; HYDRO-2 Dry Season Construction

- Violate any water quality standards or waste discharge requirements or otherwise substantially degrade surface or ground water quality. Discharge of effluent from the LiSWA WWTRF into Auburn Ravine would not cause substantial degradation of the water quality or exceedance of Water Quality Objectives or Water Quality Criteria. As discussed in the 2013 EIR, the LiSWA WWTRF would continue to treat effluent to a standard that is protective of all beneficial uses within Auburn Ravine. The proposed project improvements are minor improvements to the WWTRF and would be designed to enhance the overall water quality of the region. In addition, the 2013 EIR assessed the Project-specific impacts to hydrology and water quality to buildout, and thus the proposed improvements fall within the bounds of that analysis. As discussed in the 2013 EIR, the LiSWA WWTRF was expanded to comply with the current National Pollutant Discharge Elimination System (NPDES) temperature limitation and will continue to do so through buildout. Therefore, the proposed project improvements would not cause an increase in water temperature in Auburn Ravine beyond the increase allowed by the NPDES permit, which is protective of beneficial uses and would not substantially degrade water quality. Therefore, the impacts are less than significant, and no mitigation would be required. In addition, the proposed project construction activities would be subject to the NPDES General Construction Permit for Discharge of Stormwater Associated with Construction Activity. As discussed in the 2013 EIR. compliance with BMPs and the implementation of MM WQ-1 and HYDRO-1 would be required to reduce any impacts to a less than significant level.
- Substantially decrease groundwater supplies or interfere substantially with groundwater recharge
 such that the project may impede sustainable groundwater management of the basin. The
 proposed project improvements are located within the boundaries of the WWTRF boundary; the
 area which was contemplated for WWTRF development within the 2013 EIR. As such, the
 proposed project improvements contemplated in this Addendum do not interfere with
 groundwater. As the WWTRF expands, more water can be recycled, reducing pressure on
 groundwater by the City.
- Substantially alter the existing drainage pattern of the site or area, including through the alteration
 of the course of a stream or river or through the addition of impervious surfaces, in a manner
 which would:
 - Result in a substantial erosion or siltation on- or off-site;
 - Substantially increase the rate or amount of surface runoff in a manner that would result in flooding on- or off-site;

- Create or contribute runoff water that would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff; or
- Impede or redirect flood flows.

The proposed project improvements would be similar to those analyzed in the 2013 EIR but smaller in scale. These impacts would remain less than significant with the incorporation of MM HYDRO-1 and MM HYDRO-2.

- Risk release of pollutants due to project inundation in a flood hazard, tsunami, or seiche zone. The
 proposed project improvements would be similar to those analyzed in the 2013 EIR. These impacts
 would remain less than significant with the incorporation of MM HYDRO-1 and MM HYDRO-2.
- Conflict with or obstruct implementation of a water quality control plan or sustainable groundwater management plan. The proposed project improvements are within the Sacramento Valley–North American groundwater basin, which the Department of Water Resources classifies as a high-priority groundwater basin (DWR 2025). In 2014, the Sustainable Groundwater Management Act (SGMA) was signed, which requires groundwater basins/subbasins designated by the California Department of Water Resources (DWR) as medium- or high-priority to follow four basic steps: 1) form a Groundwater Sustainability Agency (GSA); 2) develop and adopt a Groundwater Sustainability Plan (GSP); 3) implement the GSP to achieve a sustainability goal and avoid undesirable results within 20 years; and 4) report the implementation activities to the DWR to document whether the sustainability goal and the avoidance of undesirable results is being achieved. Per the 2013 EIR, dischargers will comply with water quality objectives as defined in the Central Valley Basin Plan. If Basin Plan objectives are exceeded, corrective measures would be required. Additionally, the proposed project improvements contemplated in this Addendum do not interfere with groundwater. As the WWTRF expands, more water can be recycled, reducing pressure on groundwater by the City.

3.3.11 Water Resources

Level of Significance: No change – Less than significant

- Significantly reduce Rock Creek and upper Auburn Ravine flows, such that their lower reaches
 are affected. Since the proposed project improvements would occur within the footprint of the
 LiSWA WWTRF, the proposed project improvements would result in no impacts to Rock Creek
 and upper Auburn Ravine flows beyond what was discussed in the 2013 EIR. Therefore, the
 impact is less than significant, and no mitigation would be required.
- Trigger significant upstream water withdrawals by water purveyors to compensate for the effluent lost from the stream system, thereby reducing their overall available supply. No additional impacts would be caused by the proposed project improvements beyond what was discussed in the 2013 EIR.

3.3.12 Biological Resources

Level of Significance: No change – Less than significant with mitigation incorporated

Mitigation Measures: BIO-9 Avoid disturbance of nesting special-status migratory birds, raptors

The proposed project improvements would not:

 Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special-status species in local or regional plans, policies, or regulations, or by the CDFW or USFWS.

Since the proposed project improvements would occur in the footprint of the previously analyzed 2013 EIR and no special-status plants were observed during a protocol-level survey (Stantec 2012), the potential for special-status plants is low. Online databases, including CDFW's California Natural Diversity Database, USFWS's Information for Planning and Consultation planning tool, and California Native Plant Society's Rare Plant Inventory, were reviewed for updated occurrences and listed species (CDFW 2015, CNPS 2025, USFWS 2025) (Appendix C). The results of the databases concluded no new occurrences within the bounds of the LiSWA WWTRF.

As discussed in the 2013 EIR, no valley elderberry longhorn beetle (*Desmocerus californicus dimorphus*) habitat was identified within or adjacent to the LiSWA WWTRF (Stantec 2012), no vernal pools are located within the proposed project improvements, and no suitable habitat exists for the federally listed California red-legged frog (*Rana draytonii*) within the bounds of the LiSWA WWTRF. Therefore, there is no suitable habitat for regionally occurring special-status animal species in the proposed project area.

As discussed in the 2013 EIR, the LiSWA WWTRF does not contain habitat for non-federally listed special-status species and would not remove any habitats for these species. However, the LiSWA WWTRF is bordered by vernal pools and riparian habitat, which may provide habitat for special-status species. Therefore, impacts to special-status species and their habitats in the areas adjacent to the LiSWA WWTRF would be less than significant with Mitigation Measure HYDRO-1 incorporated for the proposed project improvements. Additionally, no roost trees would be removed and, therefore, there would be no impact to special-status bats.

The proposed project improvements may cause disturbance of nesting migratory birds and raptors during construction activities (if conducted during nesting season – approximately February 15 through August 15). The proposed project improvements are likely to have an effect on natural habitat for nesting birds or raptors since the proposed project improvements are within the LiSWA WWTRF, which includes limited suitable nesting habitat, and BIO-9 would be implemented to ensure proper handling should any nesting birds or raptors be encountered. Therefore, no impacts would occur to nesting birds or raptors with mitigation incorporated.

Have a substantial adverse effect on any riparian habitat or other sensitive natural community
identified in local or regional plans, policies, regulations, or by the California Department of Fish
and Wildlife or U.S. Fish and Wildlife Service. As discussed in the 2013 EIR, there are no riparian
vegetation areas or habitats within the LiSWA WWTRF footprint. The proposed project

improvements would not disturb adjacent riparian vegetation, habitats, or waterways because construction and improvements would be limited to the WWTRF site, and due to the distance from riparian vegetation and habitat along Orchard Creek, there are no indirect impacts anticipated to occur beyond what was analyzed in the 2013 EIR. Therefore, there would be no impact to riparian vegetation or habitats.

- Have a substantial adverse effect on state or federally protected wetlands (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means, causing loss of wetlands from the proposed project improvements. The 2013 EIR determined that wetlands and waters of the U.S. occur within and adjacent to the LiSWA WWTRF. However, the proposed project improvements would not impact wetland or waters of the U.S. or waters of the State since the proposed project improvements would occur within previously disturbed sites that are not within or adjacent to wetland or waters of the U.S. or State. Therefore, no mitigation would be required.
- Interfere substantially with the movement of any native resident or migratory fish or wildlife species, or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites. As evaluated in the 2013 EIR, the LiSWA WWTRF is within an area that has been previously disturbed and does not provide suitable wildlife movement or migration corridors. The proposed project improvements would not add any further impacts that would inhibit wildlife movements or migrations. Therefore, the potential impact from the proposed modifications would be considered less than significant, and no mitigation would be required.
- Conflict with any local policies or ordinances protecting biological resources, such as a tree
 preservation policy or ordinance (i.e., trees protected by the Placer County Tree Preservation
 Ordinance). The proposed project improvements would not require the removal of any heritage
 oak or other protected trees over 24 inches in diameter at breast height. As stated in the 2013
 EIR, no such trees exist at the LiSWA WWTRF, and therefore, there would be no potential impact
 to the Placer County Tree Preservation Ordinance.
- Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan. The proposed project improvements are in accordance with the Lincoln General Plan, the impacts of which were disclosed in the 2050 General Plan Update and associated General Plan EIR (2006), and the Placer County Conservation Plan (PCCP). The Lincoln General Plan growth is a Covered Activity under the PCCP, assuming compliance with the terms of the PCCP and the Placer County Aquatic Resources Program. The Potential Future Growth Area and its effects on Covered Species and wetlands are included at a programmatic level in the PCCP. No new goals or objectives have been made that would substantially affect the proposed project improvements to the LiSWA WWTRF. The proposed project improvements are still in accordance with the PCCP, and as such, the potential conflict with an existing or planned habitat conservation plan would be considered less than significant.

3.3.13 Fisheries Resources

Level of Significance: Less than significant

- Cause direct mortality or stranding of federal or State-listed, locally protected fish species, or species of concern during construction. As stated in the 2013 EIR, construction at the LiSWA WWTRF would not entail in-water work at locations where there are known occurrences of listed species. The proposed project improvements would not result in a change to the 2013 EIR's determination that there is no impact to or potential for stranding of federally-listed, State-listed, or other protected fish species.
- Cause direct mortality or stranding of special status and native fish species during construction.
 As stated in the 2013 EIR, the potential for direct mortality or stranding of native fish during WWTRF modifications is extremely unlikely. This same analysis applies to the proposed project improvements as they would occur outside the streambed and bank and therefore would not have the potential to cause mortality or stranding within adjacent waterways. This potential impact is considered less than significant, and no mitigation would be necessary.
- Cause adverse impacts to native or listed fisheries, or their prey, from an accidental spill of
 petroleum products and other construction-related materials (contaminants) during construction.
 The proposed project improvements would occur within the existing fence line of the LiSWA
 WWTRF, and there are no waterways within the fence line of the WWTRF. Therefore, the
 impacts to native fish and their prey from accidental spill of petroleum and other constructionrelated materials would be unlikely and considered less than significant.
- Cause stream bank and streambed destabilization, causing erosion and adverse habitat
 modifications for native or federally or State-listed species and their associated designated
 Critical Habitat or Essential Fish Habitat during and post-construction, since the proposed project
 improvements would not entail work within the streambed and bank.
- Cause construction-related disturbance or loss of woody riparian shade vegetation and associated nutrient input, shelter, and water temperature insulation properties. The proposed project improvements would not entail work within the streambed and bank or require the removal of any riparian trees.
- Cause direct mortality/stranding of native, federal, or State-listed fish species or long-term adverse modification of designated Critical Habitat or Essential Fish Habitat in Auburn Ravine during project operation. The proposed project improvements would occur within the fence line of the LiSWA WWTRF. None of the activities associated with the proposed modifications would impact mortality/stranding of native, federal, or State-listed fish species or long-term adverse modification of designated Critical Habitat or Essential Fish Habitat in Auburn Ravine during operation. Therefore, no impact would occur, and no mitigation would be required.

- Cause a conflict with any local policies or ordinances protecting fisheries resources. The
 proposed project improvements would be in compliance with the local policies or ordinances that
 protect fishery resources. The proposed modifications are minor and do not conflict with any of
 the local policies or ordinances, and therefore, no mitigation would be required.
- Cause a conflict with provisions of a fishery-related adopted Habitat Conservation Plan, Natural
 Community Conservation Plan, or other approved local, regional, or state habitat conservation
 plan. There are no potential conflicts with provisions of a fishery-related adopted Habitat
 Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or
 state habitat conservation plan regarding the proposed project improvements. The 2013 EIR
 discusses mitigation measures needed; however, since the proposed project improvements are
 minor, no mitigation measures would be required.

3.3.14 Cultural Resources

Level of Significance: No change – Less than significant with mitigation incorporated

Mitigation Measures: CULT-1 Proper Handling of Inadvertent Discovery of Cultural and Paleontological Resources; CULT-2 Proper Handling of Inadvertent Discovery of Human Remains; CULT-3 Pre-Construction Cultural Resource Awareness Training and Cultural Resource Construction Monitoring

The proposed project improvements would not:

- Cause a substantial adverse change in the significance of a historical resource as defined in CEQA Guidelines 15064.5.
- For a cultural resource to be considered a historical resource (i.e., eligible for listing in the
 California Register of Historical Resources [CRHR]), it must generally be 50 years or older. Under
 CEQA, historical resources can include pre-European contact (i.e., Native American)
 archaeological deposits, historic-period archaeological deposits, and built environment resources
 such as landscapes, historic buildings, and districts.

Records Search Results

In order to identify built environment or archaeological resources that could be impacted by new development within the WWTRF, Stantec requested a records search (File #PLA-25-31) for the WWTRF and a 0.5-mile radius on April 10, 2025, at the North Central Information Center (NCIC) at Sacramento State University. The NCIC, an affiliate of the California Office of Historic Preservation, is the official state repository of cultural resources records and reports for Placer County.

Four previously recorded cultural resources were identified within the proposed project site, three built environment and one archaeological resource. The three built environment resources were evaluated and recommended as not eligible for the CRHR; therefore, they do not qualify as historical rescores for the purposes of CEQA.

One archaeological resource, a historic-period refuse scatter, has not been evaluated for the CRHR. Eight resources were identified within 0.5 mile of the proposed project site.

All resources identified during the current record search were analyzed in the 2013 EIR and 2017 Addendum and are outside of the proposed project components. Updated record search materials are included in Confidential Appendix D, *Lincoln-SMD1 Wastewater Authority Wastewater Treatment and Reclamation Facility EIR Addendum 2025 Cultural Resources Update.*

Built Environment Resources

The proposed project site does not contain any built environmental resources that qualify as historical resources for the purposes of CEQA. Therefore, the proposed project would not have the potential to cause a substantial adverse change to the significance of any built environment historical resource, as defined in Section 15064.5 of the CEQA Guidelines. The proposed project would not demolish a significant historical resource or alter its physical characteristics, nor would it change elements within the historic setting of such a resource. Therefore, the proposed project would have no impact on the built environment historical resources.

Archaeological Resources

The records search identified one previously recorded archaeological resource within the proposed project site, a historic-period refuse scatter which has not been evaluated for the CRHR. However, this resource is located approximately 0.40 miles from the proposed project components and is not impacted by project construction.

As stated in the 2013 EIR, the western area of the proposed project site where the maturation ponds modifications are located is within an area of high sensitivity for buried pre-European contact archaeological deposits (Figure 3-1); therefore, there is possibility that previously unknown archaeological deposits that qualify as historical resources could be encountered during project construction activities. Should such deposits be encountered during project ground disturbance, a substantial adverse change in the significance of a historical resource would occur from its demolition, destruction, relocation, or alteration such that the significance of the resource would be materially impaired (CEQA Guidelines Section 15064.5(b)(1)).

The application of the 2013 EIR Mitigation Measures to reduce any potential impacts on archaeological resources remains necessary for the proposed project improvements. Specifically, the proposed project improvements would be subject to CULT-3, which provides for archaeological monitoring in areas of high sensitivity for buried archaeological deposits, and CULT-1, which provides procedures should a deposit be encountered during project construction.

Consistent with the conclusions in the 2013 EIR and 2017 Addendum, impacts on archaeological deposits that could qualify as historical resources would be less than significant. Therefore, the proposed project improvements would not result in greater or worse impacts than those evaluated in the 2013 EIR and 2017 Addendum, and no additional mitigation measures would be required.

The proposed project improvements would not:

• Cause a substantial adverse change in the significance of an archaeological resource as defined in CEQA Guidelines 15064.5.

- According to the CEQA Guidelines, "When a project will impact an archaeological site, a lead
 agency shall first determine whether the site is an historical resource" (CEQA Guidelines Section
 15064.5(c)(1)). Those archaeological sites that do not qualify as historical resources shall be
 assessed to determine whether they qualify as "unique archaeological resources" (California PRC
 Section 21083.2 and State CEQA Guidelines Section 15064.59 (c)(3)).
- As discussed above, the western area of the proposed project site, where the maturation ponds modifications are located is within an area of high sensitivity for buried pre-European contact archaeological deposits (Figure 3-1); therefore, there is the possibility that previously unknown archaeological deposits could be encountered during project construction activities. The 2013 EIR and 2017 Addendum determined that impacts to archaeological resources would be less than significant with the implementation of CULT-1 and CULT-3. Therefore, the proposed project improvements would not result in greater or worse impacts than those evaluated in the 2013 EIR and 2017 Addendum, and no additional mitigation measures would be required.

- Disturb any human remains, including those interred outside of formal cemeteries.
- As discussed above, the western area of the proposed project site where the maturation ponds
 modifications are located is within an area of high sensitivity for buried pre-European contact
 archaeological deposits which could contain human remains (Figure 3-1); therefore, there is a
 possibility that the proposed project improvements could disturb human remains.
- In the event that human remains are identified during proposed project improvements, these remains would be required to be treated in accordance with Section 7050.5 of the California Health and Safety Code and Section 5097.98 of the Public Resources Code, as appropriate. In addition, the proposed project improvements would be required to comply with the 2013 EIR Mitigation Measures to reduce any potential impacts to human remains. Specifically, the proposed project improvements would be subject to CULT-3, which proves for archaeological monitoring in areas of high sensitivity for buried archaeological deposits, and CULT-2, which provides procedures should human remains be encountered during proposed project improvements.
- Therefore, the proposed project improvements would not result in greater or worse impacts than those evaluated in the 2013 EIR and 2017 Addendum, and no additional mitigation measures would be required.

Figure 3-1: Environmentally Sensitive Area

3.3.15 Hazards and Hazardous Materials

Level of Significance: No change – Less than significant with mitigation incorporated

Mitigation Measures: Refer to Mitigation Measure AIR-1 in the Air Quality and WQ-1 in the Hydrology and Water Quality sections of this document; HAZ-2 Prepare Fire Suppression and Control Plan

- Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials. There are no additional impacts associated with the proposed project improvements beyond what was discussed in the 2013 EIR. Temporary construction activities may involve the transport and use of hazardous materials typically associated with construction, including gasoline, diesel fuel, hydraulic fluid, solvents, and oils. All handling of hazardous materials associated with the proposed project improvements would be in accordance with federal and state laws. Therefore, the potential for impacts related to hazardous materials transport, use, or disposal is considered less than significant.
- Create a significant hazard to the public or the environment through reasonably foreseeable
 upset and accident conditions involving the release of hazardous materials into the environment.
 No further impacts beyond what was discussed in the 2013 EIR would occur under the proposed
 project improvements. As such, Mitigation Measure WQ-1 may be required to reduce potential
 impacts to a less than significant level.
- Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school. At the time of the 2013 EIR, no schools are present within one-quarter mile of the Lincoln WWTRF, which remains to be true in May 2025. Therefore, the proposed project improvements would not have any potential to emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school.
- Be located on a site that is included on a list of hazardous materials sites pursuant to
 Government Code Section 65962.5, and as a result, it would not create a significant hazard to the
 public or the environment. As stated in the 2013 EIR, the LiSWA WWTRF is not located on land
 identified on the Cortese List database. Therefore, the proposed project improvements would
 have no impact.
- Result in a safety hazard for people residing or working in the project area (for projects located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport). As stated in the 2013 EIR, the Lincoln Regional Airport is the closest public airport located approximately 2.6 miles to the north of the LiSWA WWTRF. The LiSWA WWTRF site is located within Compatibility Zone D of the Placer County Airport Land Use Compatibility Plan. The proposed project improvements include completing upgrades of the existing treatment plant and would not include any component that would result in a substantial safety hazard for people residing or working in the proposed project improvements area related to airport use. Therefore, this is a less-than-significant impact.

- Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan. As stated in the 2013 EIR, no emergency response plans or emergency evacuation plans are known to exist for areas within LiSWA WWTRF site. Access for fire and police emergency response vehicles would be maintained on roads along or near the WWTRF. Therefore, the proposed project improvements are not expected to impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan. Thus, this is a less-than-significant impact.
- Expose people or structures to a significant risk of loss, injury, or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands. As stated in the 2013 EIR, the LiSWA WWTRF is located within a Local Responsibility Area and is in a Non-Very High Fire Hazard Severity Zone. Therefore, potential impacts related to wildland fires are less than significant for the proposed project improvements, and will implement MM HAZ-2.

3.3.16 Public Services and Utilities

Level of Significance: No change – Less than significant with mitigation incorporated

Mitigation Measures: PUB-1 Reduction in Solid Waste Generated from Construction Activities

The proposed project improvements would not:

- Result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, the need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:
 - Fire protection;
 - Police protection;
 - Schools;
 - Parks;
 - Other public facilities.

The proposed project improvements would fall within the LiSWA WWTRF property of the 2013 EIR boundaries. Since this area was previously analyzed for potential impacts to increase demand for public services, and no impact was found, the same conclusion applies to the proposed project improvements. Therefore, construction of the proposed project improvements would not result in substantial adverse physical impacts associated with the provision, or need, of new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services. This is a less-than-significant impact.

Require or result in the construction of new water or wastewater treatment facilities or expansion
of existing facilities, the construction of which could cause significant environmental effects. As
discussed in the 2013 EIR, the Project was an upgrade and expansion of the wastewater facility,
and the subject of the EIR. Therefore, the proposed project improvements would not indirectly

trigger any wastewater facility upgrades, as could be the case with, for example, a proposed commercial or housing development project. This same analysis applies to the proposed project improvements because they would be an upgrade of the existing LiSWA WWTRF. No new impact would occur, and therefore, the potential for the proposed project improvement modifications to trigger the construction of additional water and wastewater treatment facilities is considered less than significant.

- Not have sufficient water supplies available to serve the proposed project improvements from existing entitlements and resources, or if new or expanded entitlements are needed. As discussed in the 2013 EIR, construction of the wastewater treatment facilities modifications would require some additional water supply for dust control, clean-up, soil compaction, and facility testing. The City has several different sources of water in the area that would be sufficient for the proposed project improvements. Additional water use during construction would be temporary and minimal and would not constitute a significant impact that would require new or expanded water supply resources.
- Result in a determination by the wastewater treatment provider that serves or may serve the proposed project improvements that do not have adequate capacity to serve the proposed project improvements projected demand in addition to the provider's existing commitments. As discussed in the 2013 EIR, the construction activities may cause a temporary increase in wastewater generation. This increase would be incremental, of limited duration, and not result in the wastewater treatment provider proposed to serve the City of Lincoln to determine that it does not have adequate capacity to serve the proposed project improvements projected demand in addition to the provider's existing commitments; thus, the impact is considered less than significant.
- Generate solid waste in excess of state or local standards, or in excess of the capacity of local infrastructure, or otherwise impair the attainment of solid waste reduction goals. The impacts associated with solid waste disposal needs discussed in the 2013 EIR are anticipated to be significantly less for the proposed project improvements and modifications. Although there is not anticipated to be a significant increase in solid waste, Mitigation Measure PUB-1 may still need to be implemented in order to reduce potential impacts to a less than significant level.
- Not comply with federal, state, and local statutes and regulations related to solid waste or
 wastewater. In the 2013 EIR, mitigation measures were required to be in compliance with the
 Placer County 50-foot setback requirement for sewer lines relative to water wells. Since the
 proposed project improvements would all occur within the LiSWA WWTRF property, no mitigation
 regarding this rule would be necessary. However, Mitigation Measure PUB-1 would be required to
 be in compliance with local waste statutes in order to reduce potential impacts to a less than
 significant level.

3.3.17 Population and Housing

Level of Significance: No change - Less than significant

The proposed project improvements would not:

- Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure). No new impacts to induce population growth in western Placer County beyond what was discussed in the 2013 EIR would occur with the proposed modifications. The project analysis included a study of treatment capacity for the LiSWA WWTRF and found that upgrades were needed to meet the capacity requirements. The proposed project improvements entail the project-specific aspects of the upgrades contemplated in the 2013 EIR to accommodate planned growth. Therefore, the proposed modifications would not directly or indirectly induce growth as CEQA Guidelines Section 15126.2[d].
- Displace substantial numbers of existing housing, necessitating the construction of replacement
 housing elsewhere. All construction associated with the proposed project improvements would
 occur within the existing LiSWA WWTRF site. No housing or people would be displaced for the
 construction at the LiSWA WWTRF; therefore, there would be no impact to existing housing in the
 City of Lincoln.

3.3.18 Transportation and Traffic

Level of Significance: No change - Less than significant with mitigation incorporated

Mitigation Measures: TRANS-1 Prepare and Implement a Traffic Control Plan; TRANS-2 Inform the Public of Lane Closures and Detours

The proposed project improvements would not:

- Conflict with a program, plan, ordinance, or policy addressing the circulation system, including transit, roadway, bicycle, and pedestrian facilities. No additional impacts beyond what was discussed in the 2013 EIR would occur for the proposed project improvements. The proposed project improvements at the LiSWA WWTRF would not directly affect any roadways, other than adding a small amount of construction traffic during the construction of the improvements. These activities would not conflict with a local plan or policy establishing measures of effectiveness for the performance of the circulation system, and thus, the impact is considered less than significant to transportation resources.
- Conflict or be inconsistent with CEQA Guidelines Section 15064.3. Section 15064.3 identifies vehicle miles traveled (amount and distance of automobile traffic attributable to a project) as the most appropriate measure of transportation impacts rather than level of service (LOS), which evaluates a project's impacts based on traffic conditions on nearby roadways and intersections and was used for the analysis within the 2013 EIR. The proposed project improvements would not directly affect any roadways, other than adding a small amount of construction traffic during the construction of the modifications. The increase in traffic to the site and during construction would not conflict with an applicable congestion management program, including, but not limited

to, previous LOS standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways. However, mitigation measures TRANS-1 and TRANS-2 may need to be implemented to reduce any potential traffic impacts to a less than significant level. Thus, the impact to traffic resources would be less than significant with mitigation.

- Substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment). The proposed project improvements would not change existing roadway designs or incompatible uses. The entirety of the proposed modifications would occur on the LiSWA WWTRF site; therefore, there is no potential to increase hazards due to a design feature or incompatible uses.
- Result in inadequate emergency access. The proposed project improvements would not directly
 affect any of the roadways, other than adding a small amount of construction traffic during
 implementation of the proposed project improvements. Construction at the LiSWA WWTRF would
 occur on-site and is not anticipated to cause delays or road closures on Fiddyment Road or other
 adjacent roadways. Thus, the proposed project improvements would have no impact on
 emergency access.

3.3.19 Energy Resources

Level of Significance: Less than significant

The proposed project improvements would not:

- Result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary
 consumption of energy resources during project construction or operation. Since the proposed
 project improvements would be minor and would result in lower energy consumption than what
 was described within the 2013 EIR, there would likely be a less-than-significant impact in regard
 to energy consumption, and therefore, no mitigation is required.
- Conflict with or obstruct a state or local plan for renewable energy or energy efficiency. In 2020, the Placer County Board of Supervisors adopted the Placer County Sustainability Plan (PCSP), which establishes goals and policies for energy efficiency. As a result, the PCSP is considered the local plan for renewable energy and efficiency. A 10-acre 3.7 MW solar field was constructed within the LiSWA WWTRF in 2019, which offsets existing energy use and increases energy efficiency. Components of the proposed project improvements are not anticipated to have impacts to energy resources greater than what was previously analyzed in the 2013 EIR.

3.3.20 Tribal Cultural Resources

Level of Significance: Less than significant with mitigation incorporated

Mitigation Measures: CULT-1 Proper Handling of Inadvertent Discovery of Cultural and Paleontological Resources; CULT-2 Proper Handling of Inadvertent Discovery of Human Remains; CULT-3 Pre-Construction Cultural Resource Awareness Training and Cultural Resource Construction Monitoring

The proposed project improvements would not:

- Cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code Section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, including:
 - Listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code Section 5020.1(k), or
 - A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth in subdivision (c) of Public Resources Code Section 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe.

As part of the 2013 EIR impact analysis and pursuant to the 2050 General Plan Update Policy OSC-6.9: Native American Resources, the City of Lincoln consulted with representatives from United Auburn Indian Community (UAIC) to discuss concerns regarding potential impacts to cultural resources, including archaeological sites and tribal cultural resources.

Site visits with representatives from UAIC were conducted in October 2012 to identify areas of concern to UAIC that may be impacted by the 2013 Midwestern Placer Regional Sewer Project. As a result of the site visit and consultation with UAIC, the City drafted avoidance procedures for known resources of concern to UAIC, identified areas of high sensitivity for buried archaeological deposits, and drafted mitigation measures CULT-1, CULT-2, and CULT-3. Mitigation measure CULT-3 requires tribal monitoring by a UAIC representative in areas of high sensitivity for buried archaeological deposits (Figure 3-1), and CULT-1 and CULT-2 outline procedures should an archaeological deposit or human remains be encountered during project construction.

On April 7, 2025, Stantec submitted a request to the Native American Heritage Commission (NAHC) to review its Sacred Lands File for the proposed project site. The NAHC is the official state repository of Native American sacred site records in California. Stantec received a response on April 10, 2025, from the NAHC, stating that, "A record search of the NAHC Sacred Lands File was completed for the information submitted for the above-referenced project. The results were negative...."

As stated in the 2013 EIR and described in Section 3.4.6 Cultural Resources, the western area of the proposed project site where the maturation ponds modifications are located is within an area of high sensitivity for buried pre-European contact archaeological deposits; therefore, there is a possibility that previously unknown archaeological deposits that qualify as tribal cultural resources could be encountered

during project construction activities. Such resources would be eligible for listing in the CRHR or a local register of historical resources, or the lead agency, in its discretion and supported by substantial evidence, could determine the resources to be significant pursuant to the criteria set forth in subdivision (c) of PRC Section 5024.1. Should deposits be encountered during project excavation, this could result in an adverse change to a tribal cultural resource. However, the proposed project would be required to comply with the 2013 EIR Mitigation Measures to reduce any potential impacts on archaeological resources that could qualify as tribal cultural resources. Specifically, the proposed project would be subject to CULT-3, which provides tribal monitoring in areas of high sensitivity for buried deposits, CULT-1, which provides procedures should a deposit be encountered during project construction, and CULT-2, which details procedures should human remains be encountered during project construction.

Therefore, the proposed project improvements would not result in greater or worse impacts than those evaluated in the 2013 EIR and 2017 Addendum, and no additional mitigation measures would be required.

3.3.21 Wildfire

Level of Significance: Less than significant with mitigation incorporated

Mitigation Measures: HAZ-2 Prepare Fire Suppression and Control Plan

The proposed project improvements would not:

- Substantially impair an adopted emergency response plan or emergency evacuation plan.
- Due to slope, prevailing winds, and other factors, exacerbate wildfire risks, and thereby expose
 project occupants to pollutant concentrations from a wildfire or the uncontrolled spread of a
 wildfire.
- Require the installation or maintenance of associated infrastructure (such as roads, fuel breaks, emergency water sources, power lines, or other utilities) that may exacerbate fire risk or that may result in temporary or ongoing impacts to the environment.
- Expose people or structures to significant risks, including downslope or downstream flooding or landslides, as a result of runoff, post-fire slope instability, or drainage changes.

As stated in the 2013 EIR, access for fire and police emergency response vehicles would be maintained on roads along or near the WWTRF. The LiSWA WWTRF is located within a Local Responsibility Area and is in a Non-Very High Fire Hazard Severity Zone. Potential impacts related to wildland fires are low; however, the LiSWA WWTRF is located among grasslands. Therefore, with the implementation of MM HAZ-2, impacts would be less than significant.

4.0 LIST OF STANTEC PREPARERS

Principal-In-Charge/Environmental Project Manager	Bernadette Bezy
Associate Archaeologist	Jenna Santy
Senior Associate Archaeologist	Lora Holland
Senior Biologist	Emily C. Eppinger
GIS Analyst	Mike Maddux
Document Control and QA/QC	lris Eschen

5.0 REFERENCES

- AEP. 2025. California Environmental Quality Act (CEQA) Guidelines Appendix G. Association of Environmental Professionals. https://www.califaep.org/statute_and_guidelines.php. Accessed July 2025.
- CDFW (California Department of Fish and Wildlife). 2025. California Natural Diversity Database (CNDDB) Maps and Data. https://wildlife.ca.gov/Data/CNDDB/Maps-and-Data#cnddb-in-biosRarefind%205. Accessed May 2025.
- City of Lincoln. 2006. City of Lincoln General Plan. Draft Environmental Impact Report, Volume I.
- City of Lincoln. 2008. City of Lincoln General Plan 2050. https://www.lincolnca.gov/en/business-and-development/general-plan-2050.aspx. Accessed June 2025.
- City of Lincoln. 2012. City of Lincoln Gravity Sewers and Reclamation Project Initial Study/Mitigated Negative Declaration. Prepared for City of Lincoln by Stantec Consulting Services Inc.
- City of Lincoln. 2013. Midwestern Placer Regional Sewer Project Environmental Impact Report. Prepared for City of Lincoln by Stantec Consulting Services Inc.
- CNPS (California Native Plant Society). 2025. Rare Plant Inventory. Available online: https://rareplants.cnps.org/. June 2025.
- DWR (Department of Water Resources). 2025. Sustainable Groundwater Management Act (SGMA) Basin Prioritization Dashboard. Available online: https://gis.water.ca.gov/app/bp-dashboard/final/. Accessed June 2025.
- Placer County. 2008. NOA Maps and Resources. Placer County Naturally Occurring Asbestos Hazard Index Map. Placer County Air Pollution Control District. https://www.placer.ca.gov/1629/NOA-Maps-Resources. Accessed June 2025.
- Placer County. 2011. Placer County Conservation Plan. Amended 2019. Participants: Placer County, California Department of Fish and Wildlife, and U.S. Fish and Wildlife Service.

https://www.wildlife.ca.gov/Conservation/Planning/NCCP/Plans/Placer-County. Accessed June 2025.

- Placer County. 2017. CEQA Handbook. Placer County Air Pollution Control District. https://www.placerair.org/1801/CEQA-Handbook. Accessed June 2025.
- Stantec (Stantec Consulting Services Inc). 2024. LiSWA WWTRF Phase 1 Improvements Project Basis of Design Report. Prepared by Stantec Consulting Services Inc. for the City of Lincoln.
- USFWS (U.S. Fish and Wildlife Service). 2025. Information for Planning and Consultation. Available online: https://ipac.ecosphere.fws.gov/. Accessed June 2025.

Appendix A MITIGATION AND MONITORING REPORTING PROGRAM

LiSWA Wastewater Treatment Reclamation Facility Improvements Project

Mitigation, Monitoring, and Reporting Program

Prepared for:

Lincoln-SMD1 Wastewater Authority (LiSWA) 1245 Fiddyment Road Lincoln, California 95648

Prepared by:

Stantec Consulting Services Inc. 101 Providence Mine Road, Suite 202 Nevada City, California 95959

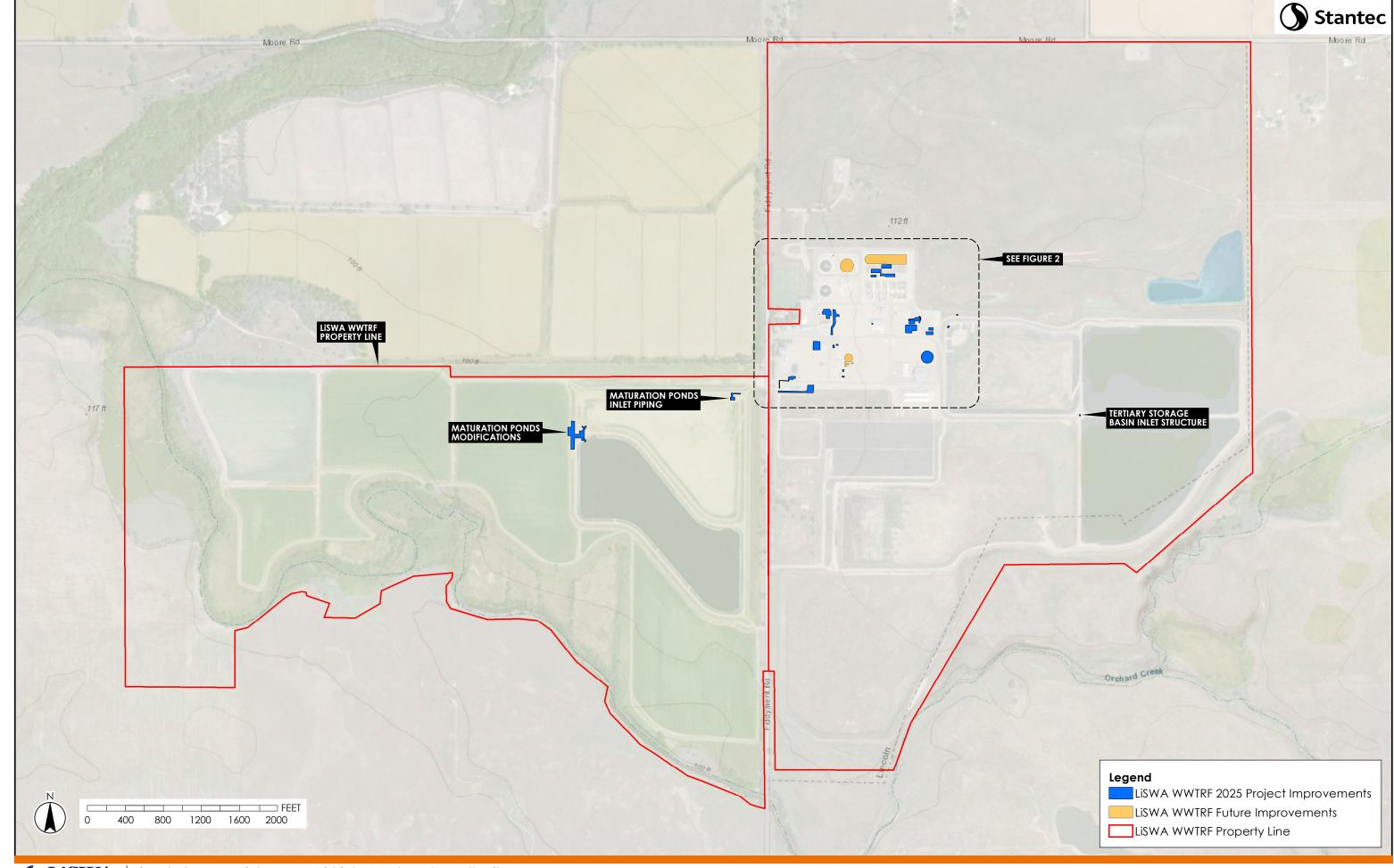
Table of Contents

1.0	INTRO	DUCTION	. 1
2.0	PROJE	CT DESCRIPTION	. 1
2.1	Propo	sed Project Improvements	. 1
2.2		t Location	
2.3	Const	ruction Activities	. 4
2.4	Propo	sed Project Operation and Maintenance	. 4
2.5	Propo	sed Schedule	. 4
3.0	PROC	EDURES FOR MONITORING AND REPORTING	4
4.0	CEQA	MITIGATION MEASURES	. 5
5.0	REFERI	ENCES	14
LIST O	F TABLE	es S	
Table	4-1	Summary of the LiSWA Wastewater Treatment and Reclamation Facility Improvements Project Mitigation Measures	. 6
LIST O	F FIGUR	RES	
Figure	2-1.	LiSWA WWTRF 2025 Improvements Project	. 2
_		LiSWA WWTRF 2025 Improvements Project Detail	

1.0 INTRODUCTION

The Lincoln-SMD1 Wastewater Authority (LiSWA) is upgrading its existing Wastewater Treatment and Reclamation Facility (WWTRF) and completed an Addendum to the 2013 Midwestern Placer Regional Sewer Project (Project) Environmental Impact Report (2013 EIR) for the LiSWA WWTRF Improvements Project (proposed project improvements) in July 2025. This Mitigation Monitoring and Reporting Program (MMRP) was prepared pursuant to the CEQA guidelines (section 21081.6(a)(1)), which require a public agency to adopt a monitoring and/or reporting program to ensure compliance with mitigation measures during project implementation. This MMRP identifies the measures from the 2013 EIR and MMRP that apply to the proposed project improvements as evaluated and documented in the Addendum. This MMRP identifies the required mitigation and environmental compliance steps to be completed in accordance with CEQA regulations and the parties responsible for implementation and monitoring.

2.0 PROJECT DESCRIPTION


2.1 PROPOSED PROJECT IMPROVEMENTS

Upgrades and improvements to the LiSWA WWTRF include the following and are described herein as well as in the project's Basis of Design Report (BDR) (Stantec 2024) (Figure 2-1 and Figure 2-2):

- Influent and effluent pump stations upgrades
- Installation of a 50-million-gallon-per-day (Mgal/d) grit removal basin
- Upgrades to the maturation ponds' pump station
- Filter feed pump station modifications and filter system upgrades
- Ultraviolet (UV) disinfection system upgrades
- Installation of oxidation ditch and appurtenances
- Installation of secondary clarifier and appurtenances
- Structural and electrical improvements
- Site paving and grading

Growth associated with the WWTRF is in accordance with the Lincoln 2050 General Plan Update (City of Lincoln 2008), the Placer County Conservation Plan (Placer County 2011), and was addressed in the associated Lincoln General Plan EIR (2006).

2.2 PROJECT LOCATION

The location of the proposed project improvements would remain unchanged from the 2013 EIR and would be located within the existing 733-acre LiSWA WWTRF property within City limits in western Placer County. All proposed project improvement activities would occur at the LiSWA WWTRF.

2.3 CONSTRUCTION ACTIVITIES

Implementation of the proposed project improvements would follow similar methods and require similar construction equipment as disclosed in the 2003 EIR. Staging would be conducted on the existing WWTRF site, and access would be maintained through existing access roads on the WWTRF site.

2.4 PROPOSED PROJECT OPERATION AND MAINTENANCE

LiSWA will continue to operate the WWTRF to minimize cost and maximize efficiency. In general, operation and maintenance activities at the LiSWA WWTRF would be similar to existing activities.

2.5 PROPOSED SCHEDULE

The current proposed project improvements schedule began with facility planning, preliminary design, funding applications, environmental documentation, and then permitting in 2017. The planning, design, and environmental compliance activities described within this CEQA Addendum are targeted to conclude with the approval of this Addendum, the permitting process, and a funding commitment by 2025 or 2026.

3.0 PROCEDURES FOR MONITORING AND REPORTING

LiSWA will be responsible for mitigation measure implementation oversight, and compliance documentation. Under the oversight of the LiSWA staff, mitigation actions required prior to and during construction will be performed by the LiSWA's consultants, the construction contractors, and/or LiSWA's staff.

Monitoring and reporting procedures will conform to the following steps prior to and during project construction and operations:

Step 1 Action: This step will be executed by the LiSWA and may be designated by the LiSWA Project Manager to a consultant and/or contractor. All actions taken as part of this MMRP will be documented monthly and reported quarterly to LiSWA, as described in Steps 2 and 3 below. The designee responsible for the implementation of mitigation measures will:

 Review mitigation status reports and any other information generated during construction;

- Ensure that the mitigation measures in the MMRP are undertaken, either by staff, contractors, or consultants; and
- Verify monthly that mitigation actions are properly undertaken.

Step 2 Monitoring: This step will be executed by the monitor. The monitor will be designated by the LiSWA Project Manager and may be a consultant to the LiSWA. The monitor will investigate noncompliance allegations and identify how the LiSWA staff or its designees should correct the implementation of the measure. If a measure is under the control of the contractor, the monitor will inform the contractor of the monitor's determination and request improved implementation.

The monitor will have the following responsibilities:

- Be knowledgeable in the mitigation that is to be monitored; and
- Verify implementation of mitigation by:
 - Verifying in the field that the required implementation has been properly executed during and after construction; and
 - Contacting the Project Manager and requesting that the situation be remedied if mitigation is not being implemented or executed properly.

Step 3 Reporting: This step will be executed by the monitor. The monitor will have the following responsibilities:

- Compile all mitigation status reports into a Report of Compliance. Recommendations
 may include updating the frequency of monitoring, changing the type of monitoring,
 and suggesting better ways to implement mitigation:
 - Assist the LiSWA Project Manager in reviewing the contractor's implementation of mitigation requirements, detailing corrective action and time of completion to resolve any issues that are raised; and
 - Keep all completed reports and statements on file at the LiSWA office.

4.0 CEQA MITIGATION MEASURES

Table 4-1 below describes the mitigation measures included for the proposed project improvements. For each mitigation measure, the required action, the responsible party, the implementation timing, and the reporting requirements are described.

Table 4-1 Summary of the LiSWA Wastewater Treatment and Reclamation Facility Improvements Project Mitigation Measures

Mitigation Measure	Responsible Party	Monitoring Timing	Monitoring and Reporting Program	Standards for Success
Aesthetics				
Mitigation Measure AES-3: Select colors and finishes for above ground elements which blend with their existing visual environment. Where improvements occur in natural areas or adjacent to roadway, the designer shall be required use natural colors such as shades of brown, tan, green, and warm greys to the maximum extent permitted. Where improvements occur at existing facilities, the proposed Regional Project shall be required to use colors and finishes which are the same as or complementary to the existing visual environment.	LiSWA	Prior to the issuance of Placer County grading, conditional use, and encroachment permits authorizing construction and also prior to final authorization of substantial completion of construction.	The plans issued for construction shall be required to indicate material finishes and color selections and LiSWA shall be required to verify that the selections have been made in conformance with this mitigation measure. Following construction LiSWA staff shall confirm the Contractor has performed construction in conformance with the plans through visual verification.	Improvements blend with their existing visual environment.
Mitigation Measure AES-4: Include landscaping that is adequate to screen views of major new above ground facilities. If new features are visible to sensitive viewers above existing vegetation or if existing vegetation is removed landscaping shall include view shielding vegetation such as large shrubs, trees, planted berms, groundcovers, and vegetation that will climb to cover perimeter fencing. Preference shall be for hardy, resilient, evergreen plant species that require little to no supplemental watering once established. Preference shall also be for plants within the proposed Regional Project vicinity, especially California foothill natives, which demonstrate the aforementioned qualities. No plant species listed as 'invasive' by the California Invasive Plant Council shall be permitted under any condition. This condition shall apply to any major improvements adjacent residences or on scenic roadways. It shall also apply to any above ground improvement located on a ridgeline.	LiSWA	On-going during design phase and prior to commencement of construction.	Landscaping and a recommended on-going maintenance program shall be required. Following construction, the LiSWA Engineer shall confirm the contractor has performed construction in conformance landscaping goals through visual verification.	Mitigation shall be considered successful once the contractor installs the landscaping and an adequate on-going maintenance program is verified by LiSWA ensures the planting's long-term viability and health.
 Mitigation Measure AES-5: Use best management practices (BMPs) to minimize lighting impacts from construction and operation. The following BMPs shall be implemented to ensure minimal adverse impacts to nighttime views for adjacent sensitive receptors. These BMPs shall apply to design improvement plans for the proposed Regional Project as well as construction activities and staging areas implemented by the contractor during construction. BMPs may include, but are not limited to: Identifying when/where lighting is needed and confine/minimize lighting to the extent necessary to meet safety purposes. Choosing light fixtures that direct light downward and which shield direct lighting from sensitive receptor to the maximum extent feasible. Select warm color temperature bulbs (less than 5000K). Utilizing "shut off" controls such as sensors, timers, and motion detectors, etc. where appropriate. Limiting the height of fixtures to minimize the amount of light crossing property lines and overall light levels. Utilizing temporary lighting shields during construction where construction lighting impacts to sensitive receptors cannot be avoided. 	LiSWA	All phases including design, construction, and operation.	The Project Electrical Engineer shall prepare the design plans in conformance with this mitigation measure.	Lighting impacts are reduced to a less than significant level for all sensitive receptors adjacent to the proposed Regional Project both during construction and during operation.

Mitigation Measure	Responsible Party	Monitoring Timing	Monitoring and Reporting Program	Standards for Success
Air Quality				
Mitigation Measure AIR-1: Construction Emission/ Dust Control Plan LiSWA shall require that the selected contractor prepare and implement a project construction Emission and Dust Control Plan prior to construction that complies with all goals and policies of the general plans associated with the project, Placer County APCD rules and regulations including the Placer County APCD's and California Rule Based Requirements for Improvement Plans (Included at the end of Section 3.5.1.3 above), and Placer County APCD Recommended Construction Mitigation Measures (included below). The Construction Emissions/ Dust Control Plan shall include: Apply water every 3 hours to disturbed areas within a construction site. Utilize water trucks for dust control, ensuring that soil moisture is adequate to eliminate or substantially reduce any visible dust emissions. Vehicles and equipment traveling across unpaved areas would be kept to speeds of less than 15 miles per hour (speed limit must be posted).	LiSWA would require that the contractor prepare and implement a Construction Emissions and Dust Control Plan and to mitigate equipment exhaust emissions during all phases of grading and activities that generate dust.	An Emissions and Dust Control Program must be prepared and approved by LiSWA and the Placer County APCD prior to start of construction and implemented during all phases of grading and activities that generate dust.	During construction, regular inspections shall be performed by a LiSWA representative and reports shall be kept on file by the LiSWA for inspection by the Placer County APCD, or other interested parties.	Visible emissions and dust (Specifically NOx, Ozone, and PM) are kept to the lowest practicable level. The goal is to minimize dust and emissions during construction and to the extent feasible, complaints from the public. These mitigation measures shall decrease construction emissions from NOx by 79%, ROG by 82%, PM10 by 100%, and PM2.5 by 20%.
 All grading and earth moving operations shall be suspended when sustained wind speeds exceed 20 mph, if visibly moving off site. Paved roadways (i.e., all paved access roads, parking areas, and staging areas at construction sites) shall be swept with water sweepers at the end of each construction day to prevent dust or dirt accumulation on paved roadways. A minimum of 50% of off-road heavy-duty (i.e., 50 horsepower, or greater) diesel fueled construction equipment shall, at a minimum, meet CARB's Tier 3 certified engine standards. Cleaner off-road heavy-duty diesel engines (e.g., Tier 4) shall be used to the extent feasible and available. The project contractor shall ensure that all construction equipment is properly maintained. Encourage construction worker commuters to carpool or employ other means to reduce trip generation. All identified control measures shall be stipulated on all construction contracts and grading/building plans. The following shall also be submitted to the Placer County APCD, shall be included in the Dust and Emissions Control Plan and shall be placed as Notes on the Improvement and Grading Plans: Prior to approval of Grading or Improvement Plans, (whichever occurs first), on project sites greater than one acre, the applicant shall submit a Construction Emission/Dust Control Plan to the Placer County APCD. If the APCD does not respond within twenty (20) days of the plan being accepted as complete, the plan shall be considered approved. The applicant shall provide written evidence, provided by the APCD, to the local jurisdiction (city or county) that the plan has been submitted to the APCD, to the local jurisdiction is the applicant to deliver the approved plan to the local jurisdiction. The applicant shall not break ground prior to receiving APCD approval, of the Construction Emission I Dust Control Plan, and delivering that approval to the local jurisdiction. The applicant shall submit to the APCD a comprehensive inventory, (

Mitigation Measure	Responsible Party	Monitoring Timing	Monitoring and Reporting Program	Standards for Success
• Prior to approval of Grading or Improvement Plans, whichever occurs first, the applicant shall provide a written calculation to the APCD for approval demonstrating that the heavy-duty (> 50 horsepower) off road vehicles to be used in the construction project, including owned, leased and subcontractor vehicles, shall achieve a project wide fleet-average of 20% of NOx, and 45% of diesel particulate matter (DPM) reduction as compared to CARB statewide fleet average emissions. Acceptable options for reducing emissions may include use of late model engines, low-emission diesel products, alternative fuels, engine retrofit technology, after treatment products, and/or other options as they become available. The following link shall be used to calculate compliance with this condition and shall be submitted to the APCD as described above: http://www.airguality.org/cegal (click on the current "Roadway Construction Emissions Model").				
 Include the following standard note on the Improvement/Grading Plan: During construction the contractor shall utilize existing power sources (e.g., power poles) or clean fuel (e.g., gasoline, biodiesel, natural gas) generators to minimize the use of temporary diesel power generators. 				
 Include the following standard note on the Improvement/Grading Plan: During construction, the contractor shall minimize idling time to a maximum of 5 minutes for all diesel powered equipment. 				
 Prior to the approval of Grading or Improvement Plans, the applicant shall retain a qualified geologist or geotechnical engineer to conduct additional geologic evaluations of the project site to determine the presence or absence of naturally- occurring asbestos onsite. These evaluations shall include the project site and each offsite parcel where infrastructure construction or installation would occur. These evaluations shall be completed and submitted to the APCD prior to issuance of any Grading and/or Improvement Plans. 				
 If naturally-occurring asbestos is located onsite, the following measures shall be implemented prior to the approval of a Grading/Improvement Plans: 				
 The applicant shall prepare an Asbestos Dust Mitigation Plan pursuant to CCR Title 17 Section 9305 ("Asbestos Airborne Toxic Control Measures for Construction, Grading, Quarrying, and Surface Mining Operations") and obtain approval by the Placer County APCD. The Plan shall include all measures required by the State of California and the Placer County APCD. If asbestos is found in concentrations greater than 5 percent, the material shall not 				
be used as surfacing material as stated in California regulation CCR Title 17 Section 93106 ("Asbestos Airborne Toxic Control Measure-Asbestos Containing Serpentine"). The material with naturally-occurring asbestos can be reused at the site for subgrade material covered by other non-asbestos-containing material.				
 Each subsequent individual lot developer shall prepare an Asbestos Dust Mitigation Plan when the construction area is equal to or greater than one acre. 				
o The project developer and each subsequent lot seller must disclose the presence of this environmental hazard during any subsequent real estate transaction processes. The disclosure must include a copy of the CARB pamphlet entitled "Asbestos-Containing Rock and Soil -What California Homeowners and Renters Need to Know," or other similar fact sheet.				
Geology and Soils				
Mitigation Measure HYDRO-1: See Hydrology and Water Quality				
Mitigation Measure CULT-1: See Cultural Resources				

Mitigation Measure	Responsible Party	Monitoring Timing	Monitoring and Reporting Program	Standards for Success
Hydrology and Water Quality				
Mitigation Measure HYDRO-1: Prepare an Erosion Control and Stormwater Pollution Prevention Plan. In order to reduce the potential for erosion and sedimentation at any nearby waterways, the project proponents shall require that the selected contractor prepare an erosion control plan and a stormwater pollution prevention plan prior to construction. The erosion control plan shall provide, at a minimum, measures to trap sediment, stabilize excavated soil, and stabilize and revegetate disturbed areas. Straw bales, coir rolls, hydro seeding and other BMPs shall be used in areas of bare soil, and in drainages near all areas of disturbance to reduce surface runoff velocities and to prevent sediment from entering drainages. Maintenance of erosion and sediment control measures shall be completed within six months, or prior to the rainy season. Seed mixes shall be used to replicate the naturally occurring vegetation, with the exception that the irrigation area shall be seeded with grass species suitable for extensive soil cover, climatic conditions, and irrigation, such as mountain timothy and tufted hairgrass. Initial seeding of the irrigation area shall occur immediately after sprinkler installation, and the site shall be irrigated to establish cover prior to the winter "wet" season. Additionally, the project shall be in accordance with the Placer County Grading Code which requires the project be designed with the primary concern of long-term erosion and sedimentation control. These plans shall be implemented and inspected accordingly throughout the construction process. Evidence of a WDID (Regional Board File Number) must be provided to the Engineering and Surveying Department prior to Utility Permit and Grading Permit approval. Construction activities disturbing more than one acre shall apply for coverage under California's General Permit), SWRCB Order No. 2009-0009-DNQ. The General Permit requires that a SWPPs shall been prepared before construction begins. The plan would include a risk level determination based on	Contractor and Qualified SWPPP Developer	Prior to Placer County Encroachment Permit and Grading Permit approval or exemption/LiSWA assumes responsibility for grading prior to construction	SWPPP Inspections	No SWPPP violations
Mitigation Measure HYDRO-2: Dry Season Construction. In order to reduce the potential for erosion and sedimentation at any nearby sloughs, creeks or waterways during construction of collection system improvements, project proponents shall incorporate into contract specifications the requirements that construction directly adjacent to or across waterways be limited to the extent possible to the dry season, annually from May 1st to October 15th, subject to agreement with the appropriate regulatory agencies. Construction during the dry season minimizes impacts of stormwater runoff to the waterways' water quality. In the event of drought or an extended dry season in autumn, the General construction permit may be extended at one week increments until the first rain event of over one inch total precipitation. If this is not feasible, HYDRO-3 Construction Dewatering Management Plan shall be implemented.	Contractor	Dry Season May 1 – October 15	Scheduling is recognized as a BMP and shall be incorporated as part of the Stormwater Pollution Prevention Plan.	No construction near waterways during rainy season.
Mitigation Measure WQ-1: Avoid/Minimize Potential Water Quality Impacts from Construction Activities. • Prior to construction, the contractor shall obtain coverage under the State NPDES General Construction Permit for Discharges of Stormwater Associated with Construction Activity and provide the CDRA Engineering and Surveying Division with evidence of a WDID number prior to Utility Encroachment Permit approval or Grading Plan/Permit approval.	LiSWA shall require the construction contractor to develop and implement erosion control BMPs and a Spill Prevention and Contingency Plan for all activities in the vicinity of drainages (including stormwater drainages in roadways). For	The BMPs and required Plans shall be implemented prior to and during all phases of construction.	Evaluation of BMPs and Spill Prevention and Contingency Plan (and SWPPP) shall be conducted by LiSWA. Reports of spills shall be documented and kept on file at the LiSWA office and reported to regulatory agencies if required in permits.	Prevention of construction material spills into the creeks in the vicinity of construction.

Mitigation Measure	Responsible Party	Monitoring Timing	Monitoring and Reporting Program	Standards for Success
 Prior to construction, the contractor shall develop a Spill Prevention and Contingency Plan for any grading activities. Containment and cleanup equipment (e.g., absorbent pads, mats, socks, granules, drip pans, shovels, and lined clean drums) shall be at the staging areas and construction site for use, as needed. Staging areas where refueling, storage, and maintenance of equipment occur shall not be located within 100 feet of drainages to reduce the potential for contamination by spills. Construction equipment shall be maintained and kept in good operating condition to reduce the likelihood of line breaks or leakage. No refueling or servicing shall be done without absorbent material (e.g. absorbent pads, mats, socks, pillows, and granules) or drip pans underneath to contain spilled material. If these activities result in an accumulation of materials on the soil, the soil will be removed and properly disposed of as hazardous waste. If a spill is detected, construction activity shall cease immediately and the procedures described in the Spill Prevention and Contingency Plan will be immediately enacted to safely contain and remove spilled materials. Spill areas shall be restored to pre-spill conditions, as practicable. Spills shall be documented and reported to LiSWA and appropriate resource agency 	grading activities impacting larger than one acre, a SWPPP shall also be developed.			
personnel.				
Biological Resources		T		
Mitigation Measure BIO-9: Avoid disturbance of nesting special-status migratory birds, raptors (including burrowing owls and Swainson's hawks). To avoid disturbance to ground, tree, and other nesting special-status birds (including burrowing owl and Swainson's hawk) and non-special-status migratory birds, one of the following measures, depending on the specific construction timeframe, shall be implemented: a) If construction activities are scheduled to occur during the breeding season for these species (generally between March 1 and September 1), a qualified wildlife biologist shall be retained to conduct the following focused nesting surveys within the appropriate habitat for each species: Nesting surveys shall be conducted within the Biological Survey Area and all potential nesting habitat within 250 feet of this area. This survey shall include the identification of burrowing owl and Swainson's hawk nests if they occur. The surveys should be conducted within one week before initiation of construction activities at any time between March 1 and September 1. If no active nests are detected, then no additional mitigation is required. If surveys indicate that any migratory bird, raptor, burrowing owl, or Swainson's hawk nests are found in any area that would be directly or indirectly affected by construction activities, a no-disturbance buffer shall be established around the nesting site to avoid disturbance or destruction of the nest site until after the breeding season or after a wildlife biologist determines that the young have fledged (usually late June to mid-July). The extent of these buffers shall be determined by a qualified wildlife biologist, with the input of CDFW, and shall depend on the level of noise or construction disturbance, line of sight between the nest and the disturbance, ambient levels of noise and other disturbances, and other topographical or artificial barriers. These factors should be analyzed to make an appropriate decision on buffer distances. b) If construction activities begin bef	LiSWA shall ensure that a qualified biologist conducts preconstruction surveys.	One nesting survey shall be conducted within one week of initiating the project, should the project occur between May and August.	The survey shall be conducted by a qualified wildlife biologist and a brief survey report shall be documented and kept on file with LiSWA.	Special status species and migratory bird nests shall not be disturbed during the project construction activities.

AA*!!	Door on this Book	AA th tu Tt tu	AA a sita sia sa ana di Dana adia sa Dana sasana	Chandrade for Conserve
considered full force. Optimally, all necessary vegetation and tree removal should be conducted before the breeding season (generally between March 1 and September 1) so that nesting birds would not be present in the construction area during construction activities. If any birds nest in the project vicinity under pre-existing construction conditions, then it is assumed that they are habituated (or will habituate) to the construction activities. Under this scenario, the preconstruction survey described previously should still be conducted on or after March 1 to identify any active nests in the vicinity. Active sites should be monitored by a wildlife biologist periodically until after the breeding season or after the young have fledged (usually late June to mid-July). If active nests are identified on or immediately adjacent to the project site, then all nonessential construction activities (e.g., equipment storage and meetings) should be avoided in the immediate vicinity of the nest site, but the remainder of construction activities may proceed. If any burrowing owl or Swainson's hawk nests are found at any time of the year, project activities shall immediately be halted within 250 feet of any such nest and CDFW shall be contacted. Based on the input of CDFW, additional minimization measures may be required to avoid impacts to nesting burrowing owls and Swainson's hawks. The removal of any Swainson's hawk nest would only occur outside of the species nesting season and with approval from CDFW.	Responsible Party	Monitoring Timing	Monitoring and Reporting Program	Standards for Success
Cultural Resources				
Mitigation Measure CULT-1: Proper Handling of Inadvertent Discovery of Cultural and Paleontological Resources. If cultural resources are encountered during proposed Regional Project construction, construction shall be halted immediately in the subject area and a qualified professional archaeologist shall be consulted. Prehistoric resources may include chert or obsidian flakes, projectile points, mortars and pestles, dark friable soil containing shell and bone dietary debris, and heat-affected rock. Historic resources may include stone or wood foundations or walls, structures or remains with square nails, and refuse deposits. If any paleontological resources (i.e., fossils) are found during proposed Regional Project construction, construction shall be halted immediately in the subject area and LiSWA shall be immediately notified. A qualified paleontologist shall be retained to evaluate the find and recommend appropriate treatment of the inadvertently discovered paleontological resources. The appropriate treatment of inadvertently discovered paleontological resources shall be implemented to ensure that the impacts to these resources are avoided.	LiSWA would ensure the appropriate treatment for any discovery of pre-historic, historic, or paleontological resources during construction.	During all ground disturbing activities.	If any find is determined to be significant, representatives of LiSWA and a qualified archaeologist or paleontologist (if a paleontological resource is discovered) would meet to determine the appropriate avoidance measures or other appropriate mitigation in accordance with the General Plans Goals and Policies described in Section 3.15.1.3 above. All significant cultural materials and paleontological resources recovered shall be subject to scientific analysis, professional museum curation, and a report prepared by the qualified archaeologist or paleontologist (if a paleontological resource is discovered) according to current professional standards. A report shall be kept on file with LiSWA.	The proper recording, evaluation, and treatment of any newly identified prehistoric, historic, or paleontological resources.
Mitigation Measure CULT-2: Proper Handling of Inadvertent Discovery of Human Remains If human remains are encountered, work shall halt in the vicinity and the County Coroner shall be notified immediately pursuant to PRC Section 7050.5. At the same time, an archaeologist shall be contacted to evaluate the situation. If human remains are of Native American origin, the Coroner must notify the Native American Heritage Commission (NAHC) within 24 hours of this identification. The NAHC shall identify the person or persons it believes to be the most likely descendent (MLD) from the deceased Native American. The MLD shall have an opportunity to make a recommendation to the landowner or the person responsible for the excavation work, for means of treating or disposing of, with appropriate dignity, the human remains and any associated grave goods as provided in PRC Section 5097.98. (See General Plan Policy 6.10 as described in Section 3.15.1.3 above).	LiSWA and the Placer County Coroner would insure the appropriate treatment for any discovery of any human remains during construction.	During all ground disturbing activities.	The recording and evaluation of any newly identified human remains shall be conducted by qualified professional archaeologists and a report shall be kept on file with LiSWA.	The proper recording, evaluation, and treatment of any newly identified human remains.

Mitigation Measure	Responsible Party	Monitoring Timing	Monitoring and Reporting Program	Standards for Success
Mitigation Measure CULT-3: Pre-Construction Cultural Resource Awareness Training and Cultural Resource Construction Monitoring. A professional who meets the Secretary of the Interior's Professional Qualifications Standards for Archaeology shall conduct a pre-construction training of all construction personnel involved in any ground disturbing construction activity for the entire project. Construction personnel shall be informed of the possibility of buried cultural resources and/or human remains anywhere within the proposed Regional Project APE and the protocol to be followed if a cultural resource is encountered. Areas identified as having a high likelihood of buried archaeological shall require monitoring. A qualified archaeologist shall monitor proposed Regional Project construction activities in areas of high sensitivity for buried archaeological deposits within the Project APE.	LiSWA to ensure that a qualified archaeologist is present for preconstruction cultural resource awareness training and construction monitoring in sensitive areas for buried archaeological deposits.	A qualified archaeologist shall be obtained prior to construction. Pre-construction cultural resource awareness training shall take place prior to construction. Monitoring shall occur during any construction activities that take place in sensitive areas for buried archaeological deposits.	A monitoring report shall be completed by the archaeologist conducting the cultural resource construction monitoring. This report shall include a brief summary of the pre-construction cultural resource awareness training. All monitoring reports shall be kept on file with LiSWA.	The prevention of any unknown cultural resources from being destroyed by proposed Regional Project construction without proper handling and documentation.
Hazards and Hazardous Materials				
Mitigation Measure HAZ-2: Prepare Fire Suppression and Control Plan The selected construction contractor shall be required to coordinate with the local fire chiefs to ensure a fire control plan is prepared and implemented to reduce the risk of fires being created during the proposed Regional Project. The fire prevention and control plan shall include: requirements for on-site extinguishers, defined roles and responsibilities of the county and cities and the contractor, specifications for fire suppression equipment, and other critical fire prevention and suppression items.	LiSWA shall ensure the selected construction contractor prepares a fire prevention and control plan.	Prior to construction.	The plan shall be developed by the construction contractor and a copy shall remain on file at LiSWA. In the event of any burn, the construction contractor shall prepare an event report and submit it to the appropriate local agency.	Fire prevention and adherence to plan conditions and fire prevention techniques.
Public Services and Utilities				
Mitigation Measure PUB-1: Reduction in Solid Waste Generated from Construction Activities. The Contractor shall implement construction methods that produce less waste, or that produce waste that could more readily be recycled or reused to meet the County's Integrated Waste Management Plan. Demolition and/or excess construction materials shall be separated onsite for reuse/recycling or proper disposal. To comply with the County's implementation of the Cal Green code requirements, the Contractor shall submit a waste management plan to the County prior to construction which shall detail plans to divert at least 50% of construction and demolition waste from landfills.	LiSWA	During Construction	County inspector, LiSWA inspector, and resident engineer shall monitor implementation of mitigation measures during construction.	Compliance with AB 939 and SB 1016.
Transportation and Traffic				
Mitigation Measure TRANS-1: Prepare and Implement a Traffic Control Plan.	LiSWA would require that the	The traffic control plan shall be	LiSWA and the County shall monitor	Safe, efficient travel in the
 Traffic Control Plans shall be prepared by a licensed Civil or Traffic Engineer in the State of California to assure adequate safety and minimal interruption to traffic flow. The Contractor shall prepare and implement a Traffic Control/Traffic Management Plan subject to approval by the Placer County Department of Public Works prior to construction in County public road ROW. The traffic control plan shall be submitted to the Placer County Department of Public Works no less than 45 days prior to construction in the County public road ROW. The traffic control plan shall be prepared in accordance with professional traffic engineering standards and in compliance with Placer County's encroachment permit requirements. The traffic control plan may include, but not be limited to, the following measures: Identify all access and parking restriction, pavement markings and signage requirements (e.g., speed limit, temporary loading zones). Identify specific construction methods to maintain traffic flows on affected streets. Maintain the maximum amount of travel lane capacity during non-construction periods and provide flagger control at sensitive sites to manage traffic control and flows. Limit the construction work zones to widths that, shall maintain alternate one-way traffic flow past the construction zones. Limit one-way traffic control and rolling closures to off-peak hours (8:30 am to 3:30 pm). 	contractor prepare and implement a Traffic Control/Traffic Management Plan during all phases of construction that have the potential to disrupt normal flow of traffic.	approved by the County prior to construction and implemented during construction.	implementation of the mitigation measure during construction. Approval of Utility permits by Placer County Engineering and Surveying Division (ESD) for all phases of work within County Maintained roadways/ROW.	project vicinity with minimal traffic delays.

Mitigation Measure	Responsible Party	Monitoring Timing	Monitoring and Reporting Program	Standards for Success
Post advanced warning of construction activities to allow motorists to select alternative routes in advance.				
Prepare appropriate warning signage and lighting for construction zones.				
Require construction crew vehicles to park within designated staging areas.				
 Maintain steel trench plates at construction sites to restore access across open trenches to minimize disruption of access to driveways and adjacent land uses. Construction trenches in the street shall not be left open after work hours. 				
 Restore streets disturbed by the proposed Regional Project to their original condition or better, and sweep the roads at the end of each day. 				
Require coordination of all construction activities with local emergency service providers at least one month in advance. Emergency service providers shall be notified of the timing, location, and duration of construction activities. All roads shall remain passable to emergency service vehicles at all times.				
 Notify local recreational cycling groups of proposed construction routes and timing, including alternate routes to avoid construction activities. 				
Require coordination of all construction activities with local emergency service providers at least one month in advance. Emergency service providers shall be notified of the timing, location, and duration of construction activities. All roads shall remain passable to emergency service vehicles at all times.				
Coordinate with Caltrans during construction since Caltrans may have projects planned for 2013-2014 that may route/detour traffic from SR 193 to the rural roadways affected by the Regional Project pipeline installation. Construction timing and coordination with Caltrans shall be necessary so that the proposed detours shall allow through traffic an alternative route.				
As described above, wherever possible, the Contractor shall leave one full lane of traffic open. If not possible, the closures shall be limited to necessary areas, shall not include portions of roadway with intersecting driveways without option for one-way traffic for residents, and shall be scheduled during periods of low traffic (e.g. summer months) and non-peak traffic hours. Close coordination with the County through the Traffic Control Plan process shall reduce the significance levels to less than significant.				
Mitigation Measure TRANS-2: Inform the Public of Lane Closures and Detours.	Placer County	Prior to and during construction	The County shall monitor	Safe, efficient travel in the
The County shall inform the public of scheduled lane closures and/or detours through public outreach such as attendance at the Municipal Advisory Council (MAC) and postings in the local newspapers. Proper signage shall be used to direct traffic as identified through the traffic control plan.			implementation of the mitigation measure during construction.	project vicinity with minimal delays and minimal to no public complaints.
Wildfire				
Mitigation Measure HAZ-2: See Hazards and Hazardous Materials				

5.0 REFERENCES

- City of Lincoln. 2006. City of Lincoln General Plan. Draft Environmental Impact Report, Volume I.
- City of Lincoln. 2008. City of Lincoln General Plan 2050. https://www.lincolnca.gov/en/business-and-development/general-plan-2050.aspx. Accessed June 2025.
- Placer County. 2011. Placer County Conservation Plan. https://wildlife.ca.gov/Conservation/Planning/NCCP/Plans/Placer-County. Accessed July 2025.
- Stantec (Stantec Consulting Services Inc.). 2024. LiSWA WWTRF Phase 1 Improvements Project Basis of Design Report. Prepared by Stantec Consulting Services Inc. for the City of Lincoln.
- Stantec (Stantec Consulting Services Inc.). 2013. Midwestern Placer Regional Sewer Project Environmental Impact Report.

14

LiSWA WWTRF Phase 1 Improvement Project

Basis of Design Report

Prepared for: City of Lincoln

Prepared by: Stantec Consulting Services Inc.

Sign-off Sheet

This document entitled LiSWA WWTRF Phase 1 Improvement Project was prepared by Stantec Consulting Services Inc. ("Stantec") for the City of Lincoln (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

(signature)

Gabe Aronow, PE

Reviewed by

(signature)

teren T. Beck

Steven L. Beck, PE

Table of Contents

1.0	PURPOSE AND SCOPE	3
2.0	FLOWS AND LOADS	3
3.0	INFLUENT PUMP STATION	4
4.0	INFLUENT SCREENS	5
5.0	GRIT REMOVAL	5
6.0	SECONDARY TREATMENT	6
7.0	MATURATION PONDS PUMP STATION	7
8.0	MATURATION PONDS	8
9.0	MATURATION POND EFFLUENT PUMP STATION	8
10.0	DISSOLVED AIR FLOATATION SYSTEM	9
11.0	FILTER FEED PUMP STATION	10
12.0	FILTERS	11
13.0	UV DISINFECTION	13
14.0	EFFLUENT PUMP STATION	14
15.0	EFFLUENT STORAGE, REUSE, AND DISPOSAL FACILITIES	16
16.0	SOLIDS TREATMENT AND HANDLING	16
17.0	GEOTECHNICAL DESIGN	16
18.0	STRUCTURAL DESIGN	16
19.0	ELECTRICAL DESIGN	17
20.0	INSTRUMENTATION AND CONTROL	17
21.0	SITE PAVING AND GRADING	17
22.0	STORM DRAINAGE	18
23.0	YARD PIPING	18

LIST OF TABLES

Table 1 Design	n Flows and Loads	4
	nt Pump Station Design Criteria	
Table 3 Grit Re	emoval Design Criteria	6
Table 4 Secon	ndary Treatment Design Criteria	7
	ation Ponds Pump Station Design Criteria	
Table 6 Matur	ation Pond Effluent Pump Station Design Criteria	9
Table 7 Dissolv	ed Air Floatation Design Criteria	.10
Table 8 Filter F	eed Pump Station Design Criteria	.11
	nt Filtration Design Criteria	
Table 10 UV D	isinfection System Expansion Design Criteria	14
Table 11 Efflue	ent Pump Station Design Criteria	.15
LIST OF APPENI	DICES	
Appendix A	Lincoln WWTRF Review of Maturation Pond and Tertiary Storage Operation and Sizing and Impacts on Other Facilities Based on Update Data and New Permit Temperature Requirements, by Stantec, April 20.	
Appendix B	LiSWA WWTRF Phase 1 Improvement Project – Maturation Pond Effluen Pump Station Design Report, by Stantec, May 2024	t
Appendix C	LiSWA UV Basis of Design, by Stantec, August 2024	
Appendix D.1	Geotechnical Design Report Update, Lincoln WWTRF Phase 1 and Pha 2 Expansion Project, WWTP Improvements, by Blackburn Consulting, Ju 2024	
Appendix D.2	Geotechnical Design Report Update, Lincoln WWTRF Phase 1 and Pha	se

Consulting, June 2024

Appendix D.3 Geotechnical Design Report Update, Lincoln WWTRF Phase 1 and Phase 2 Expansion Project, by Blackburn Consulting, April 2018

2 Expansion Project, Maturation Pond Pump Station, by Blackburn

1.0 PURPOSE AND SCOPE

The purpose of this Basis of Design Report (BODR) is to provide the Lincoln-SMD1 Wastewater Authority (LiSWA) with the basic design concepts for the WWTRF Phase 1 Improvements Project. This report includes the design criteria, process features, and discipline-specific code requirements for the project.

2.0 FLOWS AND LOADS

Table 1 summarizes the projected flows and loads for average dry weather flow (ADWF) of 6, 7.1, 8 Mgal/d. The proposed project is aimed at designing the secondary process for 6 Mgal/d (ADWF) and annual average loads and the rest of unit processes to have capacity to meet the peak flows associated with the 8 Mgal/d ADWF. The last column of **Table 1** summarizes the flows and loads for this project.

3

Table 1 Design Flows and Loads

	ADWF				
Parameter	Unit	6 Mgal/d	7.1 Mgal/d ⁽¹⁾	8 Mgal/d ⁽²⁾	New Design Criteria
Flow					
ADWF	Mgal/d	6.0	7.1	8.0	6.0
PMF	Mgal/d	15.0	17.0	18.4	18.4
PDF	Mgal/d	27.0	30.5	32.8	32.8
PHF	Mgal/d	40.8	46.2	49.6	49.6
BOD Loads					
AAL	lb/day	16,513	19,541	22,018	16,513
PML	lb/day	20,642	24,426	27,522	20,642
PDL	lb/day	33,026	39,081	44,035	33,026
TSS Loads					
AAL	lb/day	16,513	19,541	22,018	16,513
PML	lb/day	20,642	24,426	27,522	20,642
PDL	lb/day	33,026	39,081	44,035	33,026
TKN Loads					
AAL	lb/day	3,204	3,791	4,271	3,204
PML	lb/day	4,004	4,739	5,339	4,004
PDL	lb/day	6,407	7,582	8,543	6,407
Peak Flow Factors					
PMF/ADWF		2.5	2.4	2.3	3.1
PDF/ADWF		4.5	4.3	4.1	5.5
PHF/ADWF		6.8	6.5	6.2	8.3
Peak Load Factors					
PML/AAL		1.25	1.25	1.25	1.25
PDL/AAL		2.00	2.00	2.00	2.00

^{(1) 7.1} Mgal/d ADWF is achieved with the addition of Oxidation Ditch No. 4.

3.0 INFLUENT PUMP STATION

The influent pump station has space for a total of six pumps. Existing facilities include five large pumps, each rated at 5,500 gpm, and one small pump rated at 2,250 gpm. With one large pump out of service, the reliable pump station capacity is 34.8 Mgal/d. As shown in **Table 1** and **Table 2**, the estimated peak hour influent flow is 49.6 Mgal/d for the proposed project.

^{(2) 8.0} Mgal/d ADWF is achieved with the addition of Oxidation Ditch No. 4 and Secondary Clarifier No. 4.

Therefore, it is recommended to replace all existing pumps with six submersible pumps each with a capacity of 6,945 gpm (10 Mgal/d), resulting in a total reliable capacity of 50 Mgal/d for this project.

Table 2 Influent Pump Station Design Criteria

Parameter	Unit	Existing Conditions	New Design Criteria
Peak Hour Flow	Mgal/d	29.5	49.6 ^(a)
Reliable Pump Capacity	Mgal/d	34.8	50
Small Pumps			
Number	Each	1	
Motor Power	HP	35	
Capacity	GPM	2250	
TDH	ft	46	
Pump Type	Each	Submersible Pump	
Model	Each		
Large Pumps			
Number	Each	5	6
Motor Power	HP	85	125
Capacity	GPM	5,500	6,945
TDH	ft	47	49
Pump Type	Each	Submersible Pump	Submersible Pump
Model	Each	Xylem/Flygt model NP3301-624LT	Xylem/Flygt model NP-3356.716

(a) including in-plant recycle

4.0 INFLUENT SCREENS

There are no changes to the influent screening within the Phase 1 Improvements Project. There are two existing automatic screens and a bypass screen. The automatic screens include a screenings washer compactor. Each screen has approximately 22 Mgal/d of capacity. To convey the required 49.6 Mgal/d with two screens, the channel freeboard is reduced to less than 2 feet, and/or the bypass screen channel can also be online for added screening capacity.

5.0 GRIT REMOVAL

The original headworks design includes provisions for adding two forced-vortex-type grit removal basins downstream the two mechanical screens. However, since redundancy is not critical for grit removal, one larger grit removal basin is recommended to reduce the project cost. This project will include the installation of one 50 Mgal/d grit removal basin. The design criteria of the grit

removal system are shown in **Table 3**. The location of the grit removal system is between the influent screens and the Parshall flow meter.

Table 3 Grit Removal Design Criteria

Parameter	Unit	Existing Conditions	New Design Criteria
Peak Hour Flow	Mgal/d	29.5	50
New Grit Basins			
Number	Each		1
Туре			Vortex
Capacity	Mgal/d		50
Peak Removal Rate, 50 Mesh & Larger	%		95
Grit Basin Propeller Drive	HP		2
Grit Basin Drive	HP		5
Grit Removal Pump	HP		25
Grit Pump Capacity	GPM		500

6.0 SECONDARY TREATMENT

This project targets wastewater flows and loads at 6 Mgal/d ADWF. The flow and load capacity are higher than the original plant design of 5.9 Mgal/d. The plant capacity increase can be achieved without building new basins or clarifiers by lowering the Sludge retention time and reducing the peak flow allowed to secondary treatment. A side-by-side design criteria is shown in **Table 4**. The additional capacity is achieved by diverting peak flow to the Emergency Storage Basin and allowing limited solids wash out of the secondary clarifiers under critical conditions.

6

Table 4 Secondary Treatment Design Criteria

Parameter	Unit	Original Design Criteria	This Project Design Criteria		
Secondary Influent Flows and Loads					
ADWF	Mgal/d	5.9	6.0		
Max Allowable Flow	Mgal/d	29.5	23.6		
BOD Loads					
AAL	lb/day	14,000	16,513		
PML	lb/day	18,200	20,642		
PDL	lb/day	25,300	33,026		
TSS Loads					
AAL	lb/day	14,000	16,513		
PML	lb/day	18,200	20,642		
PDL	lb/day	25,300	33,026		
TKN Loads					
AAL	lb/day	3,200	3,204		
PML	lb/day	3,900	4,004		
PDL	lb/day	5,600	6,407		
Process Design					
Min. Temp	C	15	16		
Total SRT	days	16	13.5		
Oxidation Ditches					
Number	Each	3	3		
Volume (Each)	Mgal	3.12	3.12		
Secondary Clarifiers					
Number	Each	3	3		
Diameter	ft	110	110		
RAS Pump Station #1					
Number of RAS Pumps	Each	3	3		
Capacity (Each)	gpm	3,800	3,800		
RAS Pump Station #2					
Number of RAS Pumps	Each	2	2		
Capacity (Each)	gpm	3,800	3,800		

7.0 MATURATION PONDS PUMP STATION

The maturation pond pump station has space for five mixed flow pumps, which are currently filled with five identical pumps, providing a reliable capacity (with one pump out of service) of 35.1 Mgal/d. Based on the peak hour flows shown in **Table 5** this capacity is not adequate for a target 8 Mgal/d ADWF. All five pumps will be replaced to attain a total reliable capacity of 50.4 Mgal/d, which is adequate for the 8.0 Mgal/d ADWF plant.

Table 5 Maturation Ponds Pump Station Design Criteria

Parameter	Unit	Existing Conditions	New Design Criteria
Peak Hour Flow	Mgal/d	29.5	49.6 ^(a)
Reliable Pump Capacity	Mgal/d	35.1	50.4
Small Pumps			
Number	Each	5	
Motor Power	HP	60	
Capacity	GPM	6100	
TDH	ft	22.1	
Pump Type		Vertical Turbine Pump	
Model		Flowserve 16 DH 60-6 D PROP 60 hz	
Large Pumps			
Number	Each		5
Motor Power	HP		100
Capacity	GPM		8,754
TDH	ft		23.30
Pump Type	Each		Vertical Turbine Pump
Model	Each		Flowserve 18AFV-DH, 23.5 ° Vane Angle

⁽a) including in-plant recycle

8.0 MATURATION PONDS

There are no changes to the existing maturation ponds. The Maturation ponds provide priority pollutant equalization and peak flow attenuation (equalization) to the tertiary plant (DAF, filters and UV facilities). The maturation ponds consist of two basins providing a total volume of 173 million gallons.

9.0 MATURATION POND EFFLUENT PUMP STATION

When the maturation ponds have a high water level, water can be directed to the tertiary portion of the plant by gravity. Effluent from the maturation ponds discharge through two existing maturation pond outlet structures before reaching the maturation pond level control structure, where it is then diverted to the DAF system. When levels in the ponds are too low for gravity flow, two existing submersible pumps within the outlet structures are used to convey additional flow. These pumps each have a capacity of 4.0 Mgal/d, which is much less than the design peak month flow required (plus plant recycle flows) of 20.6 Mgal/d, as shown in **Table 6**.

In addition to increased pumping capacity additional storage volume is also required in the ponds. To increase the available volume required for equalization in the maturation ponds the

minimum pond water level needs to be lowered. This new minimum water level will be elevation 101.3 feet, which is lower than the existing outlet weir elevation of 109.1 feet which allows gravity flow to the DAF system. Therefore, at low water levels a new effluent pump station is required to convey peak month flow and recycle flow to the tertiary facilities. The pump station will increase pumping capacity to tertiary facilities and allow all of the available equalization volume to be utilized.

The new Maturation Pond Effluent Pump Station includes three new same pumps, which will result in total of five pumps with a reliable capacity of about 19.32 Mgal/d. This is slightly less than the target flow rate of 20.6 Mgal/d, but this limitation only exists when the maturation ponds are at their minimum water level. Target flows can be achieved and exceeded at all other water levels. It was determined that 19.32 Mgal/d at minimum pond water levels is acceptable because the selected pump model exists at multiple locations around the existing facility and matching this equipment is desirable.

Table 6 Maturation Pond Effluent Pump Station Design Criteria

Parameter	Unit	Existing Conditions	New Design Criteria
Equalized Peak Month Flow from Mat Ponds	Mgal/d	11.9	20.6
Reliable Pump Capacity	Mgal/d	4	19.32
Low Water Level	ft		101.3
Maximum Surface Level	ft	114	114
Pumps			
Number	Each	2	5
Motor Power	HP	25	25
Capacity	GPM	2,780	3,550
TDH	ft		16
Pump Type	Each	Submersible Pump	Submersible Pump
Model	Each	Xylem/Flygt NP3171-614LT	Xylem/Flygt NP3171-614LT

10.0 DISSOLVED AIR FLOATATION SYSTEM

There are two existing dissolved air floatation (DAF) clarifiers with ancillary facilities to remove algae from the maturation pond. Each DAF unit has a capacity of 8.0 Mgal/d. No DAF expansion is included with this project. Although the existing reliable capacity (with one DAF out of service) can only generate 8 Mgal/d, the total capacity of 16 Mgal/d. This is still less than the peak flows from the Maturation Pond Effluent Pump Station, but this is mitigated by having less algae during the winter when peak flows typically occur, the DAFS can be flooded and convey additional flow and still perform acceptably, and the DAF can be bypassed. See **Table 7**.

Table 7 Dissolved Air Floatation Design Criteria

Parameter	Unit	Existing Conditions
Equalized Peak Month Flow from Mat Ponds	Mgal/d	20.6
Total Capacity	Mgal/d	16.0
Reliable Capacity	Mgal/d	8.0
DAF Units Recirculation Pumps	Each	2
Туре	-	Vertical Turbine
Number	Each	3
Capacity	gpm	1300
Horsepower	HP	75
Float Pumps		
Туре	-	Progressive Cavity
Number	Each	2
Capacity	gpm	135
Horsepower	HP	15

11.0 FILTER FEED PUMP STATION

The filter feed pump station has spaces for five mixed flow pumps but four are currently installed: two large and two small pumps, with a reliable capacity of 15.9 Mgal/d. Since peak plant influent flows are equalized in the maturation ponds, the new design peak flow for the filter feed pumps is 20.6 Mgal/d, which is equal to peak month flows plus plant recycle flow.

It is recommended to replace two existing small pumps with two large pumps and add one additional large pump, which will result in total of five large pumps with a reliable capacity of about 28.5 Mgal/d. This capacity exceeds the required flow rate, but the condition of both small pumps warrants replacement.

10

LISWA WWTRF PHASE 1 IMPROVEMENT PROJECT BASIS OF DESIGN REPORT

Table 8 Filter Feed Pump Station Design Criteria

Parameter	Unit	Existing Conditions	New Design Criteria
Peak Month Flow + Recycle	Mgal/d	11.9	20.6
Reliable Pump Capacity	Mgal/d	14.4	28.5
Small Pumps			
Number	Each	2	
Motor Power	HP	25	
Capacity	GPM	2,524.5	
TDH	ft	20.2	
Pump Type		Vertical Turbine Pump	
Model		Flowserve 16 DH 25-6 D PROP 60 hz	
Large Pumps			
Number	Each	2	5
Motor Power	HP	60	60
Capacity	GPM	5,950	4,950
TDH	ft	23.2	29.20
Pump Type	Each	Vertical Turbine Pump	Vertical Turbine Pump
		One (1) Flowserve 15AFV-DH, 22° Vane Angle	Four (4) Flowserve 15AFV-DH, 22° Vane Angle
Model	Each	One (1) Flowserve 16 DH 60-6 D PROP 60 hz	One (1) Flowserve 16 DH 60-6 D PROP 60 hz
		Note: Different name but same performance	Note: Different name but same performance

12.0 FILTERS

The existing filter system was laid out to accommodate six filter cells on both sides of a common mudwell (12 cells total). Only six filter cells on one side of the mudwell are existing, and each filter cell has a surface area of 384 square feet. Therefore, the reliable filter area (one cell out of service) is 1,920 square feet. Using a maximum loading rate of 5 gpm/ft², the maximum allowable filter influent flow is 13.8 Mgal/d. As shown in **Table 9**. This project will expand the filters to 18.4 Mal/d plus 12% in-plant recycle (20.6 Mgal/d total).

Although Eight filter cells (seven duty cells and one standby) can only generate a reliable capacity of 19.4 Mgal/d, the total capacity of 22.6 Mgal/d can accommodate the peak month flow with all eight cells in operation, shown in **Table 9**. In addition to filter cells, this project will install one rapid mixing basin and two flocculation basins.

LISWA WWTRF PHASE 1 IMPROVEMENT PROJECT BASIS OF DESIGN REPORT

 Table 9
 Effluent Filtration Design Criteria

Parameter	Unit	Existing Conditions	New Design Criteria
Peak Month Flow + 12%	Mgal/d	11.9	20.6
Reliable Pump Capacity	Mgal/d	13.8	19.4
Total Capacity	Mgal/d	16.6	22.6
Maximum Loading Rate	GPM/sqft	5.0	5.0
Filter			
Туре	-	Sand, Pulsed Bed	Sand, Pulsed Bed
Number of Cells	Each	6	8
Cell Dimension	ft x ft	32 x 12	32 x 12
Filter Area per Cell	sqft	384	384
Total cell surface area	sqft	1920	3072
Rapid Mixing			
Number of Mixers/Basins	Each	1	2
Horsepower	HP	3	3
Volume	Gal	1,940	1,940
Detention Time, Peak Month	Sec	20	20
Velocity Gradient "G"	1/Sec	610	610
Flocculation			
Type of Mixers/Basins	-	Vertical Shaft	Vertical Shaft
Number of Flocs Basins	Each	2	4
Horsepower	HP	1	1
Total Basin Volume	Gal	83,000	83,000
Detention Time, Peak Month	Min	17	17
Velocity Gradient 'G', 1st Stage	1/Sec	90	90
Velocity Gradient 'G', 2nd Stage	1/Sec	50	50

13.0 UV DISINFECTION

The existing UV disinfection system is comprised of six channels with five of them equipped to meet current disinfection targets. The system has a current design capacity of 17.5 Mgal/d based on delivering a minimum UV dose of 100 mJ/cm² at a design minimum UV transmittance (UVT) of 70%.

This project upgrades and expands the UV system with to 20.6 Mgal/d with the newest version of the Wedeco (a Xylem brand) TAK55 system, with an in-channel cleaning system and control equipment. All six UV channels will receive new UV equipment (banks, modules, lamps, quartz sleeves, pneumatically driven automatic wiping systems, ballasts and ballast enclosures, instrumentation, junction boxes, etc.) Additionally, a new control cabinet with redundant Allen Bradley ControlLogix programmable logic controllers (PLCs) will be provided to improve operation reliability and flexibility. A summary of the UV disinfection system design criteria for the project is shown in Table 10.

Table 10 UV Disinfection System Expansion Design Criteria

Design Criteria	Value
Manufacturer / Model	Wedeco / TAK55 H (110 mm lamp centerline spacing) (1)
Peak Month Flow + In-Plant Recycle Flows	20.6 Mgal/d
UV Disinfection System Design Peak Flow Capacity	3.6 Mgal/d per channel (21.6 Mgal/d total)
Design Minimum UV Dose	100 mJ/cm ²
Design Minimum UV Transmittance (UVT)	70% @ 254 nm
Channels	6 (6 duty)
Banks per Channel	5 (4 duty, 1 standby)
Modules per Bank	3
Lamp Type	Low Pressure High Output
Lamps per Module	12
Lamps per Channel	180 (144 duty, 36 standby)
Total Number of Lamps in System	1,080 (864 duty, 216 standby)
Design End of Lamp Life (EOLL) Value	0.87 (guaranteed lamp life of 14,000 hours) (2)
Design Fouling Factor (FF) Value	0.80
Effluent Finger Weir Length / Top Elevation	720 inches (60 feet, total perimeter) / 107.81 feet (3)
Required Channel Width	25 13/16 inches ⁽⁴⁾
Effluent Total Coliform Permit Requirements	< 2.2 MPN/100 mL (7-day median) < 23 MPN/100 mL (cannot exceed more than once in any 30-day period) < 240 MPN/100 mL (at all times)

⁽¹⁾ Based on the January 2010 validation report by Carollo Engineers titled Wedeco Open Channel TAK-55 Wastewater UV Reactor 320W Validation Report, which meets the requirements of the Ultraviolet Disinfection Guidelines for Drinking Water and Water Reuse (National Water Research Institute in collaboration with Water Research Foundation, August 2012, Third Edition).

14.0 EFFLUENT PUMP STATION

The effluent pump station has space for a total of five pumps. Existing facilities include two small pumps, both rated as 3,600 gpm, and one large pump rated as 4,700 gpm, and an extra-large pump rated as 6,000 gpm. With the extra-large pump out of service, the reliable pump station

⁽²⁾ Ecoray ELR-30 lamps have a third party validated end of lamp life (EOLL) of 0.87 for 14,000 hours of operation. Stantec has contacted the Division of Drinking Water (DDW) to request approval to use a design EOLL of 0.87. The peak flow capacity presented in this table assumes that DDW will approve using a design EOLL of 0.87.

⁽³⁾ The effluent finger weirs are required to be replaced to increase the weir length and lower the top of weir elevation. Wedeco provided a preliminary total weir length and top of weir elevation. The final values shall be confirmed by Wedeco.

⁽⁴⁾ The TAK55 system with the 110 mm lamp centerline spacing has a required channel width of 25 13/16 inches. The width of the existing channels (currently 28 inches) will be reduced using 304 stainless steel plates on both sides of the channel (to protect the coating on the channel walls). Refer to drawings for additional information.

LISWA WWTRF PHASE 1 IMPROVEMENT PROJECT BASIS OF DESIGN REPORT

capacity is 20.4 Mgal/d. As shown in **Table 11**, the permit discharge limit for Auburn Ravine Creek is 25 Mgal/d.

Therefore, it is recommended to replace the existing two small pumps and one extra-large pump with four large pumps rated as 4,810 gpm. resulting in a total reliable capacity of 25 Mgal/d for this project.

Table 11 Effluent Pump Station Design Criteria

Parameter	Unit	Existing Conditions	New Design Criteria
Permit Discharge Limit	Mgal/d	25	25
Reliable Pump Capacity	Mgal/d	20.4	25.0
Small Pumps			
Number	Each	2	
Motor Power	HP	30	
Capacity	GPM	3,600	
TDH	ft	25	
Pump Type	Each	Submersible Pump	
Model	Each	Xylem/Flygt model CP3201-821	
Large Pumps		, , , ,	
Number	Each	1	1 (existing)
Motor Power	HP	60	60
Capacity	GPM	4,700	4,700
TDH	ft	38	38
Pump Type	Each	Submersible Pump	Submersible Pump
Model	Each	Xylem/Flygt model CP3300-804LT	Xylem/Flygt model CP3300-804LT
Extra-Large Pumps		3.0	
Number	Each	1	4 (new)
Motor Power	HP	60	60
Capacity	GPM	6,000	4,810
TDH	ft	31	39
Pump Type	Each	Submersible Pump	Submersible Pump
Model	Each	Xylem/Flygt model NP3301-814LT	Xylem/Flygt model NP3202-614

(a) 25 Mgal/d criteria can only be achieved when Auburn Ravine is not in a flood stage and the discharge is flowing over an unsubmerged outfall weir. During a flood stage in Auburn Ravine, all five pumps will be needed to discharge flow to the outfall, or the excess flow (beyond 23 Mgal/d) will need to be diverted

15.0 EFFLUENT STORAGE, REUSE, AND DISPOSAL FACILITIES

There are no changes to the effluent, reuse or disposal facilities included with the proposed project. There are 190 million gallons of storage in the existing Tertiary Storage Basins 1 and 2. The Reclamation Booster Pump Station has a reliable capacity of 6.3 Mgal/d, depending on the discharge location, and the facility has approximately 900 acres of reclamation land onsite and contractually off-site with the Machado Farm and the City of Lincoln.

16.0 SOLIDS TREATMENT AND HANDLING

With no expansion to solids treatment or dewatering, it is expected that some solids dewatering may be required on weekends with the proposed project. The design does not include a second solids storage tank for this project, and depending on actual plant performance, it may be determined that weekend dewatering operations can be avoided.

17.0 GEOTECHNICAL DESIGN

Blackburn Consulting (BCI) performed three (3) geotechnical design reports (Nov. 2017, Feb. 2018 and Apr. 2018) and presented design recommendations for Lincoln WWTRF expansion project, as documented in the appendix. Two geotechnical update letters were provided June 4, 2024 and are also in the appendix.

18.0 STRUCTURAL DESIGN

Design of structures, structural components and equipment anchorages will comply with the design codes, standards, and project references listed below:

- Design shall conform to the 2022 current edition of the California Building Code.
- Loading criteria and loading combinations for buildings and structures shall conform to the current edition of the American Society of Civil Engineers Minimum Design Loads for Buildings and Other Structures (ASCE 7) and ASCE 7 Supplements.
- Design and placement of structural concrete shall conform to the current edition of the American Concrete Institute Building Code Requirements for Reinforced Concrete (ACI 318).
- Design and placement of concrete for liquid containment structures shall follow the current edition of the American Concrete Institute Code Requirements for Environmental Engineering Concrete Structures (ACI 350) in addition to the requirements of ACI 318.

LISWA WWTRF PHASE 1 IMPROVEMENT PROJECT BASIS OF DESIGN REPORT

 Design, fabrication, and erection of structural steel shall follow the current edition of the AISC Manual of Steel Construction.

19.0 ELECTRICAL DESIGN

The electrical system shall be designed to support the additional facility improvements at the WWTRF as presented in this report. The plant's existing electrical distribution system was designed to facilitate planned future upgrades and, where feasible, existing switchboard and motor control center (MCC) spares or space will be used to serve the added loads.

The expected electrical improvements required for this project include a new motor control center (MCC) sized for the Phase 1 loads. The MCC will connect to a spare switch at the existing pad mounted switchgear PSW-202A. The existing plant's Main Switchgear will require an upgrade of the existing medium voltage fuse size feeding PSW-202A to accommodate the added loads.

The existing 2000 kW/2500 kVA, 12.47 kV rated generator does not have sufficient capacity for the proposed electrical loads. Additional emergency generator capacity and load shedding schemes will be required. The design will include a permanently installed generator connected to MCC-100 through a new automatic transfer switch (ATS). The ATS will replace the existing manual keyed interlock circuit breakers and portable generator connector to allow immediate transfer of power between the utility and generator. The generator and ATS will be sized for existing and future loads connected to MCC-100.

Because of the planned design principles and the use of advanced control elements in the existing plant design, it will be possible to specify equipment and components that are nearly identical to the existing equipment to maintain plant standardization.

20.0 INSTRUMENTATION AND CONTROL

The new facilities will integrate into the existing SCADA system, with additional Allen Bradley PLCs as needed. SCADA modifications will ensure balanced loading of the emergency power system, continuing the existing WWTRF concepts in this project.

21.0 SITE PAVING AND GRADING

Site grading will ensure proper stormwater drainage and capture of spills. Paved access will be provided for operational needs, with subgrade preparation to ensure stability. All buildings will be situated above the 100-year flood plain elevation, continuing the existing WWTRF concepts in this project. Most improvements will be implemented within the footprint of existing facilities and do not require paving or grading improvements.

22.0 STORM DRAINAGE

Stormwater will be managed through existing conveyance systems and stored in the Stormwater Detention Basin (SDB). The system is designed to handle specified storm events and ensure controlled discharge to Orchard Creek, continuing to the existing WWTRF concepts in this project.

23.0 YARD PIPING

Piping will maintain flow requirements with appropriate slopes and materials. The drainage network will include cleanouts and manholes for maintenance, continuing the existing WWTRF concepts in this project. Process piping will primarily be an extension of the existing piping strategy between discrete unit processes, much of which was already oversized and will accommodate the proposed project.

_					_	_
		7 -		7 7		^
		<i>,</i> – –	`			/ N
		1	\			
	_		-		_	

Lincoln WWTRF Review of Maturation Pond and Tertiary Storage Operation and Sizing and Impacts on Other Facilities Based on Updated Data and New Permit Temperature Requirements, by Stantec, April 2023

Lincoln WWTRF Review of Maturation Pond and Tertiary Storage Operation and Sizing and Impacts on Other Facilities Based on Updated Data and New Permit Temperature Requirements

April 13, 2023

Prepared for:

Sewer Maintenance District No. 1 Wastewater Authority (LiSWA)

Prepared by:

Stantec Consulting Services Inc.

Revision	Description	Author		Quality C	heck	Independent	Review

This document entitled Lincoln WWTRF Review of Maturation Pond and Tertiary Storage Operation and Sizing and Impacts on Other Facilities Based on Updated Data and New Permit Temperature Requirements was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of LiSWA (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

(signature)

Jeffrey R Hauser

Reviewed by

(signature)

Gabe Aronow

April 13, 2023

Table of Contents

1.0	INTRODUCTION, PURPOSE, AND BACKGROUND	1.1
1.1	PURPOSE OF THIS STUDY	
1.2	BACKGROUND FOR MATURATION PONDS	1.2
1.3	BACKGROUND FOR TERTIARY STORAGE BASINS	1.3
2.0	UPDATED EVALUATION OF MATURATION PONDS	
2.1	MATURATION POND OPERATIONAL CONCEPTS	2.2
2.2	DETERMINATION OF MATURATION POND EQUALIZATION VOLUME	
	REQUIREMENTS FOR THE MAINSTREAM ALTERNATIVE	2.6
2.3	DETERMINATION OF MATURATION POND EQUALIZATION VOLUME	
	REQUIREMENTS FOR THE SIDESTREAM ALTERNATIVE	2.10
3.0	UPDATED EVALUATION OF TERTIARY STORAGE REQUIREMENTS	
3.1	WATER YEAR 2019 ANALYSIS	3.3
3.2	WATER YEAR 2020 ANALYSIS	
3.3	WATER YEAR 2022 ANALYSIS	3.8
3.4	SUMMARY OF ANALYSES FOR WATER YEARS 2019, 2020, AND 2022	
	WITHOUT CONSIDERATION OF WATER BALANCE CALCULATIONS	
3.5	WATER BALANCE CALCULATIONS	3.11
4.0	CONSIDERATION OF SMALLER INCREMENTAL EXPANSION	
4.1	MATURATION POND ANALYSIS FOR LOWER INCREMENTAL CAPACITY	
	4.1.1 Requirements for Mainstream Maturation Ponds	
	4.1.2 Requirements for Sidestream Maturation Ponds	4.5
4.2	TERTIARY STORAGE BASIN ANALYSIS FOR LOWER INCREMENTAL CAPACITY	4 8
5.0	UPDATED CONSIDERATIONS AND RECOMMENDATIONS REGARDING THE OPERATION OF AND RECOMMENDED IMPROVEMENTS TO THE	
	MATURATION OF AND RECOMMENDED IMPROVEMENTS TO THE MATURATION POND FACILITIES, TERTIARY STORAGE BASIN FACILITIES,	
	AND OTHER PLANT FACILITIES IMPACTED BY THESE CONSIDERATIONS	5.1
	OF TABLES	
Table	2-1 Summary Comparison of Maturation Pond Mainstream and Sidestream Alternatives	2.5
Table		
Table		2.1
	Maturation Pond Effluent Flow (Based on 8 Mgal/d ADWF)	2.9
Table	3-1 Summary of Results for Water Years 2019, 2020, and 2022 Without	
	Consideration of Water Balance Calculations (Based on Plant Flows	
	Transformed to Future 8 Mgal/d ADWF Condition)	3.11

Table 4-1	Maturation Pond Equalization Volume Required as Determined by Design Average Dry Weather Flow and Reliable Filter Capacity	4.3
Table 4-2	Maturation Pond Water Levels and Equalization Volume vs Outlet	
	Capacity for Mainstream Maturation Pond Alternative	4.4
Table 4-3	Recommended Sidestream Maturation Pond Return Pumping Capacities	4.5
Table 4-4	Sidestream Maturation Pond Equalization Storage Requirements, Water	
	Levels, and Maturation Pond Return Pump Static Heads, for 6 Mgal/d	
	Average Dry Weather Flow	4.7
Table 5-1	Summary of Considerations and Facilities Requirements with Mainstream	- 0
T-1-1- 5 0	and Sidestream Maturation Ponds	5.2
Table 5-2	Summary of Treatment Facilities Needed at 6 Mgal/d ADWF Compared to Completed Design	5.6
LIST OF FIG	GURES	
Figure 1-1	Maturation Pond Storage Volume vs Water Surface Elevation	12
Figure 2-1	Maturation Pond Operations Concepts	
Figure 2-1	Future (8 Mgal/d ADWF) Maturation Pond Equalization Storage Volume	2.0
riguio 2 2	Required Based on Maximum Maturation Pond Outflow of 19.32 Mgal/d for	
	the Mainstream Alternative (Excludes Safety Factor and Diurnal Storage	
	Allowance)	2.8
Figure 2-3	Future (8 Mgal/d ADWF) Daily Rainfall and Maturation Pond Storage	
9	Corresponding to Storm Event in December 2022 and January 2023	
	Based on Maximum Maturation Pond Outflow of 19.32 Mgal/d for the	
	Mainstream Alternative (Excludes Safety Factor and Diurnal Storage	
	Allowance)	2.8
Figure 2-4	Daily Maturation Pond Average Return Flows for Tertiary Treatment	
	Capacity of 19.32 Mgal/d for the Sidestream Alternative (Based on 8	
	Mgal/d ADWF)	2.10
Figure 2-5	Future (8 Mgal/d ADWF) Daily Rainfall and Maturation Pond Storage	
	Corresponding to Storm Event in December 2022 and January 2023	
	Based on Variable Maximum Maturation Pond Return Flows for the	
	Sidestream Alternative	2.11
Figure 2-6	Future (8 Mgal/d ADWF) Daily Rainfall and Maturation Pond Storage	
	Corresponding to Hypothetical Back-to-Back Storms Like the Event in	
	December 2022 and January 2023 Based on Variable Maximum	0.40
Ciaura 0.7	Maturation Pond Return Flows for the Sidestream Alternative	2.12
Figure 2-7	Effect of Maximum Maturation Pond Return Flow on Maximum Maturation	
	Pond Equalization Volume for the Sidestream Alternative Based on	2 42
Ciguro 2 1	Tertiary Treatment Capacity of 19.32 Mgal/d (Based on 8 Mgal/d ADWF)	2.13
Figure 3-1	Water Year 2019 Flows and Storage with Discharge at Effluent Temperatures (Flows Transformed to Future 8 Mgal/d ADWF Condition)	2.4
Figure 2.2	. ,	3.4
Figure 3-2	Water Year 2019 Flows and Storage with Discharge at Oxidation Ditch Temperatures (Flows Transformed to Future 8 Mgal/d ADWF Condition)	2 /
Figure 3-3	Water Year 2019 Creek Temperatures with Discharge at Effluent	5.4
i igui e u-u	Temperatures (Effluent Flows Transformed to Future 8 Mgal/d ADWF	
	Condition)	3 5
	— - · · · · · · · · · · · · · · · · · ·	

Water Year 2019 Creek Temperatures with Discharge at Effluent	
Temperatures (Effluent Flows Transformed to Future 8 Mgal/d ADWF	
Condition)	3.5
Water Year 2020 Flows and Storage with Discharge at Effluent	
Temperatures (Flows Transformed to Future 8 Mgal/d ADWF Condition)	3.6
Water Year 2020 Flows and Storage with Discharge at Oxidation Ditch	
Temperatures (Flows Transformed to Future 8 Mgal/d ADWF Condition)	3.7
Water Year 2020 Creek Temperatures with Discharge at Effluent	
Temperatures (Effluent Flows Transformed to Future 8 Mgal/d ADWF	
Condition)	3.7
Water Year 2020 Creek Temperatures with Discharge at Oxidation Ditch	
Temperatures (Effluent Flows Transformed to Future 8 Mgal/d ADWF	
Condition)	3.8
Water Year 2022 Flows and Storage with Discharge at Effluent	
	3.9
Water Year 2022 Flows and Storage with Discharge at Oxidation Ditch	
Temperatures (Flows Transformed to Future 8 Mgal/d ADWF Condition)	3.9
Water Year 2022 Creek Temperatures with Discharge at Effluent	
Temperatures (Effluent Flows Transformed to Future 8 Mgal/d ADWF	
Condition)	3.10
Water Year 2022 Creek Temperatures with Discharge at Oxidation Ditch	
Temperatures (Effluent Flows Transformed to Future 8 Mgal/d ADWF	
Condition)	3.10
Potential Rates of Growth and Increase in Average Dry Weather Flow	4.2
	Water Year 2020 Flows and Storage with Discharge at Effluent Temperatures (Flows Transformed to Future 8 Mgal/d ADWF Condition) Water Year 2020 Flows and Storage with Discharge at Oxidation Ditch Temperatures (Flows Transformed to Future 8 Mgal/d ADWF Condition) Water Year 2020 Creek Temperatures with Discharge at Effluent Temperatures (Effluent Flows Transformed to Future 8 Mgal/d ADWF Condition) Water Year 2020 Creek Temperatures with Discharge at Oxidation Ditch Temperatures (Effluent Flows Transformed to Future 8 Mgal/d ADWF Condition) Water Year 2022 Flows and Storage with Discharge at Effluent Temperatures (Flows Transformed to Future 8 Mgal/d ADWF Condition) Water Year 2022 Flows and Storage with Discharge at Oxidation Ditch Temperatures (Flows Transformed to Future 8 Mgal/d ADWF Condition) Water Year 2022 Creek Temperatures with Discharge at Effluent Temperatures (Effluent Flows Transformed to Future 8 Mgal/d ADWF Condition) Water Year 2022 Creek Temperatures with Discharge at Oxidation Ditch Temperatures (Effluent Flows Transformed to Future 8 Mgal/d ADWF Condition)

LIST OF APPENDICES

APPENDIX A WATER BALANCES

1.0 INTRODUCTION, PURPOSE, AND BACKGROUND

The Basis of Design Report for the City of Lincoln Wastewater Treatment and Reclamation Facility (WWTRF) Phase 1 and Phase 2 Expansion Project by Stantec, dated August 24, 2017, hereinafter referred to as the 2017 BODR, recommended major modifications to the maturation pond facilities and expansion of the tertiary storage basins. Recent heavy rainfalls and high plant flows necessitate reevaluation of maturation pond operations and sizing, while revised effluent temperature limits listed below necessitate re-evaluation of tertiary storage requirements.

Effluent temperature limits for the Lincoln WWTRF are currently being revised pursuant to a site-specific study in Auburn Ravine Creek. Key requirements expected to be adopted are generally as follows:

The discharge shall not cause the annual average receiving stream temperature to increase more than 5 °F compared to the ambient stream temperature and shall not cause the receiving stream temperature to rise above:

- a. 68 °F on a 7-day average of daily maximums basis from 1 October through 31 December
- b. 64 °F on a 7-day average of daily maximums basis from 1 January through 31 May
- c. 5 °F over the ambient background temperature as a daily average for the period from 1 June through 30 September
- d. 5 °F over the ambient background temperature as a daily average if ambient receiving background temperatures meet or exceed 68 °F or 64 °F per a and b, respectively.

These temperature limits will govern when and how much discharge can be made to Auburn Ravine Creek. Effluent that cannot be discharged to Auburn Ravine Creek based on the temperature limits or used for irrigation must be stored in the tertiary storage basins at the WWTRF.

1.1 PURPOSE OF THIS STUDY

The purpose of this study is to re-evaluate the recommended designs of the maturation ponds, tertiary storage basins, and other facilities impacted by the design and/or operation of the maturation ponds and tertiary storage basins based on recent data and new permit requirements.

1.2 BACKGROUND FOR MATURATION PONDS

The 2017 BODR recommended modifications to the maturation pond facilities were based on historical wastewater flows and rainfall records from mid-2004 to mid-2012, transformed to represent future conditions when the average dry weather flow (ADWF) increases to 8.0 Mgal/d. This was an update of the analysis previously prepared for the Midwestern Placer Regional Sewer Project Preliminary Design Report, dated November 20, 2012, hereinafter referred to as the 2012 PDR. The rainfall records considered included an approximate 12-year return frequency 30-day total rainfall of 13.49 inches in January 2006: however, conditions occurring in March 2011 with a 30-day rainfall total of 9.89 inches were more severe for determining maturation pond equalization storage requirements. Based on a design peak month average tertiary treatment capacity of 15.3 Mgal/d, a maturation pond equalization volume of 51 Mgal was determined. To obtain this useful volume, the minimum water level in the maturation ponds would have to be reduced to a water surface elevation of 107.7 ft (later revised to 108.5 ft), which is below the existing minimum outlet weir elevation (109.1 ft). The high flow requirement and the new low level in the maturation ponds resulted in the need for a new Maturation Pond Effluent Pump Station. Although the minimum maturation pond storage requirement for flow equalization was 51 Mgal at a minimum water surface elevation of 107.7 ft (later revised to 108.5 ft), the Maturation Pond Effluent Pump Station was designed (but not yet built) to provide additional flexibility to allow pumping the design flow rate of 15.3 Mgal/d at a maturation pond water level as low as 105.8 ft, providing for a minimum residual volume (minimum pool) of about 96 Mgal, a minimum hydraulic retention time of about 6.3 days (average for the two maturation ponds), and a useable equalization storage volume (above minimum pool) of about 81 Mgal.

Maturation pond storage volumes versus water surface elevation are shown in Figure 1-1.

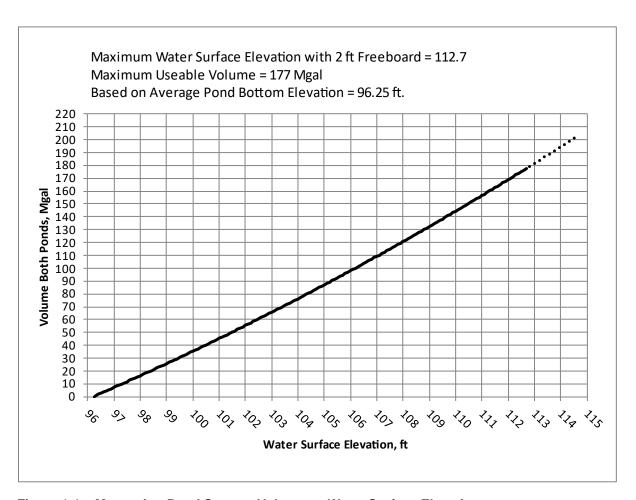


Figure 1-1 Maturation Pond Storage Volume vs Water Surface Elevation

1.3 BACKGROUND FOR TERTIARY STORAGE BASINS

At the time of the 2017 BODR, temperature provisions a, b, and d listed above were not included in the discharge permit and were not part of the analysis. The applicable discharge permit at that time required that the discharge shall not cause the temperature in the receiving stream to increase more than 5 °F over the ambient background temperature at any time.

The 2017 BODR describes the analysis of daily data from the beginning of 2005 through June 2017 on wastewater effluent and Auburn Ravine Creek flows and temperatures to determine what the allowable discharge would have been on each day based on the then-current temperature limits and based on overriding maximum allowable discharges of 12.2 Mgal/d (the then-current permit limit) and 20.4 Mgal/d. From the analysis, Water Year 2014 (October 2013 through September 2014) was selected as the year with the most restrictive allowable discharges in the months of October through March when storage would typically be required under the previous temperature requirements. The monthly average allowable discharges determined for Water Year 2014 were used as input to a water balance model to determine

the amount of effluent stored each month and the maximum accumulated storage volume for the year. Plant influent flows used in the water balance were flows projected to occur when the average dry weather flow (ADWF) reaches 8.0 Mgal/d. From the water balance calculations, it was determined that the amount of tertiary storage required would be 270 Mgal and 232 Mgal, based on the overriding maximum discharges of 12.2 and 20.4 Mgal/d, respectively. Both results are based on having 942 acres (the current area) available for irrigation reuse.

The 2017 BODR also included evaluation of 100-year return frequency rainfall conditions to determine if the higher wastewater flows and higher rainfall accumulations in plant facilities would result in more stringent tertiary storage requirements than the Water Year 2014 analysis. Because of higher creek flows and higher allowable discharges in 100-year rainfall conditions, tertiary storage requirements were less than those determined for Water Year 2014.

For the 2017 BODR analysis and for actual plant operations until mid-2018, Auburn Ravine Creek temperatures upstream of the Lincoln discharge (at monitoring station "R1" or "R3", which have been used interchangeably) were based on daily grab determinations, usually made at around 8:30 am. This is important because creek temperatures later in the day would typically be higher. Using the lower temperature at 8:30 am results in more restrictive discharge limits when the objective is to avoid a temperature increase of more than 5 °F. This is because the colder creek water would be impacted more severely by warmer wastewater effluent.

2.0 UPDATED EVALUATION OF MATURATION PONDS

As originally conceived, the maturation ponds were designed to provide two main functions: 1) dilution (by blending) and incidental removals to reduce peak concentrations of priority pollutants, and 2) flow equalization to allow downstream facilities to be designed for the average maturation pond effluent flow during peak month flow conditions. Incidental benefits of the maturation ponds are that they provide for substantial cooling of the wastewater flow prior to creek discharge, which is helpful in meeting permitted temperature impacts to the creek, they provide natural disinfection, making it much easier to comply with effluent coliform limits after ultraviolet (UV) disinfection, and they provide an additional barrier for removal of suspended solids ahead of the filters in the event of a secondary treatment process overload or upset.

The dilution of priority pollutants was investigated in the 2012 PDR and reviewed for the 2017 BODR. Actual performance data for the maturation ponds indicate statistically significant reductions in average concentrations of priority pollutants. In addition to the dilution effect, reductions in concentrations also could be due to other factors, such as biological, chemical, and physical transformations. Without extensive studies and frequent monitoring of actual concentrations of various priority pollutants entering, within, and exiting the maturation ponds over a long period of time and including all seasons of the year, it is not possible to evaluate the actual impacts on pollutant concentrations and how those impacts would vary with differing pond volumes. Recognizing that significant priority pollutant dilution should occur with hydraulic retention times of at least 5 days, even if not specifically quantified, a minimum hydraulic retention time of 5 days was incorporated in the 2017 BODR.

It should be noted that the priority pollutant dilution benefits of the maturation ponds are based on diluting short-term spikes of pollutant concentrations. For example, if the maturation ponds hydraulic retention time is 5 days and a priority pollutant concentration spike occurs on one day, that spike is diluted into the maturation pond contents that reflect the effects of the previous four days (and more) without the pollutant. The actual reduction in pollutant concentration obtained by dilution will depend on mixing characteristics in the ponds and other factors. If a plant influent pollutant concentration is sustained over many days, there would be little, if any, dilution impact in the maturation ponds.

The potential "spikey" nature of influent priority pollutant concentrations means that spike events would likely go unnoticed, because priority pollutant monitoring occurs only once per year. Similarly, the benefits of the maturation ponds in reducing such pollutant concentrations, even if substantial, would also go unnoticed. This is particularly true because only the plant effluent (after the maturation ponds) is monitored for priority pollutants, so there are no available before and after data being routinely monitored and recorded.

Considering the above, there are legitimate questions regarding the cost/benefit ratio of the maturation pond priority pollutant concentration reduction function.

In this study, the possibility of bypassing most flows around the maturation ponds is considered for wet season operations, recognizing this would eliminate most of the potential benefit of priority pollutant concentration reduction, while considering that such reductions may not be necessary for compliance with priority pollutant regulations (California Toxics Rule). Unfortunately, bypassing most flows around the

maturation pond would result in loss of the incidental benefits mentioned above (cooling, disinfection, and secondary process backup) and would result in other issues, which are discussed later in this document.

The equalization storage function of the maturation ponds is accomplished by varying the water level in the ponds, while not allowing the level to drop below the minimum water level desired for priority pollutant dilution (as applicable) or other operational considerations. The equalization volume must be adequate to 1) accumulate excess peak wet weather flows that exceed the capacity of the downstream tertiary treatment facilities, and 2) provide for desired diurnal flow equalization for the tertiary treatment system. The volume required for the first objective is far greater than that for the second.

2.1 MATURATION POND OPERATIONAL CONCEPTS

Two concepts for maturation pond operation are considered in this study as shown in Figure 2-1.

The mainstream configuration represents existing operations. In this case, all of the secondary effluent is routed through the maturation ponds. Accordingly, the Maturation Pond Feed Pump Station must be sized to handle the design peak hour flow that could be routed through the secondary process, which includes an allowance for in-plant recycle streams and for rainfall collected on the plant site and processed through the plant. Rainfall capture on the plant site is new based on the facility stormwater permit and the desire to minimize sampling, analysis and assicated stormwater monitoring costs. As indicated in the 2017 BODR for the 8 Mgal/d design condition, the design capacity for the pump station would be 36.5 Mgal/d. However, based on recent peak flow data, this capacity should be increased to perhaps 50.0 Mgal/d (to be determined - see footnote (a) under Table 5-1 later in this document). The Maturation Pond Effluent Pump Station must be sized for the design maximum equalized peak flow to the downstream facilities, which include the dissolved air flotation (DAF) system, filters, UV disinfection system, and subsequent facilities. In the 2017 BODR, a design capacity of 15.3 Mgal/d was indicated. However, as developed later in this section, this capacity may need to be increased based on recent peak wet weather flow data.

In the mainstream configuration the minimum pool volume available for priority pollutant dilution is determined as the maximum pond volume minus the volume needed for flow equalization. In the 2017 BODR, the minimum volume needed for equalization was indicated to be 51 Mgal; however, as previously indicated pumping flexibility was provided during design to allow this to increase to 81 Mgal, leaving 96 Mgal available for priority pollutant dilution. At the peak maturation pond effluent design flow of 15.3 Mgal/d, the minimum hydraulic retention time would be 6.3 days (average for both ponds). However, the volume needed for equalization and the volume available for priority pollutant dilution must now be reviewed based on the same recent peak wet weather flows mentioned above.

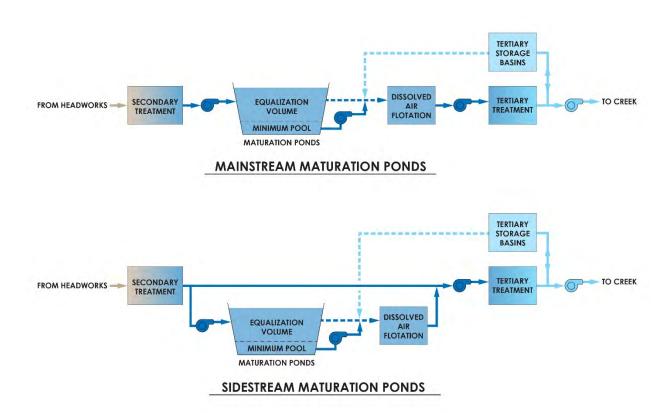


Figure 2-1 Maturation Pond Operations Concepts

In the sidestream configuration, the tertiary treatment equalized flow, which would include most of the secondary effluent, would be routed directly to the filters. Secondary effluent flows greater than the tertiary treatment equalized flow would be pumped to the maturation ponds. In this case, the Maturation Pond Feed Pump Station capacity would be much lower than the 50.0 Mgal/d (to be verified) capacity needed for the mainstream concept. For example, if the design peak tertiary treatment flow was 20 Mgal/d, the Maturation Pond Feed Pump Station would be required to handle 50.0-20.0 = 30.0 Mgal/d. The required capacity is considered later in this document.

Similarly, in the sidestream configuration, the required capacity of the Maturation Pond Effluent Pump Station would be much less than that for the mainstream configuration. For the sidestream arrangement, the capacity would be determined based on the difference between the minimum secondary effluent flow (i.e., the lowest flow occurring during the day) and the desired flow to the tertiary treatment system during a maturation pond drawdown operation. To maximize the drawdown rate and empty the maturation pond equalization storage volume as soon as possible after a peak flow event, the flow to the tertiary treatment system would be the design peak flow for this system. Again, using a hypothetical example, if the design peak tertiary treatment flow was 20 Mgal/d and the minimum secondary effluent flow during maturation pond drawdown was say 7 Mgal/d, the required Maturation Pond Effluent Pump Station flow would be 20-7=13 Mgal/d. However, it may not be necessary to accomplish drawdown as fast as possible, in which case the pump capacity could be reduced. This topic is addressed later in this section.

With sidestream maturation ponds, providing an equalized flow to the DAF system, filters, and downstream facilities becomes much more complex than with mainstream maturation ponds. With the mainstream scenario, the DAF and filter flow simply would be the controlled outflow from the maturation ponds. With the sidestream scenario, equalized flow to the DAF and filters would require coordinated diversions to the maturation ponds when secondary effluent flow exceeds the desired filter flow and returns from the maturation ponds when secondary effluent flow is less than the desired filter flow. Therefore, four flow rates must be monitored and controlled in a coordinated manner (secondary effluent flow, filter inflow, maturation pond inflow, and maturation pond outflow). Three pump stations would be involved in the control scheme: Filter Feed Pump Station, Maturation Pond Feed Pump Station, and Maturation Pond Effluent Pump Station. Furthermore, recognizing that the DAF system cannot be turned on and off to allow sporadic returns from the maturation ponds, it would be necessary to maintain a continuous minimum base flow through the DAF system. Therefore, even when return flows are not needed to maintain filter flows as desired, return flows would still occur and then be recycled back to the maturation ponds. This recycling of flows between the maturation ponds and DAF would be inefficient.

A key benefit of the sidestream concept is that the required capacity of the DAF system would be lower than that for the mainstream alternative. The DAF capacity would be the same as that of the Maturation Pond Effluent Pump Station discussed above for each concept.

Assuming the design peak equalized flow to the tertiary treatment system would be the same for both the mainstream and sidestream concepts, the maturation pond equalization volume needed would be the same. However, since most secondary effluent would bypass the maturation ponds in the sidestream configuration, priority pollutant dilution would not be provided to any significant extent. Eliminating this as an objective would mean that most of the maturation pond volume could be used for equalization storage. For the sidestream configuration, the desired minimum pool volume would be determined by operational considerations such as avoiding stagnation and minimizing algae growth. Similarly, for the mainstream configuration, if priority pollutant dilution is eliminated as an objective (at least during the wet season), most of the maturation pond volume would be available for equalization storage for this concept also, but would require higher pumping heads for the maturation pond return flow.

A conceptual comparison of the mainstream and sidestream maturation pond alternatives is presented in Table 2-1.

Table 2-1 Summary Comparison of Maturation Pond Mainstream and Sidestream Alternatives

Consideration	Mainstream	Sidestream
Priority Pollutant Dilution	Yes	No
Provided?		
Natural Disinfection Provided in	Yes	Mostly no.
the Maturation Ponds		
Effluent Cooling Provided	Yes	Mostly no.
Secondary Process Backup	Yes	Mostly no.
Provided		
Maturation Pond Feed Pump	50.0 Mgal/d (at 8 Mgal/d ADWF)	Much smaller, depending on
Station Capacity	(a)	tertiary treatment capacity.
		However, may want to retain
		flexibility to pump all secondary
		effluent to the maturation ponds,
		in which case the required
		capacity would be the same as
		for the mainstream alternative.
Maturation Pond Effluent Pump	Same as tertiary treatment	Much smaller, depending on
Station Capacity	capacity.	desired maximum drawdown
		rate for the maturation ponds.
Dissolved Air Flotation System	Same as tertiary treatment	Much smaller, depending on
Capacity	capacity.	desired maximum drawdown
		rate for the maturation ponds
Maturation Pond Volume	Minimum requirement as	Most of the pond volume.
Available for Flow Equalization	determined by peak flow	
	analysis. However, if the priority	
	pollutant dilution objective is	
	eliminated, then most of the	
	pond volume would be	
	available.	
DAF, Filter, and UV Systems	Simple – just control maturation	Complex – coordinated control
Equalized Flow Control	pond outflow.	of four flow rates, involving three
		pump systems and flow
		recycling between the
		maturation ponds and DAF.

⁽a) Maturation Pond Feed Pump Station capacity to be determined - see footnote (a) under Table 5-1 later in this report.

2.2 DETERMINATION OF MATURATION POND EQUALIZATION VOLUME REQUIREMENTS FOR THE MAINSTREAM ALTERNATIVE

The future amount of maturation pond volume required for equalization storage was determined by performing water balance calculations for the ponds under future flow conditions as described below. The methods used are generally the same as used for the 2012 PDR and the 2017 BODR. However, the calculations have been updated based on recent plant data.

A design maturation pond influent flow hydrograph was synthesized based on actual historical flows from June 1, 2016 (after connection of Placer County SMD1) through January 31, 2023. For each day in that period, the actual plant influent flow was converted to an equivalent future flow when the average dry weather flow is 8.0 Mgal/d. In the conversion, the increment by which an actual daily flow exceeded the average dry weather flow at that time (an indication of infiltration and inflow) was adjusted to an equivalent incremental flow for the future condition by assuming that the percent increase in this excess flow would be half of the percent increase in the average dry weather flow. Although the actual rate of increase of infiltration and inflow is uncertain and engineering judgement is required in future flow projections, the concept that infiltration and inflow should increase at a lower rate than the average dry weather flow makes logical sense because most of the backbone sewage collection system that would contribute to future infiltration and inflow is already existing and future sewers added should have relatively lower infiltration and inflow. For a hypothetical example of how future flows were calculated, consider the following: if on a given day in the historical database the influent flow to the plant was 6 Mgal/d when the average dry weather flow at that time was 4.0 Mgal/d, then the excess flow was 2 Mgal/d. For the future synthetic flow hydrograph, the average dry weather flow would increase by 100 percent to 8.0 Mgal/d and the excess flow would increase by 50 percent (half the average dry weather flow increase) from 2 Mgal/d to 3 Mgal/d, resulting in a total flow of 8+3=11 Mgal/d for the corresponding day in the future flow hydrograph. Any flows from the actual historical database that were less than or equal to the average dry weather flow at the time were converted to an equivalent future flow of 8.0 Mgal/d. It is realized that presuming all future flows would be at or above the design average dry weather flow over-estimates the flows during low flow periods. However, that is not important, because the evaluation of equalization requirements presented herein is based on high flow periods.

In addition to the synthesized plant influent flows described above, additional daily inputs to the maturation ponds included rainfall (when applicable) and plant recycle flows. Rainfall on the mechanical treatment plant site and on the maturation ponds were calculated based on the actual historical rainfall amounts recorded at the Lincoln plant site. Recycle flows to the maturation ponds were assumed to be 10 percent of the synthesized plant influent flow.

When the total influent flow to the maturation ponds exceeded the maturation pond effluent flow established for a particular scenario, the difference was stored in the maturation ponds. When the influent flow was less than the effluent flow, water was removed from maturation ponds.

The water balance calculations were based on daily flows, without consideration of diurnal variations. Theoretically, the storage volume required to equalize diurnal flow variations would be additive to the storage volume required to equalize daily average flows over a long-term peak flow event. However, the

volume required to equalize diurnal variations is much lower than the volume required for long-term peak flow event equalization. The volume required for diurnal equalization will depend on the shape of the daily influent flow hydrograph, which will in turn vary with rainfall amounts throughout the day on peak flow days. Typically, the volume required to equalize the flow on a particular day can be expected to be around 15 percent of the total flow volume for that day. Based on the water balance calculations developed for this analysis, the maximum daily influent flow to the maturation ponds (including plant recycle flows and rainfall on the plant site and maturation ponds) for the years considered was 42 Mgal/d, which occurred in projected future conditions corresponding to an actual peak day plant influent flow of 20.8 Mgal/d and rainfall of 2.86 inches on December 31, 2022. Based on this extreme condition, the maximum diurnal equalization volume would be estimated at about 6 Mgal, which is at least an order of magnitude lower than volume requirements for long-term peak flow equalization developed in this study.

For this analysis, the maturation pond effluent flow was selected to match possible filter capacity, depending on the number of filter cells considered. Currently there are six filter cells, each with a capacity of 2.76 Mgal/d (based on a loading rate of 5 gpm/ft²). Assuming one cell to be out of service, results in a current filter system reliable capacity of 13.80 Mgal/d. Filter system reliable capacities with possible additional cells are shown in Table 2-2.

Table 2-2 Filter System Reliable Capacity

Total Number of Filter Cells	Reliable Filter Capacity with One Cell Out of Service, Mgal/d
6	13.80
7	16.56
8	19.32
9	22.08
10	24.84

Figure 2-2 shows the storage volume required for flow equalization through the various peak flow events occurring in projected future conditions corresponding to the years evaluated. The maximum long-term peak flow equalization storage requirement for the mainstream alternative (before consideration of an appropriate safety factor and allowance for diurnal flow equalization) of 77 Mgal occurred as a result of storm conditions in December 2022 and January 2023, with the second highest event requiring only about 50 Mgal as a result of conditions occurring in March 2017.

Figure 2-3 shows the daily rainfall amounts and equalization storage volumes associated with the peak flow event in December 2022 and January 2023.

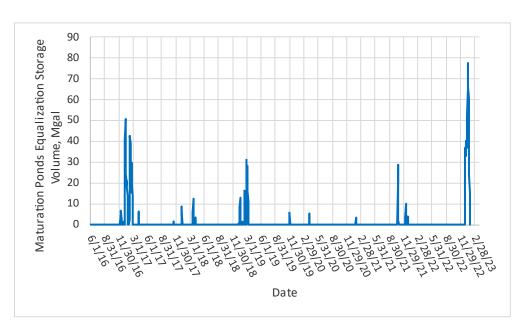


Figure 2-2 Future (8 Mgal/d ADWF) Maturation Pond Equalization Storage Volume Required Based on Maximum Maturation Pond Outflow of 19.32 Mgal/d for the Mainstream Alternative (Excludes Safety Factor and Diurnal Storage Allowance)

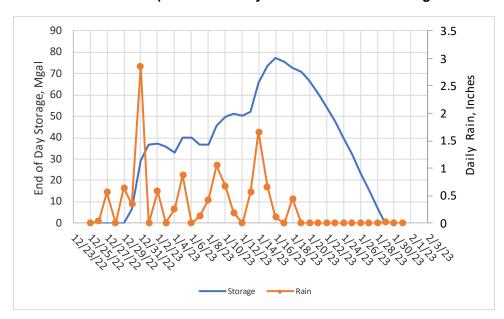


Figure 2-3 Future (8 Mgal/d ADWF) Daily Rainfall and Maturation Pond Storage Corresponding to Storm Event in December 2022 and January 2023 Based on Maximum Maturation Pond Outflow of 19.32 Mgal/d for the Mainstream Alternative (Excludes Safety Factor and Diurnal Storage Allowance)

During the 30 days prior to and including the day for which the future maximum equalization storage requirement of 77 Mgal occurred, the total rainfall was 11.64 inches, which is estimated to be around a 6-year return frequency. This return frequency, however, is based on Department of Water Resources data from 1947 to 2005 for a station in Lincoln (DWR Station A00-4947) that is no longer active. It is not known how plant data would correlate with data for the DWR station if it were still active. Therefore, the return frequency for the Lincoln plant site could be somewhat different.

A sensitivity analysis was completed to determine how the maximum equalization storage requirement would vary based on the maximum maturation pond effluent flow (filtration system flow). The results are shown in Table 2-3. It would be appropriate to apply a safety factor to the indicated maturation pond equalization volumes to account for uncertainties in the analysis and for possible more severe storm events that occurred in the period studied. Also, a diurnal storage allowance should be added. The last column in Table 2-3 shows suggested design volumes with these additional considerations. Since the total existing maturation pond volume is 177 Mgal and the volume available for equalization storage would be much lower, it seems clear that at least 8 filter cells (reliable capacity = 19.32 Mgal/d) should be considered for the future expansion to 8 Mgal/d average dry weather flow.

Based on 8 filter cells, the existing maturation ponds, and the suggested equalization storage volume shown in Table 2-3, the minimum volume available for priority pollutant dilution would be 177-103=74 Mgal (water surface elevation = 103.8 ft). This volume would provide hydraulic retention times of 3.8 days at the peak tertiary flow of 19.32 Mgal/d and 8.4 days at 8.8 Mgal/d (the future ADWF plus 10% recycle allowance). Since priority pollutant dilution is not likely to be a significant issue during peak flows, the lower hydraulic retention time in that case is not concerning.

To provide maximum operational flexibility, if determined to be reasonably possible during detail design, the ability to pump the maturation ponds down to a depth of about 5 feet (water surface elevation of 101.3 ft) should be provided, resulting in an available equalization storage volume of 129 Mgal.

Table 2-3 Mainstream Maturation Pond Equalization Volume Sensitivity to Maximum Maturation Pond Effluent Flow (Based on 8 Mgal/d ADWF)

Total Number	Reliable Filter	Maturation Pond	Suggested
Filter Cells	Capacity and	Equalization Volume	Maturation Pond
	Maximum maturation	without Safety Factor	Equalization Volume
	pond Effluent Flow,	or Diurnal Storage,	with Safety Factor
	Mgal/d	Mgal	and Diurnal Storage
			Allowance (a), Mgal
6	13.80	229	292
7	16.56	129	167
8	19.32	77	103
9	22.08	40	55
10	24.84	29	42

(a) Based on safety factor of 1.25 and diurnal equalization storage volume = 6 Mgal.

2.3 DETERMINATION OF MATURATION POND EQUALIZATION VOLUME REQUIREMENTS FOR THE SIDESTREAM ALTERNATIVE

The water balance calculations for the sidestream alternative followed the same procedures as those for the mainstream alternative, with the following exceptions:

- Secondary effluent flows (including recycle flows and rainfall on the mechanical treatment plant site)
 were routed directly to the filtration system, up to the capacity of that system established for each
 scenario.
- 2. Secondary effluent flows in excess of tertiary treatment capacity were routed to the maturation ponds.
- 3. When secondary effluent flows were reduced lower than the tertiary treatment capacity, return flows from the maturation ponds were provided to maintain the total flow through the tertiary treatment system at capacity, subject to return flow capacity limitations considered in various scenarios.

When the maturation pond return flow capacity was not limited below the amount required to sustain the tertiary treatment flow at its capacity, equalization storage requirements were exactly the same as required for the mainstream alternative (see Figures 2-2 and 2-3 and Table 2-3). The daily average return flows that occurred when the tertiary treatment capacity was set to 19.32 Mgal/d are shown in Figure 2-4. However, in many cases these return flows could have been reduced without substantially impacting equalization storage volume requirements, as discussed below.



Figure 2-4 Daily Maturation Pond Average Return Flows for Tertiary Treatment Capacity of 19.32 Mgal/d for the Sidestream Alternative (Based on 8 Mgal/d ADWF)

A sensitivity analysis was completed to determine how maturation pond return flow capacity could impact the maturation pond equalization storage requirements. The impact of reducing the return flow is to slow the drainage of the maturation ponds after a peak flow event. For widely spaced storms, such as mostly occurred in the study period, impacts would be minimized because a longer time for drainage would still be completed before the next storm event occurred. This is illustrated in Figure 2-5 that shows almost no impact on the required storage volume when the maturation pond return flow capacity is limited to 3 Mgal/d (daily average basis) for the December 2022 / January 2023 event.

Figure 2-5 Future (8 Mgal/d ADWF) Daily Rainfall and Maturation Pond Storage Corresponding to Storm Event in December 2022 and January 2023 Based on Variable Maximum Maturation Pond Return Flows for the Sidestream Alternative

If potential back-to-back events occurred, the maturation ponds might not be fully drained before beginning to fill again if maturation pond return flows are restricted. This is illustrated in Figure 2-6, which is based on a hypothetical event in which plant flows and rainfalls for the December 2022 and January 2023 event were repeated almost immediately after the maturation pond would be fully drained with return pumping capacity adequate to sustain tertiary treatment at full capacity. In the figure, equalization volumes that would occur if the maturation pond return flow rate was limited to 3 Mgal/d are contrasted with equalization volumes without that 3 Mgal/d limit. As indicated in the figure, the maximum equalization storage capacity was drastically increased to from 77 Mgal to 112 Mgal in the hypothetical case when the return flow was limited.

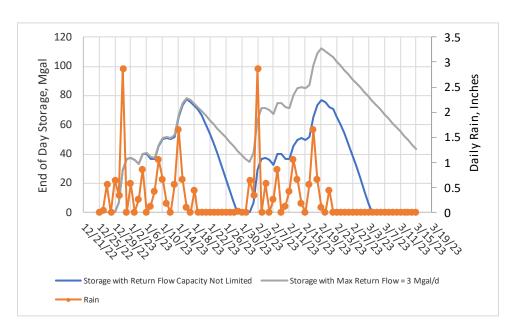


Figure 2-6 Future (8 Mgal/d ADWF) Daily Rainfall and Maturation Pond Storage Corresponding to Hypothetical Back-to-Back Storms Like the Event in December 2022 and January 2023 Based on Variable Maximum Maturation Pond Return Flows for the Sidestream Alternative

The impact of maximum return flows on maximum equalization storage volume were further evaluated in a sensitivity analysis for three actual events and the hypothetical event described above. The results are shown in Figure 2-7. As shown in the figure, maximum equalization storage volumes were not significantly impacted by maximum maturation pond return flow capacities greater than 2.5 Mgal/d for the actual events. However, for the hypothetical back-to-back storms, storage requirements were increased when the maturation pond return flow capacity was limited to less than 5.5 Mgal/d.

It must be recognized that maturation pond return flows considered in the evaluations discussed above are daily averages and that diurnal variations in flow were not considered. During maturation pond drawdown, plant influent flows and secondary process flows would typically remain elevated above dry weather flows due to the lingering effects of the preceding storm event (continued infiltration and inflow). A reasonable allowance is to assume that the daily average secondary effluent flow during maturation pond drawdown could be 150 percent of the future average dry weather flow (12 Mgal/d for the future 8 Mgal/d ADWF condition). Since diurnal minimum flows could be perhaps half of the daily average, the maturation pond return flows needed to sustain tertiary treatment flows at capacity throughout each day would be about 6 Mgal/d (50% of 12 Mgal/d) higher than considered above without diurnal variation. Therefore, the return capacity needed to avoid increasing equalization storage capacity would be 2.5+6=8.5 Mgal/d and 5.5+6=11.5 Mgal/d for the actual storm events and the hypothetical storm event, respectively, considered in Figure 2-7. However, depending on the actual shapes of daily secondary process flow hydrographs during maturation pond drawdown, it is likely that flows somewhat lower than the 8.5 Mgal/d and 11.5 Mgal/d could be used without significantly impacting maximum maturation pond equalization storage requirements. A reasonable design value of 10 Mgal/d is suggested for the 8 Mgal/d

average dry weather flow scenario. Depending on detail design considerations based on actual pump selections, some flexibility in the design flow may be appropriate.

A hydraulic analysis of the existing submersible pump system used for draining the maturation ponds indicates the ability to pump up to 9.5 Mgal/d with a pond water surface elevation of 103.8, if about 40 feet of combined 12-inch discharge piping is replaced with parallel piping. This decreases to about 9.1 Mgal/d if the maturation pond water surface elevation is lowered to 101.3 ft. Although lower than the 10 Mgal/d recommendation, these pumping rates may be reasonably acceptable. To reach the 10 Mgal/d target, it is likely that minor modifications would be required (perhaps changing impellers or overspeeding the pumps).

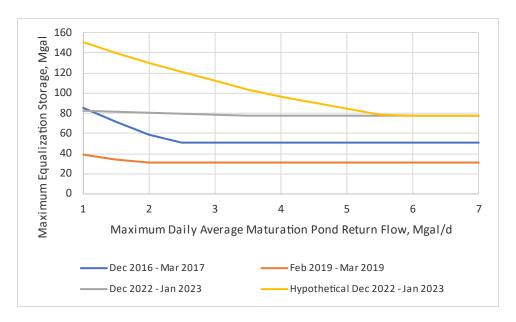


Figure 2-7 Effect of Maximum Maturation Pond Return Flow on Maximum Maturation Pond Equalization Volume for the Sidestream Alternative Based on Tertiary Treatment Capacity of 19.32 Mgal/d (Based on 8 Mgal/d ADWF)

3.0 UPDATED EVALUATION OF TERTIARY STORAGE REQUIREMENTS

Beginning in March 2018, continuous on-line monitoring of Auburn Ravine Creek flows and temperatures (both upstream and downstream of the WWTRF discharge) was started. This real-time data is now used in the plant supervisory control and data acquisition (SCADA) system to automatically control the plant discharge. Furthermore, the historical flow and temperature recordings were used in this updated evaluation of tertiary storage requirements. Although continuous on-line data were available for four complete water years (each including October through the following September), the temperature recordings for Auburn Ravine Creek upstream of the plant effluent were compromised in Water Year 2021 (ending September 30, 2021). Therefore, this analysis includes evaluations for Water Years 2019, 2020, and 2022. For each of those years, calculations were made to evaluate hypothetical conditions if the same creek flows and temperatures and discharge temperatures that occurred in that year occurred again in future years when plant flows reach 8 Mgal/d ADWF.

For each water year considered, two sets of analyses were completed; one in which the discharge temperature was presumed to be the actual effluent temperature recorded for the year in question and one in which the discharge temperature was presumed to be the temperature recorded in the oxidation ditches for that year. Using recorded effluent temperatures represents conditions when the plant secondary effluent is routed through the maturation ponds prior to tertiary treatment and discharge, as is the typical current practice (maturation pond mainstream alternative). Using oxidation ditch temperatures for the discharge allowed evaluation of potential future operations in which most of the secondary effluent would be routed directly to tertiary treatment and discharge, without going through the maturation ponds (maturation pond sidestream alternative). However, even if most of the secondary effluent were to be routed directly to tertiary treatment and discharge, diurnal peak flows and excess peak wet weather flows would still be routed through the maturation ponds for equalization. Since both the maturation ponds and tertiary storage basins result in cooling of the wastewater (except perhaps in some warm months when the effluent is used for agricultural irrigation), assuming that the discharge would be at the temperature of the oxidation ditches, despite return flows from the maturation ponds and tertiary storage basins (when applicable), is a conservative boundary condition – actual temperatures would be lower.

Every 15 minutes for each water year various calculations were made based ambient temperatures and flows in Auburn Ravine Creek and wastewater discharge temperatures. In each 15-minute time increment, the maximum allowable discharge, estimated actual discharge, estimated diversion to (or return flow from) the tertiary storage basins, and potential volume stored in the tertiary storage basins were calculated based on the most limiting of nine criteria:

- 1. The discharge shall not cause the creek temperature to rise more than 15 °F above background creek temperature (see discussion below).
- 2. During October through December, the discharge shall not cause the creek temperature downstream from the WWTRF discharge to rise above 67 °F.

- 3. During January through May, the discharge shall not cause the creek temperature downstream from the WWTRF discharge to rise above 63 °F.
- 4. During October through May, if the background creek temperature was already above the limit of 64 °F or 68 °F, as applicable, the temperature rise caused by the discharge is limited to 4 °F.
- 5. The discharge shall not exceed 25 Mgal/d.
- 6. Except when storage return flows are applicable, the discharge shall not exceed the projected future monthly average influent (including infiltration and inflow) flow plus the monthly average rainfall accumulation for all plant facilities (rain catchment area used was 145 acres).
- The discharge shall be zero during the months of June through August.
- 8. As applicable, when storage return flows were possible, the discharge was limited by the residual potential storage volume in the tertiary storage basins at the time of complete drawdown.
- 9. To prevent switching between diversions to storage and return from storage multiple times daily, no return was allowed unless there were no diversions in the previous five days.

Except as noted below, each of the triggering temperatures listed above is 1 °F lower than the corresponding permit limits. This is intended to provide a safety margin to assure permit compliance.

As noted in Item 1 above, in this analysis the discharge was allowed to cause the creek temperature to increase up to 15 °F above background creek temperature; however, this condition was applicable only when other criteria were not more stringent (e.g., Items 2, 3, and 4). The permit allows an annual average increase of up to 5 °F. Allowing an increase of up to 15 °F on certain days (when other criteria are less stringent or not applicable) may be possible because the days of high temperature increase would be offset by many days of lower temperature increase or no temperature increase in an annual average. Particularly, it is noted that there are several months (at least June through August and potentially May and September) when all effluent could be routed to agricultural irrigation instead of discharge to the creek. However, to gain credit for a day of no temperature impact on the creek, a minor amount of discharge may be necessary; perhaps 1,000 gallons, which would not measurably impact creek temperatures. This analysis includes calculation of the average annual temperature increase to confirm that the 5 °F criterion can be met.

It was necessary to determine when the actual discharge would be less than the maximum allowable discharge, since using the maximum allowable discharge would inappropriately skew the temperature impact on the creek. This is the reason for Item 6 above.

Although the analysis forced zero discharge to the creek in June through August (Item 7), a small discharge that would not measurably impact creek temperature may be required as noted above.

Diversions to the tertiary storage basins were calculated when the allowable discharge was less than the projected future average monthly influent flow (including infiltration and inflow) plus rain captured on/in plant facilities. The projected monthly average influent flows and rain capture were determined

specifically for each water year based on actual plant influent flows in that water year transformed to future 8 Mgal/d ADWF conditions (see discussion under maturation pond analysis) and based on actual rainfall amounts in those water years. Estimated return flows from the tertiary storage basins, when applicable, were calculated as the maximum allowable discharge minus the monthly average influent flow and rain capture. These return flows are indicated as negative diversion flows in the calculations and results presented below. Cumulative inflows and outflows for the tertiary storage basins were used to determine the potential volume in the tertiary storage basins during each time step.

The analysis of discharges and tertiary storage basin conditions did not consider the possibility of agricultural irrigation using water from the tertiary storage basins. Instead, it was assumed that all water accumulated would be available for return flow and discharge to the creek, except during the months of June through August, when there was no discharge to the creek. In June through August, all water in the tertiary storage basins would be used for agricultural irrigation. Except for June through August, the assumption that all stored water would be returned for creek discharge when possible resulted in conservatively high estimates of discharge flows whenever return flows were indicated. This, in turn, resulted in conservatively high estimates of creek temperature impacts. Because the possibility of using tertiary storage basin contents for agricultural irrigation was not considered, the tertiary storage basin volumes calculated in this analysis were potential maximum volumes. Estimated actual volumes in the tertiary storage basins were determined in subsequent water balance calculations, which are discussed later in this document.

Because all current effluent flows and any tertiary storage basin volume remaining on or after June 1 each year would be used for agricultural irrigation, the potential tertiary storage volume was forced to zero on June 1 in each scenario analyzed to prevent basin drawdown by discharge to the creek in the calculations. In reality, the basin would be drawn down gradually, not suddenly, as the water is used for agricultural irrigation.

3.1 WATER YEAR 2019 ANALYSIS

Calculated flows and potential storage volumes for Water Year 2019 are shown in Figure 3-1 and Figure 3-2, representing discharge at effluent temperatures and discharge at oxidation ditch temperatures, respectively. As shown for both cases, diversions to the tertiary storage basins were required in the Fall and Spring, but not in the winter. As would be expected, more diversions were required and more potential storage occurred with the discharge at oxidation ditch temperatures than with the discharge at effluent temperatures, although the differences were much more pronounced in the Fall than in the Spring. The maximum potential storage was 32 Mgal and 194 Mgal, respectively.

Calculated creek temperatures for Water Year 2019 are shown in Figure 3-3 and Figure 3-4, representing discharge at effluent temperatures and discharge at oxidation ditch temperatures, respectively. As would be expected, oxidation ditch temperatures resulted in substantially higher temperatures in the creek downstream from the discharge (Station R2) and higher temperature changes in the creek (R2-R1). Annual average temperature changes were 1.86 °F and 3.81 °F, respectively, indicating the acceptability of allowing temperature changes up to 15 °F in the creek during times when other limitations are less restrictive. The 15 °F threshold could be adjusted as desired and appropriate for actual operations.

Figure 3-1 Water Year 2019 Flows and Storage with Discharge at Effluent Temperatures (Flows Transformed to Future 8 Mgal/d ADWF Condition)

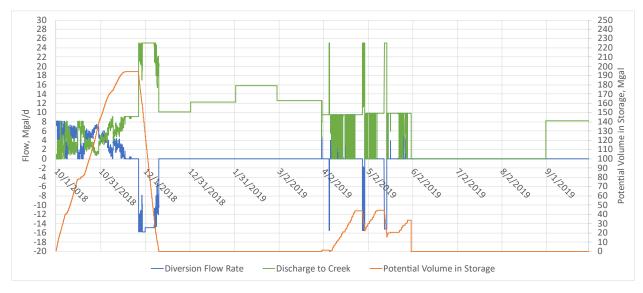


Figure 3-2 Water Year 2019 Flows and Storage with Discharge at Oxidation Ditch Temperatures (Flows Transformed to Future 8 Mgal/d ADWF Condition)

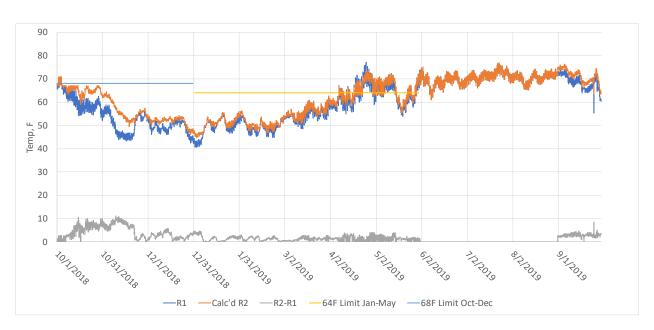


Figure 3-3 Water Year 2019 Creek Temperatures with Discharge at Effluent Temperatures (Effluent Flows Transformed to Future 8 Mgal/d ADWF Condition)

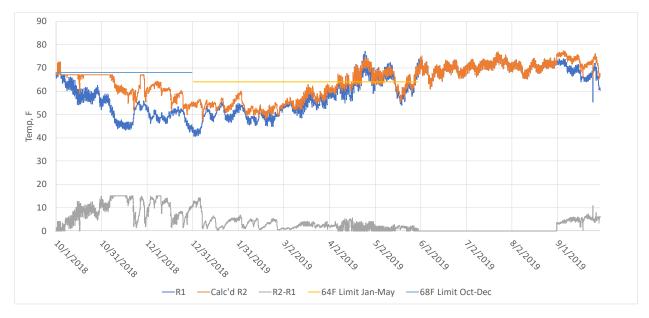


Figure 3-4 Water Year 2019 Creek Temperatures with Discharge at Effluent Temperatures (Effluent Flows Transformed to Future 8 Mgal/d ADWF Condition)

3.2 WATER YEAR 2020 ANALYSIS

Calculated flows and potential storage volumes for Water Year 2020 are shown in Figure 3-5 and Figure 3-6, representing discharge at effluent temperatures and discharge at oxidation ditch temperatures, respectively. As shown in Figure 3-6, many diversions were required and much potential storage was accumulated in October and November for the scenario with oxidation ditch temperatures, while no diversions and storage were indicated in the Fall with effluent temperatures. Diversions and storage in the Spring were relatively minor for both effluent and oxidation ditch temperatures. The maximum potential storage was 39 Mgal (in the Spring) and 159 Mgal (in the Fall), respectively.

Calculated creek temperatures for Water Year 2020 are shown in Figure 3-7 and Figure 3-8, representing discharge at effluent temperatures and discharge at oxidation ditch temperatures, respectively. Again, as would be expected, oxidation ditch temperatures resulted in substantially higher temperatures in the creek downstream from the discharge (Station R2) and higher temperature changes in the creek (R2-R1). Annual average temperature changes were 2.34 °F and 4.90 °F, respectively. The 4.90 °F annual average temperature change indicated when oxidation ditch temperatures were used seems perhaps too close to the 5 °F permit limit. However, as explained previously, these temperature changes are overestimated because they don't recognize the benefits of a portion of the flow being cooled in the maturation ponds and tertiary storage basins.

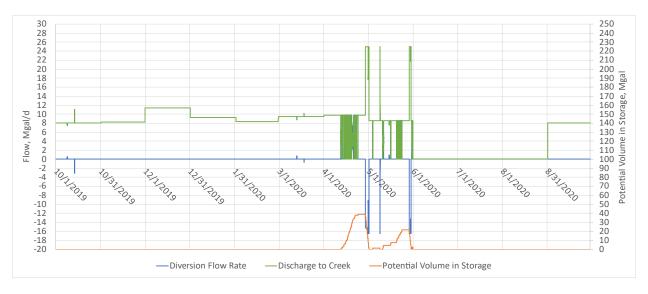


Figure 3-5 Water Year 2020 Flows and Storage with Discharge at Effluent Temperatures (Flows Transformed to Future 8 Mgal/d ADWF Condition)

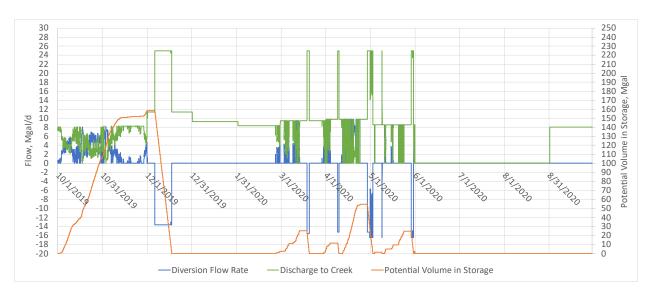


Figure 3-6 Water Year 2020 Flows and Storage with Discharge at Oxidation Ditch Temperatures (Flows Transformed to Future 8 Mgal/d ADWF Condition)

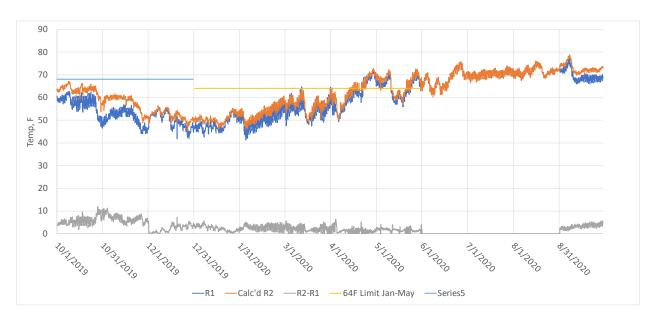


Figure 3-7 Water Year 2020 Creek Temperatures with Discharge at Effluent Temperatures (Effluent Flows Transformed to Future 8 Mgal/d ADWF Condition)

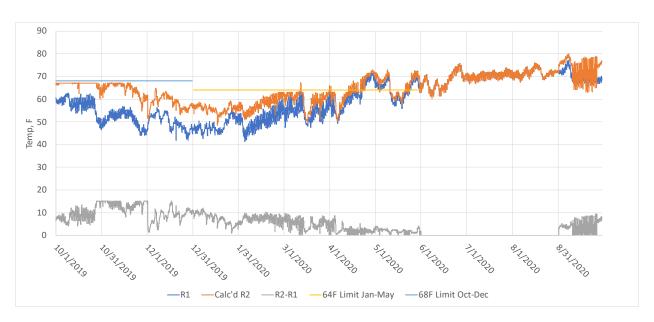


Figure 3-8 Water Year 2020 Creek Temperatures with Discharge at Oxidation Ditch Temperatures (Effluent Flows Transformed to Future 8 Mgal/d ADWF Condition)

3.3 WATER YEAR 2022 ANALYSIS

Calculated flows and potential storage volumes for Water Year 2022 are shown in Figure 3-9 and Figure 3-10, representing discharge at effluent temperatures and discharge at oxidation ditch temperatures, respectively. As shown in the figures, diversions to the tertiary storage basins occurred in both Fall and Spring. The maximum potential storage for both scenarios occurred in the Spring and were 164 Mgal and 249 Mgal for effluent temperatures and oxidation ditch temperatures, respectively.

Calculated creek temperatures for Water Year 2022 are shown in Figure 3-11 and Figure 3-12, representing discharge at effluent temperatures and discharge at oxidation ditch temperatures, respectively. Again, as would be expected, oxidation ditch temperatures resulted in substantially higher temperatures in the creek downstream from the discharge (Station R2) and higher temperature changes in the creek (R2-R1). Annual average temperature changes were 2.56 °F and 4.21 °F, respectively.

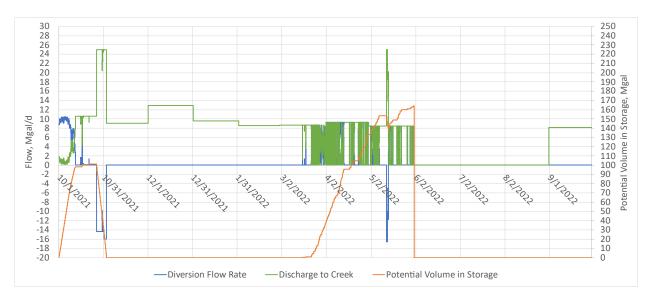


Figure 3-9 Water Year 2022 Flows and Storage with Discharge at Effluent Temperatures (Flows Transformed to Future 8 Mgal/d ADWF Condition)

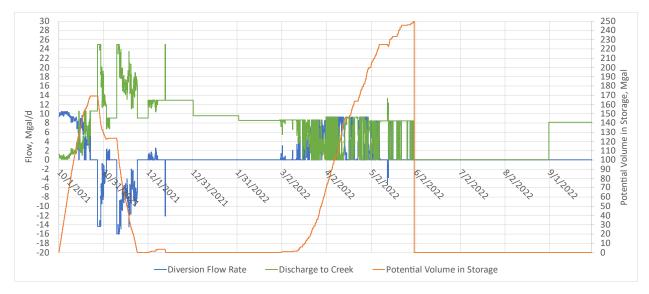


Figure 3-10 Water Year 2022 Flows and Storage with Discharge at Oxidation Ditch Temperatures (Flows Transformed to Future 8 Mgal/d ADWF Condition)

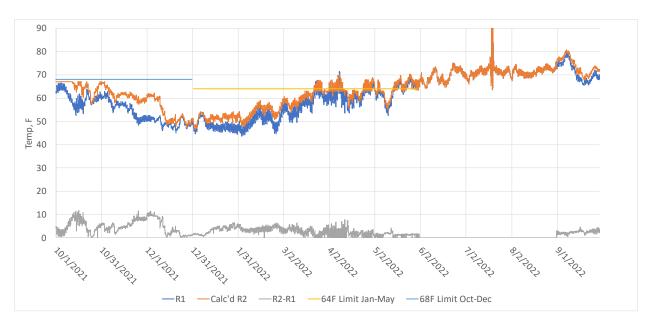


Figure 3-11 Water Year 2022 Creek Temperatures with Discharge at Effluent Temperatures (Effluent Flows Transformed to Future 8 Mgal/d ADWF Condition)

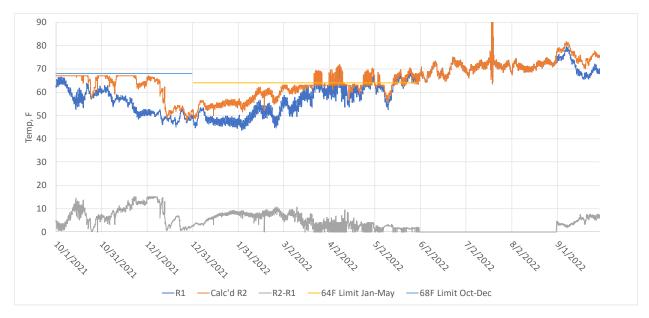


Figure 3-12 Water Year 2022 Creek Temperatures with Discharge at Oxidation Ditch Temperatures (Effluent Flows Transformed to Future 8 Mgal/d ADWF Condition)

3.4 SUMMARY OF ANALYSES FOR WATER YEARS 2019, 2020, AND 2022 WITHOUT CONSIDERATION OF WATER BALANCE CALCULATIONS

Results of the analyses for Water Years 2019, 2020, and 2022 presented above are summarized in Table 3-1.

Table 3-1 Summary of Results for Water Years 2019, 2020, and 2022 Without Consideration of Water Balance Calculations (Based on Plant Flows Transformed to Future 8 Mgal/d ADWF Condition)

			Discharge at Oxidation Ditch			
	Discharge at Efflu	ent Temperatures	Temperatures			
		Annual Average		Annual Average		
	Maximum	Temperature	Maximum	Temperature		
Water Year	Potential Storage,	Potential Storage, Increase in Creek, F		Increase in Creek,		
	Mgal (a)	°F	Mgal (a)	°F (b)		
2019	32	1.86	194	3.81		
2020	39	2.34	159	4.90		
2022	164	2.56	249	4.21		

⁽a) Actual storage requirements will be lower due to irrigation reuse as determined by water balance calculations discussed in the next section.

The calculations discussed and summarized above were based on a maximum allowable discharge of 25 Mgal/d, which is a permit requirement. Currently, the Effluent Pump Station has a reliable capacity of 20.4 Mgal/d and would have to be upgraded to match the permit limit. However, when a 20.4 Mgal/d discharge limit was included in the calculations (results not specifically presented), storage requirements were slightly increased at certain times of the year, but the maximum storage requirements were not impacted. Similarly, annual average temperature increases in the creek were not significantly impacted. Therefore, it is not necessary to increase the capacity of the Effluent Pump Station based on temperature limits or tertiary storage capacity. However, to maximize operational flexibility, it may be desirable to increase the capacity of the Effluent Pump Station to the permitted limit of 25 Mgal/d.

3.5 WATER BALANCE CALCULATIONS

The general methodology used for water balance calculations in this study is the same as described in the 2017 BODR, with the following important differences:

1. The input data for average monthly precipitation and reference evaporation (ET₀) are actual recorded values for the water year in question. Precipitation data was from plant records, while the reference evapotranspiration data is the average of values recorded for Davis, Fair Oaks, and Auburn obtained from the California Irrigation Management Information System (CIMIS).

⁽b) Actual average annual temperature change in creek will be lower do to cooling of a portion of the plant flow in the maturation ponds and tertiary storage basins.

- 2. The monthly average infiltration and inflow amounts are from daily transformations of actual plant flows occurring in the indicated water years to projected future conditions when the plant flow increases to 8 Mgal/d ADWF (see maturation pond analysis for further details).
- 3. The monthly average maximum discharge flows were the estimated monthly average discharge flows determined from the calculations discussed in Sections 3.1 through 3.4.
- 4. The rain catchment area for the mechanical plant site was included with the maturation pond rain catchment area.
- The existing tertiary storage basin area and volume were held constant at current values and future storage requirements and required storage volumes were compared to the existing storage volume to indicate surplus storage volume available.

For all scenarios considered, the available area for agricultural reuse was held at 942 acres, which is the current value.

Since water balance calculations based on discharges at oxidation ditch temperatures would represent the most severe conditions, they are considered first. The corresponding water balances for Water Years 2019, 2020, and 2022 are shown in Appendix A. The tertiary storage requirements indicated in the water balances for Water Years 2019, 2020, and 2022 are 7, 6, and 92 Mgal, respectively. These relatively low requirements, when compared to the potential storage values shown in Table 3-1, resulted from irrigation reuse of water that was discharged to the tertiary storage basins in the calculations used to develop Table 3-1, preventing accumulation of any substantial storage volume. The 7 and 6 Mgal requirements determined for Water Years 2019 and 2020 were nuisance accumulations of rain in the tertiary storage basins. The tertiary storage basin volume of 92 Mgal indicated for Water Year 2022 occurred in the month of October.

The storage requirement of 92 Mgal occurring in October of Water Year 2022 when oxidation ditch temperatures were used was reduced to 1 Mgal in a corresponding water balance using effluent temperatures (water balance not presented in Appendix A). Similarly, by inspection, water balances for Water years 2019 and 2020 based on effluent temperatures would indicate no required storage (nuisance accumulations of rain in the tertiary storage basins disregarded).

The volume of tertiary storage needed for temperature compliance was determined in the 2017 BODR to be about 290 Mgal. Despite updated higher peak flows now being considered, the tertiary storage requirement for temperature compliance has been drastically reduced as a result of new permit temperature requirements. If the current practice of discharging effluent that has been cooled in the maturation ponds is continued (the mainstream alternative), essentially no tertiary storage would be needed for temperature compliance based on the three years of data analyzed for this study (however, a modest amount of storage [perhaps 50 Mgal] would be required for irrigation reuse operations). Even with sidestream maturation ponds, the maximum storage requirement for temperature compliance determined in this analysis is 92 Mgal, based on an agricultural irrigation area of 942 ac. Even if that area was reduced to 762 ac due to loss of the existing center pivot irrigation system, the storage requirement would increase to only 97 Mgal.

It must be emphasized that only three years of data have been evaluated based on newly available continuous recordings of creek flows and temperatures. Therefore, considerable conservatism is warranted. Since the existing tertiary storage basin volume is 190 Mgal, it is now apparent that no additional tertiary storage is required for plant expansion to 8.0 Mgal/d.

4.0 CONSIDERATION OF SMALLER INCREMENTAL EXPANSION

Phase 1 and Phase 2 design capacities of 7.1 and 8.0 Mgal/d average dry weather flow, respectively, established in the 2017 BODR were based on logical increments of expansion for the secondary treatment system – the addition of an oxidation ditch for Phase 1 and a clarifier for Phase 2. Given that the current average dry weather flow is only about 4.4 Mgal/d, such expansions would likely provide adequate plant capacity for many years, as illustrated in Figure 4-1. In the figure, four growth scenarios are considered: linear growth at the actual rate experienced from 2016 through 2022 and growth at annual rates of 1, 2, and 3 percent. Even at the relatively fast growth rate of 3 percent annually, the Phase 1 capacity of 7.1 Mgal/d would not be reached until about 2039, or about 16 years in the future.

In this section, the possible expansion of the maturation ponds and downstream facilities for something less than the Phase 1 and Phase 2 capacities mentioned above is considered. The objective is to determine if shorter-term and less costly improvements in facilities and/or operations to the maturation ponds and downstream facilities would make sense, while keeping in mind that expansion to 8.0 Mgal/d to match the upgraded secondary process capacity will eventually be required. Clearly, if substantial new physical facilities are required even for the lower capacity, it would not make sense to construct those features for the lower capacity unless they are also consistent with requirements at the future larger capacity.

The following criteria are suggested for evaluation of the appropriate design capacity for the next expansion of the maturation ponds and downstream facilities:

- Construction could be completed 2 years from the time of this report.
- Construction of a subsequent expansion could take 2 years.
- At least 5 years should be allowed between completion of construction for the next expansion and beginning of construction for the subsequent expansion.

On the basis of the criteria above, the next expansion of the maturation ponds and downstream facilities would be designed for the capacity required in mid-2032, which varies from about 4.8 to 5.8 Mgal/d for the growth scenarios shown in Figure 4-1.

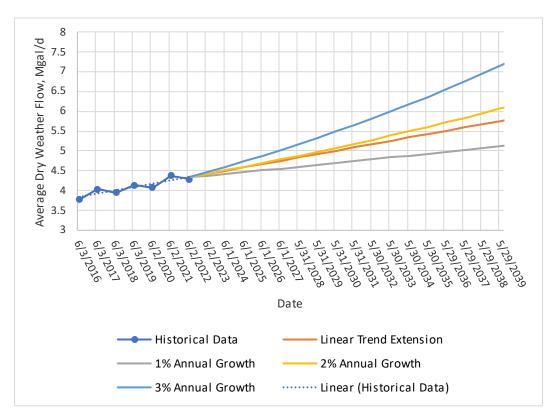


Figure 4-1 Potential Rates of Growth and Increase in Average Dry Weather Flow

4.1 MATURATION POND ANALYSIS FOR LOWER INCREMENTAL CAPACITY

Table 4-1 shows how the maturation pond equalization volume required (including safety factor and diurnal equalization storage) would vary with the design average dry weather flow and the filter system capacity. These results were derived using the same water balance procedures as previously described for the maturation ponds and would be the same for both the mainstream and sidestream alternatives, provided the maturation pond return pump capacity is adequate to prevent increased storage requirements. The diurnal storage volume was held constant at 6 Mgal, although somewhat lower values could be used for capacities less than 8 Mgal/d. As indicated, required equalization volumes increase with increased average dry weather flow and decrease with filter capacity.

Table 4-1 must be evaluated while also considering the existing maturation pond volume (177 Mgal) and the portion of that volume that can be used for equalization storage (including diurnal equalization storage). The volume that can be used for equalization storage will depend on the capacity of maturation pond outlet facilities and on the volume to be reserved for priority pollutant dilution, if any.

Table 4-1 Maturation Pond Equalization Volume Required as Determined by Design Average Dry Weather Flow and Reliable Filter Capacity

		Total Nur	mber of Filter Cells an	d Reliable Capacity,	Mgal/ d				
		6	7	8	9				
		13.8	16.56	19.32	22.08				
	5	80	40	26	19				
	5.5	105	47	33	21				
Average Dry	6	129	67	40	27				
Weather Flow,	6.5	156	92	48	34				
Mgal/ d	7	184	116	55	41				
	7.5	232	141	78	48				
	8	292	167	103	55				
		Body of Table is Maturation Pond Equalization Volume, Mgal							
		Volume Includes 1.2	5 Safety Factor and	6 Mgal Diumal Stora	ge Allowance				

4.1.1 Requirements for Mainstream Maturation Ponds

For the mainstream maturation pond alternative, all of the secondary effluent would be routed through the maturation ponds and the maturation pond outlet facilities (and the DAF system, unless bypassed). Therefore, these facilities must be adequate to support the full filter capacity (or additional equalization volume would be required). Currently, all effluent flow from the maturation ponds occurs by gravity with no pumping. This limits the amount of flow that can occur, particularly with decreasing pond water surface elevations needed to support increasing equalization storage requirements.

As noted previously, the maximum maturation pond water surface elevation is 112.7 ft. The maximum gravity flow capacity occurs with this maximum water surface elevation. Gravity flow is limited by adjustable weir gates in the existing Maturation Pond Level Control Structure (minimum elevation 109.1 ft) and by fixed weirs in the Dissolved Air Flotation System Splitter Box (elevation 108.08 ft). If the DAF system is bypassed, allowing maturation pond effluent to flow directly to the filters, the splitter box weirs would no longer have an impact on the maturation pond effluent flow. However, DAF bypass may not be possible in many situations, depending on the quality of the water in the maturation ponds.

If the Maturation Pond Level Control Structure is modified to remove the weir gates and lower the associated wall openings, this structure would not have a significant impact on maturation pond outflows. In this case, new control valve(s) would be needed to modulate the flow to the DAF system (or to the filters if the DAF system is bypassed). Table 4-2 shows the results of hydraulic analyses to determine the minimum maturation pond water surface elevation needed to support various filter flow capacities under the mainstream maturation pond alternative if the Maturation Pond Level Control Structure is modified as discussed. Also shown in the table is the maturation pond equalization storage volume that would be available in each scenario.

As shown in Table 4-2, gravity flow requirements severely limit available equalization storage for the mainstream maturation pond alternative. In fact, by comparing Tables 4-1 and 4-2, it can be seen that no combination of average dry weather flow and filter capacity yields an equalization storage requirement that could be met by gravity flow from the maturation ponds. Therefore, for the mainstream maturation pond alternative, without bypassing the DAF system, a new maturation pond effluent pump station is required to support any expansion of the facilities. If a new maturation pond effluent pump station is provided, it should be designed for the capacity needed for the Phase 2 design flow of 8.0 Mgal/d.

Table 4-2 Maturation Pond Water Levels and Equalization Volume vs Outlet Capacity for Mainstream Maturation Pond Alternative

Total Number of	Filter Capacity and	Minimum Maturation	Maturation Pond
Filter Cells	Maturation Pond Outlet	Pond Water Surface	Equalization Storage
	Gravity Flow Capacity to	Elevation Required for	Volume Available (b),
	DAF System, Mgal/d	Gravity Flow (a), ft	Mgal
6 (existing)	13.8 (Existing)	109.7	36
7	16.56	110.2	30
8	19.32	110.8	23
9	22.08	111.4	16

- (a) Requires Maturation Pond Level Control Structure modifications (remove weir gates and lower wall openings).
- (b) Volume between minimum water surface elevation needed for gravity flow and maximum water surface elevation of 112.7 ft (177 Mgal).

Although an interim capacity less than 8 Mgal/d is not reasonable for the Maturation Pond Effluent Pump Station, it is still possible to consider a lower interim capacity for the DAF, filters, UV system and other related improvements under the mainstream maturation pond alternative. This is because a new Maturation Pond Effluent Pump Station that would allow pumping down the maturation ponds to a much lower level than is currently possible with the existing gravity flow outlet system would make available much more equalization volume to accommodate more severe storm events than is currently possible. Specifically, as noted in Table 4-2, the existing gravity flow system provides for lowering the pond water surface elevation only down to 109.7 ft, resulting in 36 Mgal of available equalization storage volume with the existing filter capacity of 13.8 Mgal/d. If a new pump station was provided that would allow lowering the water surface elevation down to 101.3 (a minimum pool depth of 5 ft in the ponds, giving a minimum pool volume of 48 Mgal), the available equalization storage volume would be 177 – 48 = 129 Mgal, which is more than triple the current available volume.

As noted in Table 4-1, the volume of 129 Mgal would be adequate to accommodate a plant capacity of 5, 5.5, or 6.0 Mgal/d without expanding the filter capacity. However, for the 6.0 Mgal/d capacity, the equalization storage volume available is the same as the recommended volume (129 Mgal). Although the recommended volume does include a 1.25 safety factor, this should still be considered marginal. To provide additional reliability and operational flexibility, including the ability to handle more severe storm events than those occurring in December 2022 and January 2023, increasing the filter capacity to at least

16.56 Mgal/d by adding one additional filter cell may be prudent for a capacity of 6 Mgal/d. Furthermore, since a minimum filter capacity of 19.32 Mgal/d would be required for the subsequent expansion to 8 Mgal/d, it may make sense to provide that capacity even for a 6 Mgal/d project, thereby avoiding expanding the filters twice with only perhaps 5 years from end of construction of the first expansion to the beginning of construction of the second expansion. This would increase the up-front costs but would decrease the overall cost of providing two additional filter cells.

It must be recognized that reducing the minimum pool volume to 48 Mgal also reduces the hydraulic retention time for priority pollutant dilution. At a peak flow of 16.56 Mgal/d (one filter cell added), the retention time would be 2.9 days. At 6.6 Mgal/d (10% recycle allowance above 6 Mgal/d ADWF), the retention time would be 7.3 days.

The various improvements that would be required for an interim capacity of 6 Mgal/d are shown in Table 4-1 presented later in this document.

4.1.2 Requirements for Sidestream Maturation Ponds

When the sidestream maturation pond alternative is considered, it is possible to consider a much lower capacity for the maturation pond effluent pump system. This is because, during maturation pond drawdown, the maturation pond effluent flow rate is not the desired filter flow (as it is for mainstream ponds), rather, the desired filter flow minus the secondary effluent flow. Furthermore, as developed in Figure 2-7, this flow can be reduced significantly without impacting the maximum maturation pond equalization storage requirement.

Analyses such as used to develop Figure 2-7 were completed for average dry weather flows ranging from 5.0 to 6.0 Mgal/d and for filter capacities ranging from 13.8 to 19.32 Mgal/d (six filter cells [existing] to eight filter cells). Recommended minimum capacities for the maturation pond effluent pump system resulting from those analyses are indicated in Table 4-3. The pump capacities shown represent average daily pumping rates plus a diurnal flow allowance of 75 percent of the average dry weather flow. The values shown in the table are minimums, while additional operational flexibility would be available with higher capacities. The final capacities should be determined based on what is reasonably possible with minor modifications to existing facilities, which is discussed further below.

Table 4-3 Recommended Sidestream Maturation Pond Return Pumping Capacities

	Top Row is Filter Capacity, Mgal/d							
ADWF, Mgal/d	13.8	16.56	19.32					
5.0	7.8	7.3	6.8					
5.5	8.1	7.6	7.1					
6.0	8.5	8.0	7.5					
	Body of Table is Recomended Mat Pond Ret Flow, Mgal/ d							

Including Diumal Allowance = 75% of ADWF

Since the maturation pond effluent pumping requirements for a capacity of 6 Mgal/d ADWF are reasonably attainable (as discussed below), the analysis of maturation pond storage requirements and water levels discussed below are based on this capacity.

In Table 4-4, minimum maturation pond equalization storage requirements and the associated maturation pond minimum water levels are shown for the average dry weather flow capacity of 6 Mgal/d and for various filter capacities. Estimated maturation pond return pump static heads are shown also. As was noted for the mainstream alternative and as shown for the sidestream alternative in Table 4-4, a plant capacity of 6 Mgal/d (ADWF) can be accommodated for the sidestream alternative with the existing filter capacity of 13.8 Mgal/d. However, as previously discussed for the mainstream alternative, it may be prudent to provide a filter capacity of 16.56 or 19.32 Mgal/d for a plant capacity of 6 Mgal/d (ADWF).

For the sidestream alternative, as for the mainstream alternative, a maturation pond minimum pool volume of 48 Mgal at a depth of 5 feet is required for expansion to 6 Mgal/d (ADWF) with a filter capacity of 13.8 Mgal/d. Although higher minimum pool volumes and water surface elevations are possible for higher filter capacities, it may be desirable to use the same low minimum pool for all filter capacities, as this would maximize operational flexibility and minimize hydraulic residence times, thereby minimizing algae growth.

Based on a hydraulic analysis, the existing maturation pond outlet pumps should be able to produce about 3.85 Mgal/d each (total of 7.7 Mgal/d) down to a minimum pool volume of 48 Mgal/d at a maturation pond residual depth of 5 feet. However, if the last 40 feet of piping, which is currently combined for both pump discharges, is revised with parallel pipes, the total flow could be increased to about 9.1 Mgal/d, which would exceed the requirements shown in Table 4-3 for all plant and filter capacities considered. Existing pump performance should be verified by field testing.

Table 4-4 Sidestream Maturation Pond Equalization Storage Requirements, Water Levels, and Maturation Pond Return Pump Static Heads, for 6 Mgal/d Average Dry Weather Flow

Total Number of Filter Cells	Filter System Reliable Capacity, Mgal/d	Minimum Maturation Pond Equalization Storage Requirement (a), Mgal	Maximum Maturation Pond Residual Volume When Minimum Equalization Storage Volume is Empty (b), Mgal	Maturation Pond Water Surface Elevation When Minimum Equalization Storage Volume is Empty, ft	Maturation Pond Depth at Minimum Water Surface Elevation (d), ft	Minimum Design Static Head for Return Pump, ft
6 (existing)	13.8 (Existing)	129	48	101.3	5.0	11.2
7	16.56	67	110	107.1	10.8	5.4
8	19.32	40	137	109.4	13.1	3.1

⁽a) From Table 4-1.

⁽b) Total volume of 177 Mgal minus equalization volume.

⁽c) See Figure 1-1.

⁽d) Based on average pond bottom elevation of 96.3.

⁽e) Based on assumed discharge centerline elevation of 112.5 at Maturation Pond Level Control Structure.

To summarize the information provided above, an initial expansion capacity of 6 Mgal/d can be considered for the maturation pond sidestream alternative without expansion of the existing filter system. However, filter system expansion by adding one or two additional filter cells may be prudent. The existing maturation pond effluent pumps, with minor piping modifications, should be able to produce up to 9.1 Mgal/d, which exceeds the minimum requirement for all plant and filter capacities considered at the recommended minimum depth of 5 feet in the maturation ponds (minimum pool volume = 48 Mgal).

4.2 TERTIARY STORAGE BASIN ANALYSIS FOR LOWER INCREMENTAL CAPACITY

As developed previously, even at the design capacity of 8 Mgal/d, no expansion of the tertiary storage basins is needed. Therefore, it is not necessary to consider lower design capacities.

5.0 UPDATED CONSIDERATIONS AND RECOMMENDATIONS
REGARDING THE OPERATION OF AND RECOMMENDED
IMPROVEMENTS TO THE MATURATION POND FACILITIES,
TERTIARY STORAGE BASIN FACILITIES, AND OTHER PLANT
FACILITIES IMPACTED BY THESE CONSIDERATIONS

A summary of considerations and facilities requirements developed in the previous sections is presented in Table 5-1.

Table 5-1 Summary of Considerations and Facilities Requirements with Mainstream and Sidestream Maturation Ponds

	Design Capacity 8.0 Mgal/d	Average Dry Weather Flow	Design Capacity 6.0 Mgal/c	l Average Dry Weather Flow	
Facility or Consideration	Mainstream Maturation Ponds	Sidestream Maturation Ponds	Mainstream Maturation Ponds	Sidestream Maturation Ponds	
Priority Pollutant Dilution in Maturation Ponds	Can be operated with various levels of dilution, dependent on minimum water level and volume reserved for flow equalization. With 129 Mgal reserved for equalization storage, a volume of 48 Mgal would be available for priority pollutant dilution, yielding a hydraulic residence time of 5.5 days with a future dry weather flow of 8.8 Mgal/d (includes 10% recycle allowance).	Substantial priority pollutant dilution not provided.	Can be operated with various levels of dilution, dependent on minimum water level and volume reserved for flow equalization. With 129 Mgal reserved for equalization storage, a volume of 48 Mgal would be available for priority pollutant dilution, yielding a hydraulic residence time of 7.3 days with a future dry weather flow of 6.6 Mgal/d (includes 10% recycle allowance).	Substantial priority pollutant dilution not provided.	
Effluent Cooling in Maturation Ponds to Aid in Temperature Compliance	Substantial cooling provided to assure easier compliance with daily and annual average temperature limitations.	Minimal cooling provided. Should still comply with permit temperature requirements, but with less margin of safety as compared to the mainstream alternative.	Substantial cooling provided to assure easier compliance with daily and annual average temperature limitations.	Minimal cooling provided. Should still comply with permit temperature requirements, but with less margin of safety as compared to the mainstream alternative.	
Natural Disinfection in Maturation Ponds	Substantial disinfection providing, easing requirements for UV disinfection.	Minimal disinfection provided. Higher UV disinfection system dose requirements compared to the mainstream alternative.	Substantial disinfection providing, easing requirements for UV disinfection.	Minimal disinfection provided. Higher UV disinfection system dose requirements compared to the mainstream alternative.	
Secondary Process Backup Provided	Yes	Mostly no.	Yes	Mostly no.	
Diurnal Equalization of Flow to DAF, Filters, and UV.	Easily provided by regulating outflow from maturation ponds.	Complex, requiring coordinated control of four flow rates, involving three pump systems and flow recycling between the maturation ponds and DAF.	Easily provided by regulating outflow from maturation ponds.	Complex, requiring coordinated control of four flow rates, involving three pump systems and flow recycling between the maturation ponds and DAF.	
Maturation Pond Feed Pump Station Capacity Required, Mga/d	50.0 (compare to existing capacity of 33.1 Mgal/d) (a)	50.0 minus filter capacity, e.g., 30.7 Mgal/d with 8 filter cells. (a)	41.0 Mgal/d (compare to existing capacity of 33.1 Mgal/d) (a)	Approximately 22 Mgal/d. Existing capacity of 33.1 Mgal/d exceeds requirements. No expansion required. (a)	
Maturation Ponds	With eight filter cells, the recommended minimum equalization storage volume (including safety and diurnal equalization allowances) is 103 Mgal. The available equalization volume would increase to about 129 Mgal, based on maintaining a minimum pool depth of 5 feet in the maturation ponds	With eight filter cells, the recommended minimum equalization storage volume (including safety and diurnal equalization allowances) is 103 Mgal. The available equalization volume would increase to about 129 Mgal, based on maintaining a minimum pool depth of 5 feet in the maturation ponds	With seven and eight filter cells, the recommended minimum equalization storage volumes (including safety and diurnal equalization allowances) are 67 and 40 Mgal, respectively. Flexibility to lower the maturation pond level to a depth of 5 feet would result in an equalization volume of 129 Mgal.	With seven and eight filter cells, the recommended minimum equalization storage volumes (including safety and diurnal equalization allowances) are 67 and 40 Mgal, respectively. Flexibility to lower the maturation pond level to a depth of 5 feet would result in an equalization volume of 129 Mgal.	

	Design Capacity 8.0 Mgal/d	Average Dry Weather Flow	Design Capacity 6.0 Mgal/o	l Average Dry Weather Flow	
Facility or Consideration	Mainstream Maturation Ponds	Sidestream Maturation Ponds	Mainstream Maturation Ponds	Sidestream Maturation Ponds	
Maturation Pond Effluent Pump Station	With eight filter cells, the required capacity is 19.32 Mgal/d. Based on an equalization volume of 103 Mgal, the pumps must be capable of pumping the required capacity at a maturation pond water surface elevation of about 103.8 ft. Additional flexibility would be provided by the ability to pump the maturation ponds down to a water surface elevation of 101.3 ft. (Compare to completed Phase 1 design for 15.3 Mgal/d down to water surface elevation 105.8 ft.)	With eight filter cells, the recommended capacity is 10 Mgal/d. Based on an equalization volume of 103 Mgal, the pumps must be capable of pumping the required capacity at a maturation pond water surface elevation of about 103.8 ft. Additional flexibility would be provided by the ability to pump the maturation ponds down to a water surface elevation of 101.3 ft. The existing pond effluent pump system can likely meet these requirements with minor modifications.	Design for 8 Mgal/d ADWF condition. See first column this table.	With minor piping modifications, the existing maturation pond drain pump system should be able to provide a capacity of 9.1 Mgal/d with a minimum maturation pond water surface elevation of 101.3 ft. This exceeds the minimum requirement for any filter capacity considered. Coordinate with DAF capacity below.	
Dissolved Air Flotation System	At capacity of 8 Mgal/d each, 3 DAF clarifiers would be needed to handle the entire filter feed flow if 19.32 Mgal/d. Partial DAF overload or bypass could be considered to allow only 2 DAF clarifiers. One DAF clarifier for maturation pond use is currently existing. A second existing DAF clarifier is currently used only for TSB return flows but could be considered for maturation pond use also. For redundancy, a third DAF may be desired.	The recommended maturation pond return flow of 10 Mgal/d would exceed the capacity of one DAF clarifier (8 Mgal/d). The recommended return flow of 10 Mgal/d would require a second DAF or overload or partial bypass. For redundancy, a third DAF may be desired.	At capacity of 8 Mgal/d each, 2 DAF clarifiers would be adequate to handle the flow for 7 filters, if the filter flow is reduced slightly from the maximum capacity of 16.56 Mgal/d to 16.0 Mgal/d Three DAF clarifiers would be needed to handle the full capacity of 19.32 Mgal/d for 8 filters, unless partial DAF overload or bypass is considered to allow only 2 DAF clarifiers. One DAF clarifier for maturation pond use is currently existing. A second existing DAF clarifier is currently used only for TSB return flows but could be considered for maturation pond use also. For redundancy, a third DAF may be desired.	Existing DAF capacity of 8 Mgal/d is only slightly lower than the recommended minimum maturation pond return flow of 8.5 Mgal/d for a filter capacity of 13.8 Mgal/d but reducing the return flow to 8.0 Mgal/d would be reasonable. The existing DAF capacity meets or exceeds the minimum recommended maturation pond return flows for filter capacities of 16.56 and 19.32 Mgal/d (8.0 and 7.5 Mgal/d). If flexibility for a higher flow of 9.1 Mgal/d is provided, partial DAF overload or bypass would be required. A second existing DAF clarifier is currently used only for TSB return flows but could be considered for maturation pond use also to provide redundancy. No DAF expansion recommended.	
Filters and Filter Feed Pump Station Capacity, Mgal/d	With eight filter cells, the capacity would be 19.32 Mgal/d.	With eight filter cells, the capacity would be 19.32 Mgal/d.	With seven filter cells, the capacity would be 16.56 Mgal/d. With eight filter cells, the capacity would be 19.32 Mgal/d.	With seven filter cells, the capacity would be 16.56 Mgal/d. With eight filter cells, the capacity would be 19.32 Mgal/d.	

	Design Capacity 8.0 Mgal/d	I Average Dry Weather Flow	Design Capacity 6.0 Mgal/d Average Dry Weather Flow				
Facility or Consideration	Mainstream Maturation Ponds	Sidestream Maturation Ponds	Mainstream Maturation Ponds	Sidestream Maturation Ponds			
UV Disinfection System	Current UV capacity is 17.5 Mgal/d. Adding lamps to an existing empty channel would increase capacity to 21 Mgal/d. This would be adequate for the capacity of eight filter cells (19.32 Mgal/d). Increasing UV capacity to 22.08 Mgal/d to match the capacity of nine filter cells would require a more substantial expansion. Alternatively, a 21 Mgal/d UV capacity could accommodate nine filter cells operated at less than full capacity (21 vs 22.08 Mgal/d).	Current UV capacity is 17.5 Mgal/d. Adding lamps to an existing empty channel would increase capacity to 21 Mgal/d. This would be adequate for the capacity of eight filter cells (19.32 Mgal/d). Increasing UV capacity to 22.08 Mgal/d to match the capacity of nine filter cells would require a more substantial expansion. Alternatively, a 21 Mgal/d UV capacity could accommodate nine filter cells operated at less than full capacity (21 vs 22.08 Mgal/d).	Current UV capacity of 17.5 Mgal/d is adequate for the full capacity of seven filter cells (16.56 Mgal/d). Adding lamps to an existing empty channel would increase capacity to 21 Mgal/d. This would be adequate for the capacity of eight filter cells (19.32 Mgal/d).	Current UV capacity of 17.5 Mgal/d is adequate for the full capacity of seven filter cells (16.56 Mgal/d). Adding lamps to an existing empty channel would increase capacity to 21 Mgal/d. This would be adequate for the capacity of eight filter cells (19.32 Mgal/d).			
Effluent Pump Station	25 Mgal/d required to maximize discharge when temperature and flow conditions permit, thereby minimizing diversions to the tertiary storage basins, but this is not needed because tertiary storage basins have surplus capacity. Existing Effluent Pump Station capacity of 20.4 Mgal/d is adequate.	25 Mgal/d required to maximize discharge when temperature and flow conditions permit, thereby minimizing diversions to the tertiary storage basins, but this is not needed because tertiary storage basins have surplus capacity. Existing Effluent Pump Station capacity of 20.4 Mgal/d is adequate.	25 Mgal/d required to maximize discharge when temperature and flow conditions permit, thereby minimizing diversions to the tertiary storage basins, but this is not needed because tertiary storage basins have surplus capacity. Existing Effluent Pump Station capacity of 20.4 Mgal/d is adequate.	25 Mgal/d required to maximize discharge when temperature and flow conditions permit, thereby minimizing diversions to the tertiary storage basins, but this is not needed because tertiary storage basins have surplus capacity. Existing Effluent Pump Station capacity of 20.4 Mgal/d is adequate.			
Tertiary Storage Basins Capacity Required	Likely no storage required for temperature compliance. Modest storage (perhaps 50 Mgal) required for irrigation operations. Existing storage capacity is 190 Mgal. No expansion of existing basins needed.	At least 98 Mgal (without safety factor) required for temperature compliance based on available data. A substantial safety factor is warranted. Existing storage capacity is 190 Mgal. No expansion of existing basins needed.	Likely no storage required for temperature compliance. Modest storage (perhaps 50 Mgal) required for irrigation operations. Existing storage capacity is 190 Mgal. No expansion of existing basins needed.	Not specifically analyzed. No capacity expansion required.			

⁽a) A peak hour plant influent flow of 31.3 Mgal/d was experienced on January 10, 2017 (28.0 was experienced on December 31, 2022). The currently projected future peak hour influent flows resulting from the historical flows are 50 Mgal/d and 41 Mgal/d, corresponding to design average dry weather flows of 8 and 6 Mgal/d, respectively. It is beyond the scope of this study to determine how such high peak flows would be handled by plant facilities from the influent pump station and headworks through the secondary process (secondary process evaluations are currently being developed separate from this study). The Maturation Pond Feed Pump Station flows listed in this table are place-holder values that match the projected influent flows and do not take into account plant recycle flows or rainfall captured on the plant site or consideration of possible diversions to the emergency storage basins. These issues must be investigated before plant expansion design.

As developed in this study and summarized in Table 5-1 for expansion to 8 Mgal/d ADWF, the sidestream maturation pond alternative would allow smaller capacities for the maturation pond effluent pumping and DAF systems. However, those benefits are offset by considerable negative impacts regarding effluent cooling, effluent disinfection, secondary process backup, priority pollutant dilution, and complex tertiary process flow controls. Therefore, mainstream maturation ponds are recommended for expansion to 8 Mgal/d.

Both mainstream and sidestream maturation ponds could be considered for an interim 6 Mgal/d ADWF expansion, if it is desired to minimize near-term costs. With the mainstream alternative, a new maturation pond effluent pump station suitable for the future 8 Mgal/d capacity would be required from the outset, but savings could be realized by sizing DAF, filter, and UV systems for 6 Mgal/d instead of 8 Mgal/d. For the sidestream alternative, the interim project would be much less expensive because a new maturation pond effluent pump station would not be required, and DAF capacity could be reduced as compared to the mainstream alternative. However, the negative aspects of sidestream maturation ponds would still be applicable at the reduced capacity. The most robust solution is to continue to use the mainstream maturation pond configuration for interim and future expansions.

When considering mainstream versus sidestream maturation ponds for either 6 Mgal/d or 8 Mgal/d (or any other capacity), it must be recognized that the secondary process backup that is provided by the mainstream configuration but is not provided by the sidestream configuration has major implications for secondary process design and cost. Therefore, the selection of a maturation pond alternative must be coordinated with secondary process evaluations that are the subject of a separate investigation.

Based on the above findings and knowledge of community growth rates and budgets, a capacity of 6 Mgal/d ADWF is recommended for the next WWTRF expansion. Continuing the current configuration of mainstream maturation ponds is also recommended. However, some costs for the facilities considered in this study can be deferred by switching to the sidestream maturation pond configuration (if reasonable after coordination with secondary process evaluations). Table 5-2 summarizes the treatment facilities needed for tertiary treatment at 6 Mga/d ADWF compared to the treatment facilities included in the completed 8 Mgal/d ADWF design. As developed in this study and based on new information, the completed design would have to be modified to attain the 8 Mgal/d capacity.

Table 5-2 Summary of Treatment Facilities Needed at 6 Mgal/d ADWF Compared to Completed Design

Facility	Mainstream	Sidestream	Current Design
Maturation Pond Feed Pump Station	Expand to 41.0 Mgal/d (a)	No expansion required	Not expanded
Maturation Pond Effluent Pump Station	New pump station required with capacity of 19.32 or 22.08 Mgal/d (depending on filter capacity) capable of pumping down to maturation pond water surface elevation of 103.8 ft or, for more flexibility, 101.3 ft.	Minor modification to existing piping	New pump station with capacity of 15.3 Mga/d capable of pumping down to maturation pond water surface elevation of 105.8 ft.
Dissolved Air Flotation	Interconnect existing DAF systems and add one new DAF	Interconnect existing DAF systems	One new DAF
Filters and Filter Feed Pump Station	Add one filter cell and one feed pump. Can consider adding two filter cells and one feed pump and replacing another feed pump.	Add one filter cell and one feed pump. Can consider adding two filter cells and one feed pump and replacing another feed pump.	One filter cell and one feed pump
UV Disinfection	Expansion not required, but recommended based on operational best practice if only one filter cell is added. Expansion required to match the capacity of two filter cells added.	Expansion not required, but recommended based on operational best practice if only one filter cell is added. Expansion required to match the capacity of two filter cells added.	Equip empty channel with new UV lamps

(a) See footnote (a) under Table 5-1.

APPENDIX AWATER BALANCES

City of Lincoln WWTRF WA	TER BALANCE	- PROJECTED 8.0	MGD ADW	F, WATER YR 2019 A					TH 2023 PERMI	T REVISIONS WIT	TH 1F SAFETY M	ARGIN	13-Apr-23
						ON DITCH TEMPERA	ATURES USE	D					3:12 PM
FLOWS AND INFILTRATION/INFLOWS (I/I)	CLIMATO	DLOGICAL AND RUNOFF FA	CTORS	PLANT		ALL INPUT DATA TION POND, AND TERTIARY	STORAGE BASIN IN	IPLIT		IF	RRIGATION INPUT DATA		
ADWF (MGD)	OEMBY!	SECONORE FIND NONCH TA	01010	12111	0112,111111010	THORT OND, AND TEXTINAT	MAT POND*	TERT STOR			and an arrangement of the second	AGRICULTURE	LANDSCAPE
	OCT-APR EVAP/AVG		1.00	RAIN CATCH AREA (AC) (*	MAT POND + P	LANT SITE)	95.0	46.2	IRRIGATION AREA (942.0	0.0
	MAY-SEP EVAP/AVG	EVAP RATIO	1.00	MIN WATER SURFACE AR			40.0	35.4	IRRIGATION EFFICI			0.700	0.700
	PAN COEFFICIENT		0.80	MAX WATER SURFACE AR MAX TERTIARY EFFL STO			40.0	41.4 190.0	SOIL WATER DEFIC	IT BEFORE IRRIG. (IN)		1.0	1.0
				LAND PRECIP COLLECTED	. ,		0.90	0.90					
	•					HLY INPUT DATA			•				
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ANNUAL
DAYS IN MONTH	31	30	31	31	28	31	30	31	30	31	31	30	365
AVG PAN EVAP (IN)	4.89	2.06	1.25	0.92	1.90	3.47	5.21	8.07	9.91	11.12	9.93	7.45	66.18
WATER YEAR 2019 PRECIP (IN) WATER YEAR 2019 Eto (IN)	0.23 4.19	1.85 2.16	1.10 1.03	4.54 0.98	6.87 1.11	2.98 2.80	0.55 5.17	2.57 5.53	0.00 7.94	0.00 8.33	0.00 7.61	0.66 5.51	21.35 52.38
AGRICULTURE CROP COEFF (ALFALFA)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	32.30
LANDSCAPE CROP COEFF (GRASS)	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	
Industrial Demand (MGD)	0	0	0	0	0	0	0	0	0	0	0	0	
WYR 2019 MAX ALLOWABLE DISCH TO CREEK (MGD)	3.37	9.82	14.18	12.29	15.80	12.55	8.73	9.49	0.00	0.00	0.00	8.24	
WYR 2019 INFILTRATION AND INFLOW (I/I) (MGD)	0.07	0.91	1.96	3.71	6.84	4.21 ALCULATIONS	1.42	1.48	0.28	0.02	0.07	0.16	
INFLUENT INCLUDING I/I (MGD)	8.07	8.91	9.96	11.71	14.84	12.21	9.42	9.48	8.28	8.02	8.07	8.16	
EVAPORATION FROM PONDS (IN)	3.9	1.6	1.0	0.7	1.5	2.8	4.2	6.5	7.9	8.9	7.9	6.0	52.9
MATURATION POND													
INFLOW (MG)	250.09	267.45	308.74	362.98	415.47	378.41	282.57	293.85	248.54	248.59	250.21	244.72	3551.6
PRECIP. VOLUME (MG)	0.56	4.50	2.68	11.04	16.71	7.25	1.34	6.25	0.00	0.00	0.00	1.61	51.9
EVAP. VOLUME (MG) OUTFLOW (MG)	4.25 246.39	1.79 270.15	1.09 310.32	0.80 373.23	1.65 430.52	3.02 382.64	4.53 279.38	7.02 293.09	8.62 239.92	9.67 238.92	8.63 241.57	6.48 239.84	57.5 3546.0
OUTFLOW (MGD)	7.95	9.01	10.01	12.04	15.38	12.34	9.31	9.45	8.00	7.71	7.79	7.99	3340.0
AGRICULTURE IRRIGATION													
EVAPOTRANSPIRATION (IN)	4.19	2.16	1.03	0.98	1.11	2.80	5.17	5.53	7.94	8.33	7.61	5.51	52.4
IRRIG DEMAND = ET-PRECIP (IN)	3.96	0.31	0.00	0.00	0.00	0.00	4.62	2.96	7.94	8.33	7.61	4.85	40.6
REDUCTION FOR DEFICIT (IN)	0.00	0.00	-0.07	-0.93	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
CUM RED FOR DEFICIT (IN) DEFICIT NOT SATISFIED (IN)	1.00 0.00	1.00 0.0	0.93 0.1	0.00 1.0	0.00 1.0	0.00 1.0	1.00 0.0	1.00 0.0	1.00 0.0	1.00 0.0	1.00 0.0	1.00 0.0	
REVISED IRRIG DEMAND (IN)	3.96	0.31	0.00	0.00	0.00	0.00	3.62	2.96	7.94	8.33	7.61	4.85	39.58
REVISED IRRIGATION DEMAND (MG)	144.9	11.5	0.0	0.0	0.0	0.0	132.4	108.4	290.4	304.6	278.2	177.2	1447.5
REVISED IRRIGATION DEMAND (MGD)	4.68	0.38	0.00	0.00	0.00	0.00	4.41	3.50	9.68	9.83	8.97	5.91	
LANDSCAPE IRRIGATION													
EVAPOTRANSPIRATION (IN)	2.94	1.51	0.72	0.69	0.78	1.96	3.62	3.87	5.56	5.83	5.32 5.32	3.85	36.7
IRRIG DEMAND = ET-PRECIP (IN) REDUCTION FOR DEFICIT (IN)	2.71 0.00	0.00 -0.34	0.00 -0.38	0.00 -0.29	0.00	0.00	3.07 1.00	1.30 0.00	5.56 0.00	5.83 0.00	0.00	3.19 0.00	27.0 0.00
CUM RED FOR DEFICIT (IN)	1.00	0.66	0.29	0.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
DEFICIT NOT SATISFIED (IN)	0.00	0.3	0.7	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	
REVISED IRRIG DEMAND (IN)	2.71	0.00	0.00	0.00	0.00	0.00	2.07	1.30	5.56	5.83	5.32	3.19	25.99
REVISED IRRIGATION DEMAND (MG)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
REVISED IRRIGATION DEMAND (MGD)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
INDUSTRIAL DEMAND (MG) EFFLUENT ROUTING ANALYSIS	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MAXIMUM POSSIBLE DISCHARGE TO CREEK (MG)	104.48	294.64	439.64	380.87	442.52	388.94	261.85	294.17	0.00	0.00	0.00	247.32	2854.43
TOTAL REUSE DEMAND (MG)	144.93	11.46	0.00	0.00	0.00	0.00	132.38	108.36	290.35	304.61	278.16	177.23	1447.50
MAXIMUM POSSIBLE DISCHARGE + REUSE (MG)	249.41	306.10	439.64	380.87	442.52	388.94	394.23	402.53	290.35	304.61	278.16	424.55	
VOLUME AVAILABLE FOR DISCHARGE + REUSE (MG)	246.39	270.15	311.01	373.61	435.38	389.60	281.00	293.09	239.92	238.92	241.57	239.84	
ACTUAL REUSE (MG)	144.93	11.46	0.00	0.00	0.00	0.00	132.38	108.36	239.92	238.92	241.57	177.23	1294.78
ACTUAL REUSE (MGD) REUSE DEMAND NOT SATISFIED (MG)	4.68 0.00	0.38 0.00	0.00	0.00 0.00	0.00	0.00 0.00	4.41 0.00	3.50 0.00	8.00 50.43	7.71 65.69	7.79 36.59	5.91 0.00	152.72
REUSE DEMAND NOT SATISFIED (MGD)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.68	2.12	1.18	0.00	102.12
ACTUAL DISCHARGE TO CREEK (MG)	101.46	258.70	311.01	373.61	435.38	388.94	148.62	184.72	0.00	0.00	0.00	62.61	2265.05
ACTUAL DISCHARGE TO CREEK (MGD)	3.27	8.62	10.03	12.05	15.55	12.55	4.95	5.96	0.00	0.00	0.00	2.09	
UNUSED DISCHARGE CAPACITY (MG)	3.02	35.95	128.64	7.25	7.14	0.00	113.23	109.44	0.00	0.00	0.00	184.71	589.38
UNUSED DISCHARGE CAPACITY (MGD) TSB OUTFLOW - TSB INFLOW (MG)	0.10	1.20	4.15	0.23	0.26	0.00	3.77	3.53	0.00	0.00	0.00	6.16	
TSB OUTFLOW - TSB INFLOW (MG) TERTIARY STORAGE BASINS	0.00	0.00	0.68	0.39	4.86	6.30	1.62	0.00	0.00	0.00	0.00	0.00	
BEGINNING STORAGE (MG)	0.00	0.00	0.68	0.39	4.86	6.96	1.62	0.00	0.00	0.00	0.00	0.00	
BEGINNING WATER SURFACE AREA (AC)	35.40	35.40	35.42	35.41	35.55	35.62	35.45	35.40	35.40	35.40	35.40	35.40	
EVAP. VOLUME (MG)	0.28	1.59	0.96	0.71	1.47	2.69	0.67	3.15	0.00	0.00	0.00	0.81	12.33
PRECIP. VOLUME (MG)	0.28	2.27	1.35	5.57	8.43	3.66	0.67	3.15	0.00	0.00	0.00	0.81	26.18
STORAGE GAIN (MG) FINAL STORAGE (MG)	0.00	0.68 0.68	-0.30 0.39	4.47 4.86	2.10 6.96	-5.34 1.62	-1.62 0.00	0.00	0.00	0.00	0.00	0.00	0.00
TIMAL STURAGE (MG)	0.00	V.08	U.39	4.80		SUMMARY	U.UU	0.00	0.00	0.00	0.00	0.00	
Annual Inflow (MG)			ANNUAL	OUTFLOW (MG)			INFLOW-OUTFLOW	/ AND STORAGE (MG)		1	CREEK DISCHARGE AN	ID REUSE SUMMARY	
WASTEWATER WITHOUT I/I	. 2920	DISCHARGE TO STREAM.			2265	ANNUAL INFLOW - ANN	IUAL OUTFLOW (MC	G)	0	MAXIMUM POSSIBLE O	CREEK DISCHARGE (MG)	2854
INFLOW AND INFILTRATION	632	TOTAL ALL REUSE			1295					ACTUAL CREEK DISCH			2265
PRECIP. INTO PONDS/BASINS	. 78	EVAP. FROM PONDS/BAS	NS		70	STORAGE AVAILABLE (N			190		HARGE CAPACITY (MG)		589
						STORAGE REQUIRED (N			7	REUSE DEMAND (MG).			1447
TOTAL	3630	TOTAL			3630	SURPLUS STORAGE CA	APACITY (MG)		183	ACTUAL REUSE (MG) REUSE DEMAND NOT	SATISFIED (MG)		1295 153
1 viem 4/13/2023 3:12 PM	. 3030	1.01112			3030	<u> </u>				VEGOE DEMAND MOI	(md)		IJJ

City of Lincoln WWTRF W	ATER BALANCE -	BALANCE - PROJECTED 8.0 MGD ADWF, WATER YR 2020 ALLOWABLE DISCHARGES BASED ON 15 MIN CALCS, WITH 2023 PERMIT REVISIONS WITH 1F SAFETY MARGIN OXIDATION DITCH TEMPERATURES USED									13-Apr-23 3:11 PM		
						LL INPUT DATA	CATORES USED						3:11 PM
FLOWS AND INFILTRATION/INFLOWS (I/I)	CLIMATOLO	OGICAL AND RUNOFF FA	ACTORS	PLANT		ION POND, AND TERTIA	RY STORAGE BASIN INP	UT		II	RRIGATION INPUT DATA		
ADWF (MGD)						· · · · · · · · · · · · · · · · · · ·	MAT POND*	TERT STOR				AGRICULTURE	LANDSCAPE
	OCT-APR EVAP/AVG E	VAP RATIO	1.00	RAIN CATCH AREA (AC) (*1	MAT POND + PL	ANT SITE)	95.0	46.2	IRRIGATION AREA (A	(C)		942.0	0.0
	MAY-SEP EVAP/AVG E	VAP RATIO	1.00	MIN WATER SURFACE AR	EA (AC)		40.0	35.4	IRRIGATION EFFICIE	NCY (FRACTION)		0.700	0.700
	PAN COEFFICIENT		0.80	MAX WATER SURFACE AR			. 40.0	41.4	SOIL WATER DEFICE	T BEFORE IRRIG. (IN)		1.0	1.0
				MAX TERTIARY EFFL STO				190.0					
				LAND PRECIP COLLECTED		LY INPUT DATA	0.90	0.90					
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ANNUAL
DAYS IN MONTH	31	30	31	31	28	31	30	31	30	31	31	30	365
AVG PAN EVAP (IN)	4.89	2.06	1.25	0.92	1.90	3.47	5.21	8.07	9.91	11.12	9.93	7.45	66.18
WATER YEAR 2020 PRECIP (IN)	0.00	0.61	5.34	1.23	0.00	1.75	1.31	0.22	0.11	0.00	0.03	0.00	10.60
WATER YEAR 2020 Eto (IN)	4.60	2.34	0.93	1.22	3.21	3.26	5.03	6.76	8.09	8.48	7.23	5.36	56.50
AGRICULTURE CROP COEFF (ALFALFA)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
LANDSCAPE CROP COEFF (GRASS)	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	
INDUSTRIAL DEMAND (MGD)	0	0	0	0	0	0	0	0	0	0	0	0	
WYR 2020 MAX ALLOWABLE DISCH TO CREEK (MGD)	4.54	6.55	16.48	9.24	8.26	9.40	8.88	9.43	0.00	0.00	0.00	8.00	
WYR 2020 INFILTRATION AND INFLOW (I/I) (MGD)	0.03	0.14	2.69	1.08	0.34	1.24	1.60	0.49	0.14	0.00	0.00	0.00	
						CULATIONS							
INFLUENT INCLUDING I/I (MGD)	8.03	8.14	10.69	9.08	8.34	9.24	9.60	8.49	8.14	8.00	8.00	8.00	
EVAPORATION FROM PONDS (IN)	3.9	1.6	1.0	0.7	1.5	2.8	4.2	6.5	7.9	8.9	7.9	6.0	52.9
MATURATION POND	240.07	244.00	224.52	201.55	222.55	201.17	207.00	2/2.22	2	242.22	240.01	240.00	2457.0
INFLOW (MG)	248.97	244.08	331.53	281.55	233.55	286.47	287.88	263.29	244.34	248.08	248.04	240.00	3157.8
PRECIP. VOLUME (MG) EVAP. VOLUME (MG)	0.00 4.25	1.48 1.79	12.99 1.09	2.99 0.80	0.00 1.65	4.26 3.02	3.19 4.53	0.54 7.02	0.27 8.62	0.00 9.67	0.07 8.63	0.00 6.48	25.8 57.5
OUTFLOW (MG)	244.72	243.78	343.43	283.74	231.90	287.71	286.54	256.81	235.99	238.41	239.48	233.52	3126.0
OUTFLOW (MGD)	7.89	8.13	11.08	9.15	8.28	9.28	9.55	8.28	7.87	7.69	7.73	7.78	3120.0
AGRICULTURE IRRIGATION	7.07	0.13	11.00	7.10	0.20	7.20	7.55	0.20	7.07	7.07	7.73	7.70	
EVAPOTRANSPIRATION (IN)	4.60	2.34	0.93	1.22	3.21	3.26	5.03	6.76	8.09	8.48	7.23	5.36	56.5
IRRIG DEMAND = ET-PRECIP (IN)	4.60	1.73	0.00	0.00	3.21	1.51	3.72	6.54	7.98	8.48	7.20	5.36	50.3
REDUCTION FOR DEFICIT (IN)	0.00	0.00	-1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CUM RED FOR DEFICIT (IN)	1.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
DEFICIT NOT SATISFIED (IN)	0.00	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
REVISED IRRIG DEMAND (IN)	4.60	1.73	0.00	0.00	2.21	1.51	3.72	6.54	7.98	8.48	7.20	5.36	49.33
REVISED IRRIGATION DEMAND (MG)	168.1	63.1	0.0	0.0	80.9	55.1	136.2	239.2	291.8	310.0	263.3	196.1	1803.8
REVISED IRRIGATION DEMAND (MGD)	5.42	2.10	0.00	0.00	2.89	1.78	4.54	7.71	9.73	10.00	8.49	6.54	
LANDSCAPE IRRIGATION													
EVAPOTRANSPIRATION (IN)	3.22	1.64	0.65	0.85	2.25	2.28	3.52	4.73	5.66	5.93	5.06	3.75	39.6
IRRIG DEMAND = ET-PRECIP (IN)	3.22	1.03	0.00	0.00	2.25	0.53	2.21	4.51	5.55	5.93	5.03	3.75	34.0
REDUCTION FOR DEFICIT (IN)	0.00	0.00	-1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CUM RED FOR DEFICIT (IN)	1.00	1.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
DEFICIT NOT SATISFIED (IN) REVISED IRRIG DEMAND (IN)	0.00 3.22	0.0 1.03	1.0 0.00	1.0 0.00	0.0 1.25	0.0 0.53	0.0 2.21	0.0 4.51	0.0 5.55	0.0 5.93	0.0 5.03	0.0 3.75	33.02
REVISED IRRIGATION DEMAND (MG)	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
REVISED IRRIGATION DEMAND (MGD)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
INDUSTRIAL DEMAND (MG)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
EFFLUENT ROUTING ANALYSIS													
MAXIMUM POSSIBLE DISCHARGE TO CREEK (MG)	140.83	196.54	510.73	286.40	231.32	291.46	266.34	292.39	0.00	0.00	0.00	240.00	2455.99
TOTAL REUSE DEMAND (MG)	168.09	63.14	0.00	0.00	80.94	55.10	136.16	239.16	291.82	309.98	263.29	196.13	1803.79
MAXIMUM POSSIBLE DISCHARGE + REUSE (MG)	308.92	259.68	510.73	286.40	312.26	346.55	402.49	531.54	291.82	309.98	263.29	436.13	
VOLUME AVAILABLE FOR DISCHARGE + REUSE (MG)	244.72	243.78	343.43	289.33	235.63	287.71	286.54	256.81	235.99	238.41	239.48	233.52	
ACTUAL REUSE (MG)	168.09	63.14	0.00	0.00	80.94	55.10	136.16	239.16	235.99	238.41	239.48	196.13	1652.59
ACTUAL REUSE (MGD)	5.42	2.10	0.00	0.00	2.89	1.78	4.54	7.71	7.87	7.69	7.73	6.54	
REUSE DEMAND NOT SATISFIED (MG)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	55.83	71.56	23.81	0.00	151.20
REUSE DEMAND NOT SATISFIED (MGD)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.86	2.31	0.77	0.00	
ACTUAL DISCHARGE TO CREEK (MG)	76.63	180.64	343.43	286.40	154.69	232.61	150.38	17.65	0.00	0.00	0.00	37.39	1479.83
ACTUAL DISCHARGE TO CREEK (MGD)	2.47	6.02	11.08	9.24	5.52	7.50	5.01	0.57	0.00	0.00	0.00	1.25	
UNUSED DISCHARGE CAPACITY (MG)	64.20	15.90	167.30	0.00	76.63	58.84	115.96	274.73	0.00	0.00	0.00	202.61	976.17
UNUSED DISCHARGE CAPACITY (MGD)	2.07	0.53	5.40	0.00	2.74	1.90	3.87	8.86	0.00	0.00	0.00	6.75	
TSB OUTFLOW - TSB INFLOW (MG)	0.00	0.00	0.00	2.65	3.73	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
TERTIARY STORAGE BASINS REGINNING STORAGE (MG)	0.00	0.00	0.00	5.59	3.73	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
BEGINNING STORAGE (MG) BEGINNING WATER SURFACE AREA (AC)	35.40	35.40	35.40	35.58	35.52	35.40	35.40	35.40	35.40	35.40	35.40	35.40	
EVAP. VOLUME (MG)	0.00	0.75	0.96	0.71	0.00	2.15	1.61	0.27	0.13	0.00	0.04	0.00	6.61
PRECIP. VOLUME (MG)	0.00	0.75	6.55	1.51	0.00	2.15	1.61	0.27	0.13	0.00	0.04	0.00	13.00
STORAGE GAIN (MG)	0.00	0.00	5.59	-1.86	-3.73	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FINAL STORAGE (MG)	0.00	0.00	5.59	3.73	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
						UMMARY							
ANNUAL INFLOW (MG)			ANNUAL	OUTFLOW (MG)		I	INFLOW-OUTFLOW F	AND STORAGE (MG)			CREEK DISCHARGE AND	REUSE SUMMARY	
WASTEWATER WITHOUT I/I	2920						2456						
INFLOW AND INFILTRATION	238	TOTAL ALL REUSE			1653	1				ACTUAL CREEK DISCH	HARGE (MG)		1480
PRECIP. INTO PONDS/BASINS	39	EVAP. FROM PONDS/BAS	SINS		64	STORAGE AVAILABLE			190		HARGE CAPACITY (MG).		976
					STORAGE REQUIRED (MG)				1804				
						SURPLUS STORAGE			184	ACTUAL REUSE (MG).			1653

City of Lincoln WWTRF WA	TER BALANCE	- PROJECTED 8.0	MGD ADW	F, WATER YR 2022 A					TH 2023 PERMI	T REVISIONS WI	TH 1F SAFETY M	ARGIN	13-Apr-23
						ON DITCH TEMPERA	ATURES USEI)					3:10 PM
FLOWS AND INFILTRATION/INFLOWS (I/I)	CLIMATO	DLOGICAL AND RUNOFF FA	CTORS	PLANT		TION POND, AND TERTIARY	STORAGE BASIN IN	IPUT	<u> </u>		IRRIGATION INPUT DATA		
ADWF (MGD)							MAT POND*	TERT STOR				AGRICULTURE	LANDSCAPE
	OCT-APR EVAP/AVG		1.00	RAIN CATCH AREA (AC) (*		LANT SITE)	95.0	46.2	IRRIGATION AREA (942.0	0.0
	MAY-SEP EVAP/AVG	EVAP RATIO	1.00	MIN WATER SURFACE AR			40.0	35.4	IRRIGATION EFFICI			0.700	0.700
	PAN COEFFICIENT		0.80	MAX WATER SURFACE AF MAX TERTIARY EFFL STO			40.0	41.4 190.0	SOIL WATER DEFIC	CIT BEFORE IRRIG. (IN)		1.0	1.0
				LAND PRECIP COLLECTER	. ,		0.90	0.90					
					MONT	HLY INPUT DATA			•				
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ANNUAL
DAYS IN MONTH	31	30	31	31	28	31	30	31	30	31	31	30	365
AVG PAN EVAP (IN) WATER YEAR 2022 PRECIP (IN)	4.89 2.80	2.06 0.05	1.25	0.92 0.03	1.90 0.00	3.47 0.53	5.21 0.16	8.07 0.05	9.91 0.13	0.00	9.93	7.45 0.53	66.18 6.23
WATER YEAR 2022 PRECIP (IIV) WATER YEAR 2022 Eto (IN)	3.53	1.51	0.72	1.80	2.92	4.22	5.43	7.53	8.20	8.31	7.51	5.56	57.24
AGRICULTURE CROP COEFF (ALFALFA)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
LANDSCAPE CROP COEFF (GRASS)	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	
INDUSTRIAL DEMAND (MGD)	0	0	0	0	0	0	0	0	0	0	0	0	
WYR 2022 MAX ALLOWABLE DISCH TO CREEK (MGD)	6.51	13.26	12.89	9.62	8.54	6.58	4.75	6.84	0.00 0.31	0.00 0.00	0.00 0.00	8.10 0.03	
WYR 2022 INFILTRATION AND INFLOW (I/I) (MGD)	2.27	1.01	4.64	1.61	0.54 CA	0.60 LCULATIONS	1.21	0.45	0.31	0.00	0.00	0.03	
INFLUENT INCLUDING I/I (MGD)	10.27	9.01	12.64	9.61	8.54	8.60	9.21	8.45	8.31	8.00	8.00	8.03	
EVAPORATION FROM PONDS (IN)	3.9	1.6	1.0	0.7	1.5	2.8	4.2	6.5	7.9	8.9	7.9	6.0	52.9
MATURATION POND													
INFLOW (MG)	318.28	270.29	391.96	298.00	239.17	266.62	276.43	261.82	249.36	248.00	248.00	240.96	3308.9
PRECIP. VOLUME (MG)	6.81	0.12 1.79	4.74 1.09	0.07 0.80	0.00	1.29 3.02	0.39 4.53	0.12 7.02	0.32 8.62	0.00 9.67	0.00 8.63	1.29 6.48	15.2 57.5
EVAP. VOLUME (MG) OUTFLOW (MG)	4.25 320.84	1.79 268.62	395.61	0.80 297.27	1.65 237.52	3.02 264.89	4.53 272.28	7.02 254.92	8.62 241.06	9.67 238.33	8.63 239.37	6.48 235.77	57.5 3266.5
OUTFLOW (MGD)	10.35	8.95	12.76	9.59	8.48	8.54	9.08	8.22	8.04	7.69	7.72	7.86	5200.5
AGRICULTURE IRRIGATION													
EVAPOTRANSPIRATION (IN)	3.53	1.51	0.72	1.80	2.92	4.22	5.43	7.53	8.20	8.31	7.51	5.56	57.2
IRRIG DEMAND = ET-PRECIP (IN)	0.73	1.46	0.00	1.77	2.92	3.69	5.27	7.48	8.07	8.31	7.51	5.03	52.2
REDUCTION FOR DEFICIT (IN)	0.00	0.00	-1.00	1.00	0.00	0.00	0.00	0.00	0.00 1.00	0.00	0.00	0.00 1.00	0.00
CUM RED FOR DEFICIT (IN) DEFICIT NOT SATISFIED (IN)	1.00 0.00	1.00 0.0	0.00 1.0	1.00 0.0	1.00 0.0	1.00 0.0	1.00 0.0	1.00 0.0	0.0	1.00 0.0	1.00 0.0	0.0	
REVISED IRRIG DEMAND (IN)	0.73	1.46	0.00	0.77	2.92	3.69	5.27	7.48	8.07	8.31	7.51	5.03	51.24
REVISED IRRIGATION DEMAND (MG)	26.8	53.4	0.0	28.0	106.8	135.1	192.7	273.7	295.1	303.9	274.5	183.8	1873.8
REVISED IRRIGATION DEMAND (MGD)	0.87	1.78	0.00	0.90	3.81	4.36	6.42	8.83	9.84	9.80	8.86	6.13	
LANDSCAPE IRRIGATION													
EVAPOTRANSPIRATION (IN) IRRIG DEMAND = ET-PRECIP (IN)	2.47 0.00	1.06 1.01	0.50	1.26 1.23	2.04	2.96 2.43	3.80 3.64	5.27 5.22	5.74 5.61	5.82 5.82	5.25 5.25	3.89 3.36	40.1 35.6
REDUCTION FOR DEFICIT (IN)	0.00	0.00	-1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CUM RED FOR DEFICIT (IN)	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
DEFICIT NOT SATISFIED (IN)	0.00	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
REVISED IRRIG DEMAND (IN)	0.00	1.01	0.00	0.23	2.04	2.43	3.64	5.22	5.61	5.82	5.25	3.36	34.61
REVISED IRRIGATION DEMAND (MG)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
REVISED IRRIGATION DEMAND (MGD) INDUSTRIAL DEMAND (MG)	0.00	0.00 0.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
EFFLUENT ROUTING ANALYSIS	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MAXIMUM POSSIBLE DISCHARGE TO CREEK (MG)	201.73	397.89	399.64	298.12	239.17	203.85	142.40	212.00	0.00	0.00	0.00	243.04	2337.84
TOTAL REUSE DEMAND (MG)	26.82	53.39	0.00	28.04	106.78	135.06	192.72	273.65	295.11	303.88	274.51	183.82	1873.76
MAXIMUM POSSIBLE DISCHARGE + REUSE (MG)	228.55	451.28	399.64	326.15	345.95	338.91	335.12	485.65	295.11	303.88	274.51	426.86	
VOLUME AVAILABLE FOR DISCHARGE + REUSE (MG)	320.84	360.58	395.61	298.70	237.52	264.89	272.28	254.92	241.06	238.33	239.37	235.77	1700.00
ACTUAL REUSE (MG) ACTUAL REUSE (MGD)	26.82 0.87	53.39 1.78	0.00	28.04 0.90	106.78 3.81	135.06 4.36	192.72 6.42	254.92 8.22	241.06 8.04	238.33 7.69	239.37 7.72	183.82 6.13	1700.29
REUSE DEMAND NOT SATISFIED (MG)	0.00	0.00	0.00	0.90	0.00	4.36 0.00	0.42	18.73	8.04 54.05	65.55	35.14	0.00	173.47
REUSE DEMAND NOT SATISFIED (MGD)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.60	1.80	2.11	1.13	0.00	
ACTUAL DISCHARGE TO CREEK (MG)	201.73	307.19	395.61	270.67	130.74	129.83	79.57	0.00	0.00	0.00	0.00	51.95	1567.29
ACTUAL DISCHARGE TO CREEK (MGD)	6.51	10.24	12.76	8.73	4.67	4.19	2.65	0.00	0.00	0.00	0.00	1.73	
UNUSED DISCHARGE CAPACITY (MG)	0.00	90.70	4.02	27.45	108.43	74.01	62.84	212.00	0.00	0.00	0.00	191.09	770.55
UNUSED DISCHARGE CAPACITY (MGD) TSB OUTFLOW - TSB INFLOW (MG)	0.00 -92.29	3.02 91.96	0.13	0.89 1.43	3.87 0.00	2.39 0.00	2.09 0.00	6.84 0.00	0.00	0.00	0.00	6.37 0.00	
TERTIARY STORAGE BASINS	-72.29	71.70	0.00	1.43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
BEGINNING STORAGE (MG)	0.00	91.96	0.00	1.43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
BEGINNING WATER SURFACE AREA (AC)	35.40	38.30	35.40	35.45	35.40	35.40	35.40	35.40	35.40	35.40	35.40	35.40	
EVAP. VOLUME (MG)	3.76	0.06	0.96	0.04	0.00	0.65	0.20	0.06	0.16	0.00	0.00	0.65	6.54
PRECIP. VOLUME (MG)	3.43	0.06	2.39	0.04	0.00	0.65	0.20	0.06	0.16	0.00	0.00	0.65	7.64
STORAGE GAIN (MG) FINAL STORAGE (MG)	91.96 91.96	-91.96 0.00	1.43 1.43	-1.43 0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LIVAL STURAGE (WG)	91.90	0.00	1.43	0.00		0.00 SUMMARY	v.d0	0.00	0.00	0.00	0.00	0.00	
Annual Inflow (Mg)			ANNUAL	OUTFLOW (MG)			INFLOW-OUTFLOW	/ AND STORAGE (MG)			CREEK DISCHARGE AN	ID REUSE SUMMARY	
WASTEWATER WITHOUT I/I	2920	DISCHARGE TO STREAM.			1567	ANNUAL INFLOW - ANN	IUAL OUTFLOW (MC	G)	0	MAXIMUM POSSIBLE	CREEK DISCHARGE (MG)	2338
INFLOW AND INFILTRATION	389	TOTAL ALL REUSE			1700	1				ACTUAL CREEK DISC			1567
PRECIP. INTO PONDS/BASINS	23	EVAP. FROM PONDS/BAS	NS		64	STORAGE AVAILABLE (I			190		CHARGE CAPACITY (MG)		771
						STORAGE REQUIRED (N			92	REUSE DEMAND (MG)			1874
TOTAL	3332	TOTAL			3332	SURPLUS STORAGE CA	APACITY (MG)		98	ACTUAL REUSE (MG). REUSE DEMAND NOT			1700 173
	UUUL	1. 3.4			000Z						(mo)		113

	APPENDIX B
LiSWA WWTRF Phase 1 Improvement Project – N Station Design	Maturation Pond Effluent Pump n Report, by Stantec, May 2024

LiSWA WWTRF Phase 1 Improvement Project – Maturation Pond Effluent Pump Station

Design Report

Prepared for: City of Lincoln

Prepared by: Stantec Consulting Services Inc. This document entitled LiSWA WWTRF Phase 1 Improvement Project – Maturation Pond Effluent Pump Station was prepared by Stantec Consulting Services Inc. ("Stantec") for the City of Lincoln (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

signature)

Breanna Webb, EIT

Gabe Aronow, PE

LISWA WWTRF PHASE 1 IMPROVEMENT PROJECT - MATURATION POND EFFLUENT PUMP STATION BASIS OF DESIGN REPORT

Table of Contents

1.0	PURPOSE AND SCOPE	1
2.0	EXISTING FACILITIES	1
3.0	UPDATED DESIGN CRITERIA	2
4.0	PUMP ALTERNATIVES	2
5.0	PRELIMINARY DESIGN	3
6.0	CONCULSIONS & RECOMMENDATIONS	8
LIST O	F TABLES	
Table Table	Maturation Ponds Effluent Pump Station Design Criteria Pump Station Design Parameters	2
LIST O	F FIGURES	
Figure	1 MPEPS Pump and System Curves	6

LIST OF APPENDICES

Appendix A Flygt NP3171 Cut Sheet

1.0 PURPOSE AND SCOPE

The purpose of this Design Report is to describe the new Maturation Pond Effluent Pump Station (MPEPS) at the Lincoln-SMD1 Wastewater Authority (LiSWA) Wastewater Treatment and Reclamation Facility (WWTRF). The pump station is needed to utilize additional storage volume in the maturation ponds, as described in the report titled *Lincoln WWTRF Review of Maturation Pond and Tertiary Storage Operation and Sizing and Impacts on Other Facilities Based on Updated Data and New Permit Temperature Requirement (April 2023)*. The 2023 report documents the need for additional available storage volume (and associated requirements for maturation pond water level lowering) and increasing the discharge rate to the tertiary treatment facilities.

This report presents the design concepts for the new MPEPS and is divided into the following sections:

- Existing Facilities
- Updated Design Criteria
- Pump Alternatives
- Preliminary Design
- Conclusions & Recommendations

2.0 EXISTING FACILITIES

The existing maturation ponds are used to normalize priority pollutant concentrations before processing through downstream treatment facilities. They also equalize influent peak flows, allowing a reduced flow rate to be conveyed to downstream facilities. Effluent from the maturation ponds discharge through two existing maturation pond outlet structures before reaching the maturation pond level control structure, where it is diverted to the Dissolved Air Floatation (DAF) tanks for further treatment.

Currently, flow from the maturation ponds is primarily conveyed by gravity through the maturation pond outlet structures. When levels in the ponds are too low for gravity flow, two existing submersible pumps (25 HP, Xylem/Flygt NP3171-614LT) within the outlet structures are used to convey additional flow. However, these pumps were originally included as maturation pond drain pumps and have limited capacity. The new MPEPS will expand this pumping capacity to accommodate the overall WWTRF Improvements Project, covering the Phase 1, Phase 2 and Phase 3 expansion planning requirements, increasing the effluent flow rate and achievable low water level in the maturation ponds.

3.0 UPDATED DESIGN CRITERIA

The new MPEPS and existing maturation pond outlet structure pumps needs to convey a total of 19.32 MGD from a low water elevation of 101.3 feet and a minimum flow of approximately 1.0 MGD. The MPEPS design criteria are shown in **Table 1**.

Table 1 Maturation Ponds Effluent Pump Station Design Criteria

Parameter	Updated Criteria
Total Flow, Combined Pumping Capacity (MGD) (1)	19.32
Total Pumping Capacity (gpm) (1)	13,417
Low Water Level, LWL (ft) (2)	101.3
Maximum Surface Level, MSL (ft) (2)	114.0
Total Dynamic Head, TDH (ft)	13.3

^{1.} Total required pumping capacity including the existing maturation pond outlet structure pumps.

4.0 PUMP ALTERNATIVES

Stantec considered the following pumps and design alternatives for the Maturation Pond Effluent Pump Station:

- Alternative 1: Flygt Axial Flow Propeller Pumps (PL7030)
- Alternative 2: Flowserve Axial Flow Vertical Pumps (15AFV-DL)
- Alternative 3: Flygt Submersible Pumps (NP3171) to Match Existing Outlet Structure Pumps

Alternative 1 - Flygt: PL7030

The Flygt submersible vertically installed axial flow pumps are installed in a vertical discharge tube on a support flange. This alternative did not meet the minimum flow requirements for the lift station. These large pumps could not be turned down to reach the minimum flow requirement of 1.0 MGD.

Alternative 2 - FlowServe: 15AFV-DL

The Flowserve AFV axial flow suspended shaft vertical pump is a single stage propeller type design. This alternative was dismissed because the discharge header could not be located below deck, allowing the potential for gravity flow through the pump (with pumps off), and the elevated discharge header would incur additional head loss. The pump station structure would also be larger, incurring added construction costs.

^{2.} Water levels required in the MPEPS.

LISWA WWTRF PHASE 1 IMPROVEMENT PROJECT – MATURATION POND EFFLUENT PUMP STATION BASIS OF DESIGN REPORT

Alternative 3 - Flygt: NP3171

Each of the maturation pond outlet structures house a single Flygt NP3171 pump, these pumps are efficient and meet the head range requirements effectively. Three more of these pumps are needed to meet the design criteria required for the new lift station, combined. After considering many pumps and manufacturers, more of the existing Flygt NP3171, in conjunction with the existing pumps, appears to be best MPEPS option.

5.0 PRELIMINARY DESIGN

The following sections describe the recommended MPEPS design.

Pumps

The recommended design includes installing three new 25 HP Flygt NP3171 pumps in a new MPEPS wet well structure, with a slot for a future fourth pump, in addition to the continued operation of the two existing maturation pond outlet structure pumps. Based on discussions with WWTRF operators the existing pumps have a maximum pumping capacity of approximately 8.0 MGD (4.0 MGD each). The new pumps will have a pumping capacity of approximately 5.1 MGD (3550 gpm) each. This is slightly higher than the existing pumps due to the losses associated with the discharge piping from the outlet structures.

The new station will have a reliable pumping capacity of approximately 10.22 MGD and a maximum pumping capacity of approximately 15.34 MGD. The combined reliable capacity of the new station and the existing pumps meets the capacity requirements of the MPEPS of 19.32 MGD total. If one of the existing pumps is considered the redundant pump, the combined reliable capacity falls short of the design requirement at 18.22 MGD. Therefore, during the Phase 2 or Phase 3 expansion projects another pump should be added to the fourth slot in the MPEPS to ensure the combined reliable capacity meets the total pumping requirements under future conditions.

Flygt recommends that the pumps not pump less than 1.0 MGD and that the maximum flow be capped at approximately 5.1 MGD. The system and pump curves for the Flygt NP3171 pump at various speeds within the MPEPS are shown in **Figure 1**.

The pump parameters are summarized in **Table 2** and the cut sheet for the NP3171 pump is included in this report as **Appendix A**.

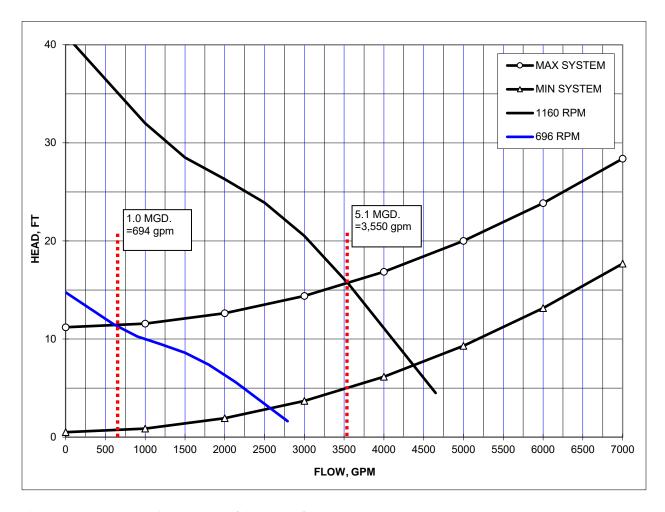


Figure 1 MPEPS Pump and System Curves

 Table 2
 Pump Station Design Parameters

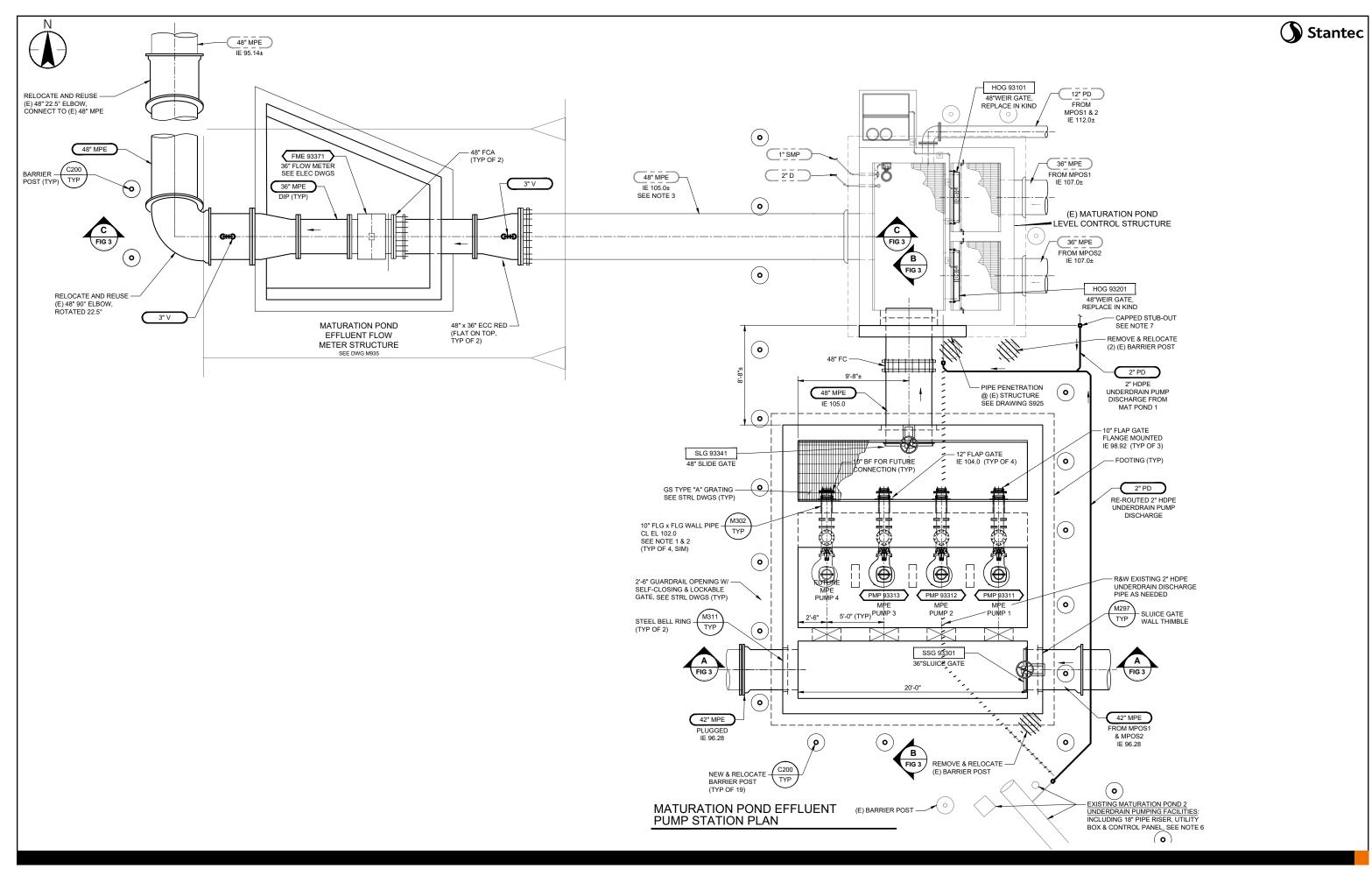
	Pump Station	
Number of Units	4 Duty, 1 Standby (2 are existing)	
Operating Characteristics,		
Flow, gpm/TDH, ft. of water (design point)	3550/16 ^(a)	
Discharge size, inches	10	
Motor size, Hp	25	
Maximum speed, rpm	1,160	
Minimum Bowl efficiency at design point, %	78	
(a) Existing pumps have slightly reduced capacity due to the discharge piping.		

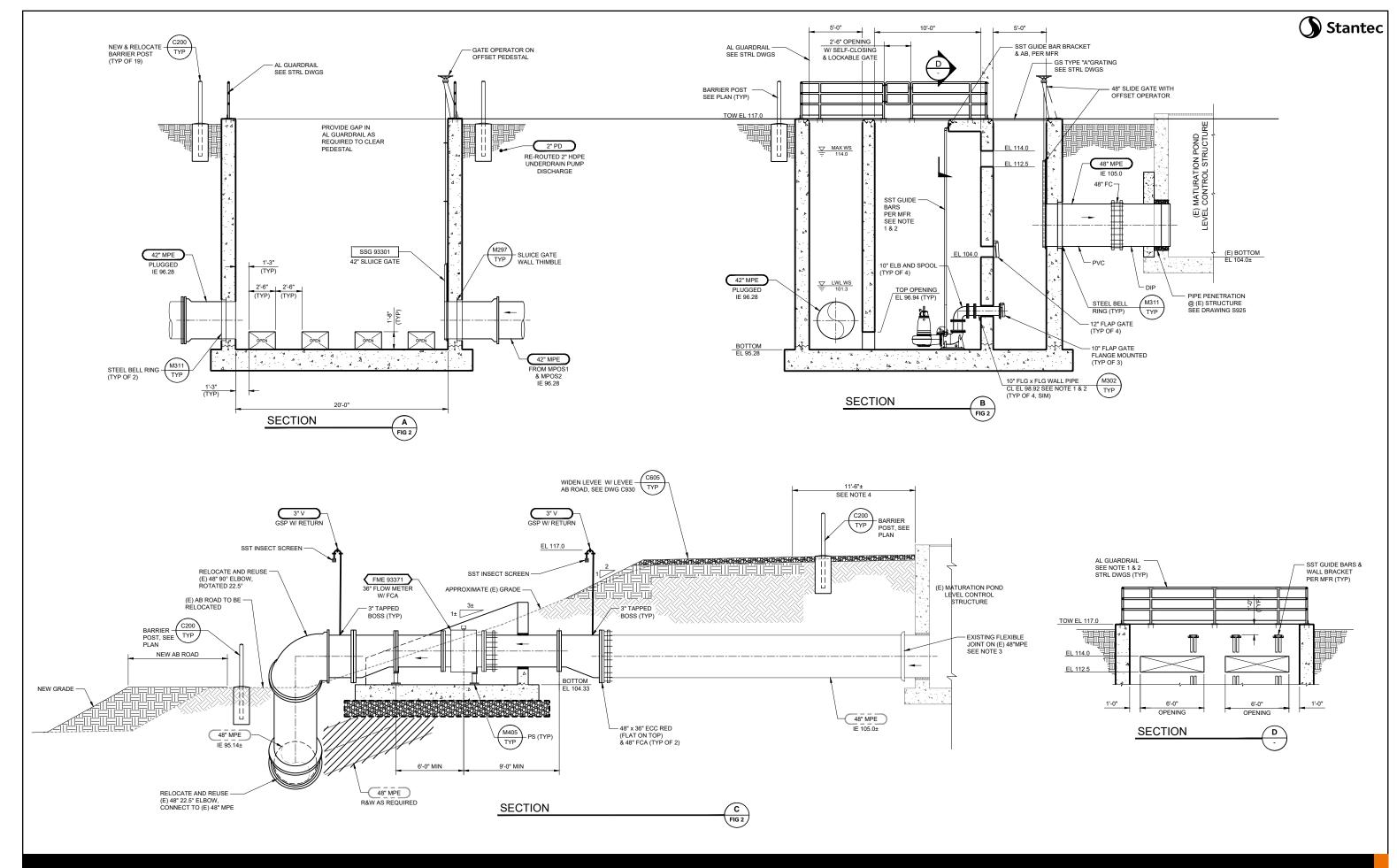
LISWA WWTRF PHASE 1 IMPROVEMENT PROJECT – MATURATION POND EFFLUENT PUMP STATION BASIS OF DESIGN REPORT

Station Layout

The pump station design will accommodate higher flow rates that may occur under future conditions with the installation of a fourth pump and/or larger pumps. The new pumps spacing dictates the overall width of the station to be 20-feet, to allow for a spacing of 5-feet between pump centerlines, based on Hydraulic Institute standards (ANSI/HI 9.8). The bottom of the lift station will be approximately 21.7-feet deep, to provide the required operating depth in the maturation pond and maintain minimum submergence conditions required for the pumps. The internal baffle wall openings will be 30-inches by 20-inches to ensure pump approach velocities are sufficiently low at peak flow rates.

Piping


New inlet piping into the MPEPS from the existing maturation ponds are incorporated into the design concept. The new piping will avoid creating undesirable flow vortices near the existing pumps that would otherwise occur by connecting the new wetwell to the existing outlet structures. Two new 36-inch lines from the maturation ponds will tee together into a 42-inch line into the MPEPS. The MPEPS outlet pipe connecting to the level control structure will need to be 48-inches, to accommodate the potential for higher flows under future conditions. A hydraulic control gate will be installed on this pipe to isolate downstream infrastructure, similar to the existing outlet control structure.


Flow Meter

The new flow meter installed on the existing 48-inch Maturation Pond effluent pipe (from the level control structure to the DAFs) will be 36-inches in diameter and capable of accommodating the full flow range of flows (1MGD to 19.3 MGD) from the maturation ponds to downstream facilities. Due to the limited space for a straight pipe run before and after the meter an ABB MagMaster MFE or Toshiba "Mount Anywhere" flow meter will be used in the design. These meters maintain a high level of accuracy with limited hydraulic conditions.

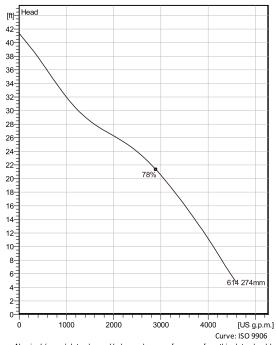
Plan and section views of the proposed MPEPS and associated structures are shown in **Figure 2** and **Figure 3**.

LISWA WWTRF PHASE 1 IMPROVEMENT PROJECT - MATURATION POND EFFLUENT PUMP STATION BASIS OF DESIGN REPORT

6.0 CONCULSIONS & RECOMMENDATIONS

The best apparent design of the MPEPS includes continued use of the outlet structure pumps with installation of like pumps in the new MPEPS. The design will require two new 36-inch inlet pipes with new pipe penetrations into the maturation ponds that tee together into a 42-inch inlet pipe into the MPEPS. The outlet pipe from the new MPEPS to the existing control structure will be 48-inch. The pump station will have room for four Flygt NP3171 pumps. Three pumps will be installed with the Phase 1 project to provide a reliable capacity of approximately 19.32 MGD, including the capacity of the existing pumps.

Appendix A FLYGT NP3171 CUT SHEET


Patented self cleaning semi-open channel impeller, ideal for pumping in waste water applications. Modular based design with high adaptation grade.

Technical specification

Curves according to: Water, pure Water, pure [100%], 39.2 °F, 62.42 lb/ft³, 1.6891E-5 ft²/s

Nominal (mean) data shown. Under- and over-performance from this data should be expected due to standard manufacturing tolerances. Please consult your local Flygt representative for performance guarantees.

Configuration

Motor number N3171.095 25-18-6BB-W

Impeller diameter

274 mm

Installation type

P - Semi permanent, Wet

Discharge diameter 10 inch

Pump information

Impeller diameter

274 mm

Discharge diameter 10 inch

Inlet diameter 250 mm

Maximum operating speed

1160 rpm

Number of blades

Max. fluid temperature

Xylect-22017590 Project

Block

Created by

Material

Impeller Hard-Iron ™

David Troyer

Created on

3/18/2024 Last update

3/18/2024

Technical specification

Motor - General

a xylem brand

Motor number N3171.095 25-18-6BB-W 25hp

ATEX approved

095

Frequency 60 Hz Version code Phases

Number of poles

Rated voltage 460 V

Rated speed 1160 rpm

Rated current 32 A

Insulation class

Rated power 25 hp

Stator variant

Type of Duty

Motor - Technical

Power factor - 1/1 Load

Power factor - 3/4 Load

0.81

Power factor - 1/2 Load

0.71

Motor efficiency - 1/1 Load

Motor efficiency - 3/4 Load 88.0 %

Motor efficiency - 1/2 Load

88.1 %

Total moment of inertia

 $6 lb ft^{2}$

Starting current, direct starting

173 A

Starting current, star-delta

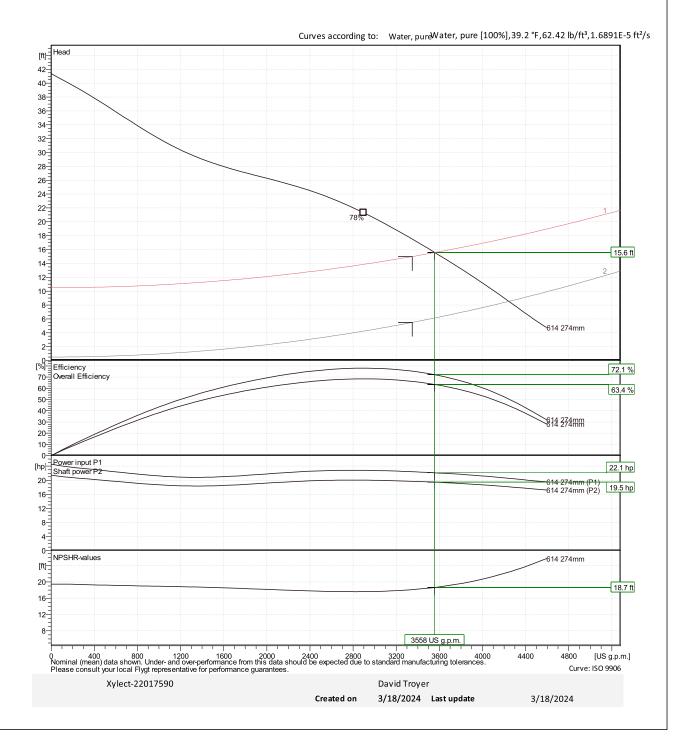
57.7 A

Starts per hour max.

Project Xylect-22017590 Created by David Troyer

3/18/2024 Last update 3/18/2024 Block Created on

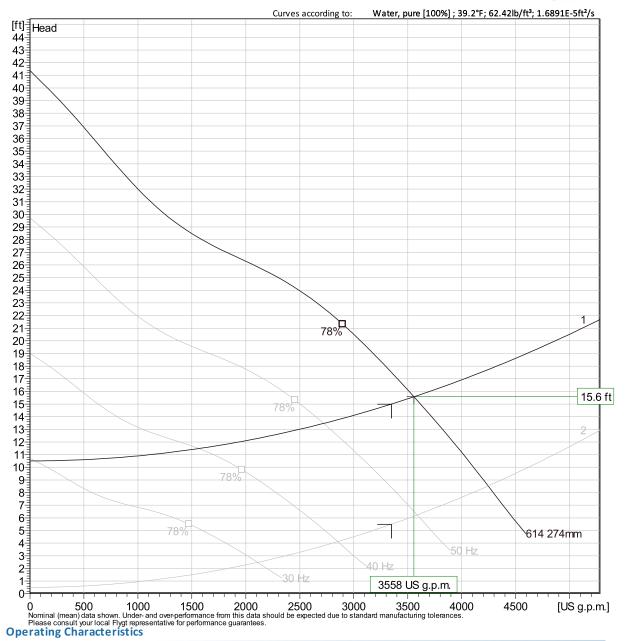
User group(s) Program version Data version 72.0 - 2/20/2024 (Build 175) 3/5/2024 10:29 A3P3


Performance curve

Duty point

 Flow
 Head

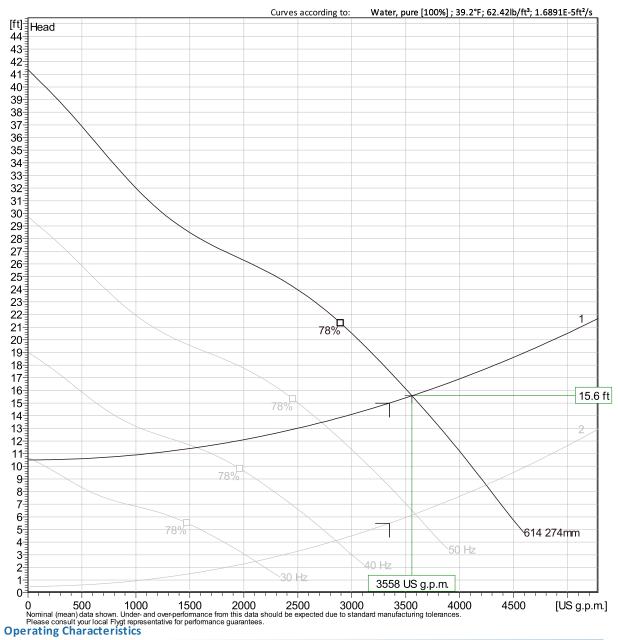
 3560 US g.p.m.
 15.6 ft



Program version 72.0 - 2/20/2024 (Build 175) Data version 3/5/2024 10:29 A3P3 User group(s)

VFD Analysis

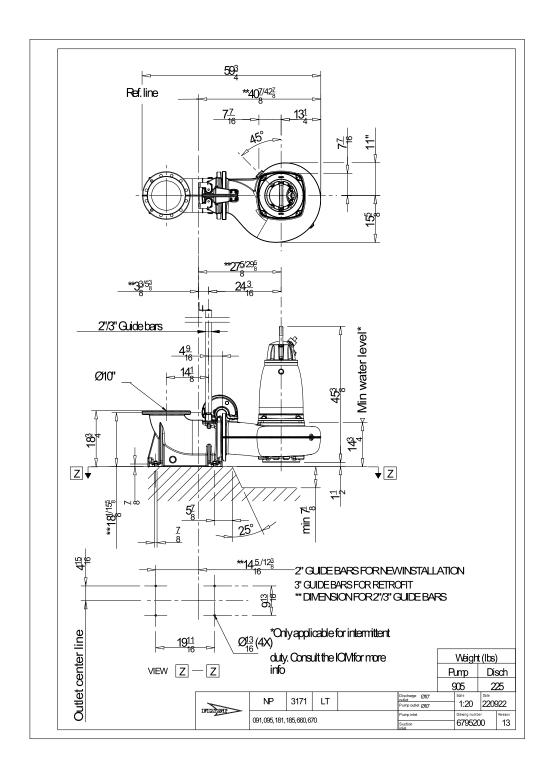
Pumps / Systems	Frequency	Flow	Head	Shaft power	Flow	Head	Shaft power	Hydr.eff.	Specific energy	NPSHre
		US g.p.m.	ft	hp	US g.p.m.	ft	hp		kWh/US MG	ft
2	59 Hz	4240	8.53	18.1	4240	8.53	18.1	50.4 %	60.2	22.4
2	50 Hz	3590	6.23	11.1	3590	6.23	11.1	51 %		17.1
2	40 Hz	2850	4.12	5.69	2850	4.12	5.69	52.2 %		11.9
2	30 Hz	2110	2.48	2.42	2110	2.48	2.42	54.7 %		7.35


Project	Xylect-22017590	Created by	David Troyer		
Block		Created on	3/18/2024	Last update	3/18/2024

 Program version
 Data version

 72.0 - 2/20/2024 (Build 175)
 3/5/2024 10:29 A3P3

VFD Analysis


Pumps / Systems	Frequency	Flow US g.p.m.	Head ft	Shaft power	Flow US q.p.m.	Head ft	Shaft power	Hydr.eff.	Specific energy	NPSHre ft
1	59 Hz	3560	15.6	19.5	3560	15.6	19.5	72.1 %	77.3	18.7
1	50 Hz	2720	13.5	12.1	2720	13.5	12.1	76.7 %		13.7
1	40 Hz	1560	11.5	6.15	1560	11.5	6.15	74 %		9.6
1	30 Hz	47.4	10.5	2.77	47.4	10.5	2.77	4.71 %		6.6

Project	Xylect-22017590	Created by	David Troyer			
Block		Created on	3/18/2024	Last update	3/18/2024	

Program version 72.0 - 2/20/2024 (Build 175) Data version 3/5/2024 10:29 A3P3 User group(s)

Dimensional drawing

Project	Xylect-22017590	Created by	David Troyer	
Block		Created on	3/18/2024 Last update	3/18/2024

APPENDIX C

LiSWA UV Basis of Design, by Stantec, August 2024

LiSWA UV Basis of Design

Prepared by: Kelly Valencia, EIT Reviewed by: Cristina Fonseca, PE

Electrical & Instrumentation Review by: Javier Fernandez, PE

Date: 8/16/2024

1 Ultraviolet (UV) Disinfection System Design

1.1 Existing UV Disinfection System

The ultraviolet (UV) disinfection system currently installed at the Lincoln-SMD1 Wastewater Authority (LiSWA) Wastewater Treatment and Reclamation Facility (WWTRF) is comprised of five open channels each equipped with Wedeco (a Xylem brand) TAK55 UV disinfection equipment, complete with an inchannel cleaning system and control equipment. Each channel has five banks (four duty plus one standby bank) with low-pressure, high-intensity lamps. The existing UV disinfection system is capable of delivering a dose of 100 mJ/cm² at a design flow of 17.5 Mgal/day and a design minimum ultraviolet transmittance (UVT) of 70%. An additional sixth channel, currently sitting empty, was built to accommodate future flows. The UV disinfection system provides final disinfection of the tertiary-filtered effluent prior to disposal and/or reuse.

1.2 UV Disinfection System Expansion

The UV disinfection system is planned for expansion as part of the LiSWA WWTRF Phase 1 Improvement Project. The UV disinfection system will be expanded in kind with the newest version of the Wedeco TAK55 system. All six UV channels will receive new UV equipment (i.e., banks, modules, lamps, quartz sleeves, ballasts, pneumatically driven automatic wiping system, etc.). The UV disinfection system is designed to deliver a minimum UV dose of 100 mJ/cm² (matching the current design and the permitted minimum hourly average UV dose) at a design minimum UVT of 70% (matching the current design). The design capacity of the system is based on six duty channels each with four duty banks and one standby bank, which is one of the two types of redundancy recommended by the Ultraviolet Disinfection Guidelines for Drinking Water and Water Reuse (National Water Research Institute [NWRI] in collaboration with Water Research Foundation, August 2012, Third Edition), hereafter referred to as the 2012 UV Guidelines. Each bank will have 3 modules with 12 lamps per modules, which equates to 180 lamps per channel (144 duty plus 36 standby) and 1,080 lamps total (864 duty plus 216 standby). The expansion project will increase the capacity of the UV disinfection system to meet the peak month flow conditions plus in-plant recycle flows (20.6 Mgal/d total).

The UV disinfection system design criteria for the expansion are summarized in **Table 1**.

Table 1 UV Disinfection System Expansion Design Criteria

Design Criteria	Value
Manufacturer / Model	Wedeco / TAK55 H (110 mm lamp centerline spacing) (1)
Peak Month Flow + In-Plant Recycle Flows	20.6 Mgal/d
UV Disinfection System Design Peak Flow Capacity	3.6 Mgal/d per channel (21.6 Mgal/d total) (1)(2)
Design Minimum UV Dose	100 mJ/cm ²
Design Minimum UV Transmittance (UVT)	70% @ 254 nm
Channels	6 (6 duty)
Banks per Channel	5 (4 duty, 1 standby)
Modules per Bank	3
Lamps per Module	12
Lamps per Channel	180 (144 duty, 36 standby)
Total Number of Lamps in System	1,080 (864 duty, 216 standby)
Design End of Lamp Life (EOLL) Value	0.87 (guaranteed lamp life of 14,000 hours) (2)
Design Fouling Factor (FF) Value	0.80 (3)
Effluent Finger Weir Length / Top Elevation	720 inches (60 feet, total perimeter) / 107.81 feet (4)
Required Channel Width	25 13/16 inches ⁽⁵⁾
Effluent Total Coliform Permit Requirements	<2.2 MPN/100 mL (7-day median) <23 MPN/100 mL (cannot exceed more than once in any 30-day period) <240 MPN/100 mL (at all times)

- 1. See TAK55 validation details in Section 1.2.1.
- Ecoray ELR-30 lamps have a third party validated end of lamp life (EOLL) of 0.87 for 14,000 hours of operation. Stantec has
 contacted the Division of Drinking Water (DDW) to request approval to use a design EOLL of 0.87. The peak flow capacity
 presented in this table assumes that DDW will approve using a design EOLL of 0.87. See Section 1.2.1.1 for further detail.
- 3. The current design capacity is based on a fouling factor (FF) of 0.80. DDW indicated that an onsite fouling study would be needed to increase the design FF. See Section 1.2.1.2 for further detail.
- 4. The effluent finger weirs are required to be replaced to increase the weir length and lower the top of weir elevation. Wedeco provided a preliminary total weir length and top of weir elevation. The final values shall be confirmed by Wedeco.
- 5. The TAK55 system with the 110 mm lamp centerline spacing has a required channel width of 25 13/16 inches. The width of the existing channels (currently 28 inches) will be reduced using 304 stainless steel plates on both sides of the channel (to protect the coating on the channel walls). Refer to drawings for additional information.

1.2.1 VALIDATION IMPROVEMENTS

The existing LiSWA UV disinfection system original design and associated system capacity was based on the validation report (WEDECO Ultraviolet Technologies TAK-55HP VALIDATION REPORT, FINAL; Carollo Engineers, October 2003), which summarized the performance validation testing of a pilot scale system operated at the City of Roseville Dry Creek Wastewater Reclamation Plant. This validation report meets the requirements of the Ultraviolet Disinfection Guidelines for Drinking Water and Water Reuse (National Water Research Institute and American Water Works Association Research Foundation [NWRI/AWWARF], May 2003, Second Edition). The new TAK55 system planned to replace the current system as part of the WWTRF expansion is based on the validation report (Wedeco Open Channel TAK-55

Wastewater UV Reactor 320W Validation Report; Carollo Engineers, January 2010), which meets the requirements of the most recent 2012 UV Guidelines.

In addition to improvements in technology, the new design has a UV lamp centerline distance of 110 mm compared to the 120 mm UV lamp centerline spacing of the older model. This allows for improved overall UV disinfection system performance.

1.2.1.1 End of Lamp Life

The UV disinfection system currently in operation at the LiSWA WWTRF calculates dose delivery using an end of lamp life (EOLL) factor 0.85. The current design, which uses low-pressure high-output (LPHO) Ecoray ELR-30 lamps, assumes a less conservative EOLL factor of 0.87. This value has been selected based on the following considerations:

- Ecoray ELR-30 lamps have third party validated EOLL values of 0.90 for 12,048 hours of operation (report by Dr.-Ing M. Groebel, July 2011) and 0.87 for 14,000 hours of operation (report by Dr.-Ing M. Groebel, March 2012).
- The Division of Drinking Water (DDW) preliminarily approved use of the EOLL of 0.90 for 12,000 hours of use.

Stantec has contacted DDW to confirm that using a design EOLL of 0.87 for 14,000 hours of operation is also approved to increase the hours of operation allowed before the lamps are required to be replaced. Since DDW gave preliminary approval to use the higher EOLL of 0.90, it is likely that DDW will approve using a design EOLL of 0.87. Therefore, the EOLL of 0.87 was assumed for the current WWTRF UV expansion design.

The use of the lower EOLL factor, although limiting the design flow, benefits the WWTRF in terms of life-cycle costs. In the future, as the peak flows increase, the higher EOLL factor (with reduced lamp hours of operation) can be considered.

If DDW does not approve using a design EOLL of 0.87, then a design EOLL of 0.90 can be used, which would slightly increase the design capacity and decrease the hours of operation before the lamps must be replaced.

1.2.1.2 Fouling Factor

The system currently in place at the LiSWA was sized based on a fouling factor (FF) of 0.80. A sleeve fouling test was conducted to assess the performance of the Wedeco mechanical wiping system (analysis review presented in the report, Sleeve Fouling Study Summary Report, November 2009). As a result of the this, Carollo Engineers provided a Sleeve Fouling Certificate dated April 12, 2013 that states that a FF of 0.958 was determined for the Wedeco mechanical wiping system. However, DDW indicated that the default FF is 0.80, and an onsite fouling study would be needed to increase the design FF. If onsite studies are carried to substantiate a higher FF, this value can be revisited in the future.

1.2.2 INSTRUMENTATION & PLC REDUNDANCY

The existing UV system is currently controlled by two Programmable Logic Controllers (PLCs) that provide automation for six UV channels. PLC-401 controls Channels 1-3 as duty channels and PLC-402 controls Channels 4 and 5 (with future Channel 6) as standby when additional disinfection or capacity is required. Although there are two PLC units controlling separate channels, PLC-402 is dependent on PLC-401 for analytical data required to operate Channel 4 and 5. The current configuration does not permit the two PLCs to independently control each set of channels and depend on a single PLC and point-of-failure.

A new control scheme and strategy is proposed and coordinated with LiSWA WWTRF operations team as part of the facility upgrade.

The following equipment will be replaced to improve redundancy and increase operational flexibility:

- PLCs and enclosures;
- UV equipment including control cabinets, ballasts, ballast enclosures, ballast distribution, lamp-to-ballast cables, and junction boxes; and
- Instrumentation, including the high/low water level sensor, ultrasonic water level sensor, and UVT meter (the YSI meter will be replaced with a Hach meter).

The existing UV system container that currently houses the control panels and electrical equipment will remain. The air conditioning units currently installed were determined to be sufficient for the new system loads and will remain.

A new control cabinet, also referred to as Instrumentation Control Automation (ICA)-600 UL, with fully redundant Allen Bradley ControlLogix PLC will be provided to operate channel configuration independently and to improve reliability and flexibility. The PLC improvements will also allow Channels 4 through 6 to be operated independently of Channels 1 through 3. The redundant PLC will provide continuous control of the UV system should the master PLC fail. The ICA enclosure will be equipped with an uninterruptible power supply (UPS) to provide up-to 15 minutes of back-up power.

The PLC will also include a communication module to import and export all UV data from/to the Supervisory Control and Data Acquisition (SCADA) system via Ethernet/IP. Ethernet/Ip capability will mainstream data flow to the SCADA and the servers.

	$D\Gamma$				1
AP	ΡĿΙ	NU	IX	IJ.	1

Geotechnical Design Report Update, Lincoln WWTRF Phase 1 and Phase 2 Expansion Project, WWTP Improvements, by Blackburn Consulting, June 2024

Auburn Office:

11521 Blocker Drive, Ste 110 Auburn, CA 95603 (530) 887-1494

Fresno (530) 887-1494 West Sacramento (916) 375-8706

File No. 3228.X June 4, 2024

Mr. Gabe Aronow, P.E. Stantec 3875 Atherton Road Rocklin CA 95765

Subject: GEOTECHNICAL DESIGN REPORT UPDATE, WWTRF IMPROVEMENTS, REV 1

Lincoln Wastewater Treatment and Reclamation Facility

Phase 1 and Phase 2 Expansion Project

Placer County, California

Dear Mr. Aronow:

Blackburn Consulting is pleased to submit this Geotechnical Report Update letter for the proposed Lincoln Wastewater Treatment and Reclamation Facility (LWWTRF) Phase 1 and Phase 2 Expansion Project located in Placer County, California.

This addendum updates our April 10, 2018, Geotechnical Design Report recommendations for the wastewater treatment plant expansion. We understand the proposed type and location of improvements has not changed since our original report. We still consider our previous report recommendations appropriate unless specifically modified in this addendum.

SCOPE

To prepare this addendum, Blackburn reviewed our April 10, 2018, Geotechnical Design Report for the LWWTRF Phase 1 and 2 Expansion Project and updated the seismic design parameters.

UPDATED RECOMMENDATIONS

2022 California Building Code Seismic Parameters

Blackburn used the following to update the seismic (CBC) design parameters:

- SEAOC/OSHPD Seismic Design Maps Tool
- ASCE 7-16 Reference Standard
- Risk Category 2
- Site Class C Very Dense Soil
- Latitude: 38.863059 Longitude: -121.346659

We selected these inputs based on the subsurface conditions in the borings and measured blow counts. Table 4 presents our updated 2022 CBC seismic design parameters.

Table 1: 2022 CBC Seismic Design Parameters				
S _s – Acceleration Parameter	0.453			
S ₁ – Acceleration Parameter	0.226			
F _a – Site Coefficient	1.3			
F _v – Site Coefficient	1.5			
S _{MS} – Adjusted MCE Spectral Response Acceleration Parameter	0.589			
S _{M1} – Adjusted MCE Spectral Response Acceleration Parameter	0.339			
S _{DS} – Design Spectral Response Acceleration Parameter	0.393			
S _{D1} – Design Spectral Response Acceleration Parameter	0.226			
PGA	0.193			
PGA _M - MCE PGA adjusted for site effects	0.233			
T _L – Long Period Transition Period	12			

LIMITATIONS

This addendum report is subject to the "Risk Management" and "Limitations" sections of our April 10, 2018 report.

Please contact us if you have questions or require additional information.

CERTIFIED ENGINEERING GEOLOGIST

Sincerely,

BLACKBURN CONSULTING

Robert C. Pickard, PG, CEG Senior Engineering Geologist

Copies: 1 to Addressee (PDF)

Mo. 2311

Exp.

Solution

Of Carton

Thomas W. Blackburn, GE, PE Senior Principal

APPENDIX D.2

Geotechnical Design Report Update, Lincoln WWTRF Phase 1 and Phase 2 Expansion Project, Maturation Pond Pump Station, by Blackburn Consulting, June 2024 **Auburn Office:**

11521 Blocker Drive, Ste 110 Auburn, CA 95603 (530) 887-1494

Fresno (530) 887-1494 West Sacramento (916) 375-8706

File No. 3228.X June 4, 2024

Mr. Gabe Aronow, P.E. Stantec 3875 Atherton Road Rocklin CA 95765

Subject: GEOTECHNICAL DESIGN REPORT UPDATE, MATURATION POND PUMP STATION, REV 1

Lincoln Wastewater Treatment and Reclamation Facility Phase 1 and Phase 2 Expansion Project Placer County, California

Dear Mr. Aronow:

Blackburn Consulting is pleased to submit this Geotechnical Report Update letter for the proposed Lincoln Wastewater Treatment and Reclamation Facility (LWWTRF) Phase 1 and Phase 2 Expansion Project located in Placer County, California.

This addendum updates our April 10, 2018, Geotechnical Design Report recommendations for the Geotechnical Design Report for the Maturation Pond Pump Station. We understand the proposed type and location of improvements has not changed since our original report. We still consider our previous report recommendations appropriate unless specifically modified in this addendum.

SCOPE

To prepare this addendum, Blackburn reviewed our April 10, 2018, Geotechnical Design Report for the LWWTRF Phase 1 and 2 Expansion Project Maturation Pond Pump Station and updated the seismic design parameters.

UPDATED RECOMMENDATIONS

2022 California Building Code Seismic Parameters

Blackburn used the following to update the seismic (CBC) design parameters:

- SEAOC/OSHPD Seismic Design Maps Tool
- ASCE 7-16 Reference Standard
- Risk Category 2
- Site Class C Stiff Soil
- Latitude: 38.859254 Longitude: -121.354847

We selected these inputs based on the subsurface conditions below the levee encountered in the boring and measured blow counts, and. Table 4 presents our updated 2022 CBC seismic design parameters.

Table 1: 2022 CBC Seismic Design Parameter	s
S _s – Acceleration Parameter	0.455
S ₁ – Acceleration Parameter	0.226
F _a – Site Coefficient	1.3
F _v – Site Coefficient	1.5
S _{MS} – Adjusted MCE Spectral Response Acceleration Parameter	0.592
S _{M1} – Adjusted MCE Spectral Response Acceleration Parameter	0.340
S _{DS} – Design Spectral Response Acceleration Parameter	0.395
S _{D1} – Design Spectral Response Acceleration Parameter	0.226
PGA	0.194
PGA _M - MCE PGA adjusted for site effects	0.234
T _L – Long Period Transition Period	12

LIMITATIONS

This addendum report is subject to the "Risk Management" and "Limitations" sections of our April 10, 2018 report.

Please contact us if you have questions or require additional information.

CERTIFIED ENGINEERING GEOLOGIST

Sincerely,

BLACKBURN CONSULTING

Robert C. Pickard, PG, CEG Senior Engineering Geologist

Copies: 1 to Addressee (PDF)

PROFESSIONAL THOMAS W. BLACKBURN No. 2311

Thomas W. Blackburn, GE, PE Senior Principal

	DEI				
AP	ΡĿΙ	וטע	IX	U.	. 3

Geotechnical Design Report Update, Lincoln WWTRF Phase 1 and Phase 2 Expansion Project, by Blackburn Consulting, April 2018

Lincoln Wastewater Treatment and Reclamation Facility
Phase 1 and Phase 2 Expansion Project
Placer County, CA

Prepared by:

BLACKBURN CONSULTING

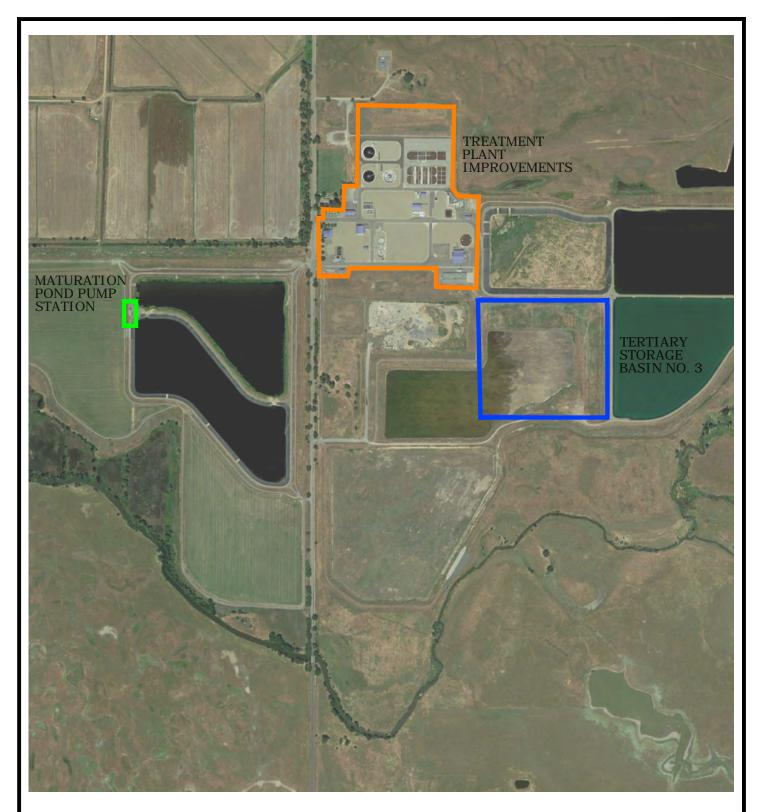
11521 Blocker Drive, Suite 110 Auburn, CA 95603 (530) 887-1494

April 2018

Prepared for:

Stantec 3875 Atherton Road Rocklin, CA 95765

TABLE OF CONTENTS


Lincoln Wastewater Treatment and Reclamation Facility Phase 1 and Phase 2 Expansion Project

Placer County, CA

Improvement Location Sheet

Geotechnical Design Reports

WWTP Improvements
Tertiary Storage Basin No. 3
Maturation Pond Pump Station

11521 Blocker Drive, Suite 110 Auburn, CA 95603 Phone: (530) 886-1494 Fax: (530) 886-1495 www.blackburnconsulting.com

IMPROVEMENT LOCATION SHEET
Lincoln Wastewater Treatment and
Reclamation Facility
Placer County, California

File No. 3228.x

April 2018

Lincoln Wastewater Treatment and Reclamation Facility
Phase 1 and Phase 2 Expansion Project
WWTP Improvements
Placer County, CA

Prepared by:

BLACKBURN CONSULTING

11521 Blocker Drive, Suite 110 Auburn, CA 95603 (530) 887-1494

April 2018

Prepared for:

Stantec 3875 Atherton Road Rocklin, CA 95765

Auburn Office:

11521 Blocker Drive, Suite 110 • Auburn, CA 95603 (530) 887-1494 • Fax (530) 887-1495

Fresno Office: (559) 438-8411 West Sacramento Office: (916) 375-8706

Geotechnical • Geo-Environmental • Construction Services • Forensics

File No. 3228.X April 10, 2018

Mr. Gabe Aronow, P.E. Stantec 3875 Atherton Road Rocklin CA 95765

Subject: GEOTECHNICAL DESIGN REPORT

Lincoln Wastewater Treatment and Reclamation Facility Phase 1 and Phase 2 Expansion Project WWTP Improvements Placer County, California

Dear Mr. Aronow:

Blackburn Consulting (BCI) is pleased to submit this Geotechnical Design Report for the Lincoln Wastewater Treatment and Reclamation Facility Phase 1 and Phase 2 Expansion Project, WWTP Improvements located in Placer County, California. BCI prepared this report in accordance with our June 6, 2017 agreement.

This report presents geotechnical and geologic data, and provides recommendations to design and construct the new facilities.

Please call us if you have questions or require additional information.

Sincerely,

BLACKBURN CONSULTING

Rob Pickard, P.G., C.E.G

Project Engineering Geologist

Thomas W. Blackburn, G.E., P.E. Senior Principal

Lincoln Wastewater Treatment and Reclamation Facility
Phase 1 and Phase 2 Expansion Project
WWTP Improvements
Placer County, CA

TABLE OF CONTENTS

1	INTRO	DUCTION 1
	1.1	Purpose
	1.2	Scope of Services
	1.3	Site Location and Description
	1.4	Project Description
2	GEOLO	GIC CONDITIONS2
	2.1	General Geology2
	2.2	Faulting3
3	FIELDW	ORK AND LABORATORY TESTS 3
	3.1	Exploratory Borings
	3.2	Laboratory Testing
4	SUBSU	RFACE FINDINGS4
	4.1	Soil Conditions4
	4.2	Groundwater5
5	CONCL	USIONS AND RECOMMENDATIONS5
	5.1	Geologic Hazards6
	5.1	Seismic Design
	5.2	General Grading Recommendations
		5.2.1 Excavation Conditions
		5.2.2 Site Clearing
		5.2.3 Original Ground and Subgrade Preparation
		5.2.5 Fill Slopes
	5.3	Dewatering9
	5.4	Temporary Excavations
	5.5	Foundation Design
		5.5.1 Shallow Foundations
		5.5.2 Below-Grade Foundations
	5.6	Minor Structures (Valve Vaults, Access Ways, etc.) 16
	5.7	Soil Corrosivity
	5.8	Concrete Slabs on Grade
		5.8.1 Slab Underlayment
		5.8.2 Slab Design
	5.9	Hot Mix Asphalt (HMA) Pavement Design 21
		5.9.1 Pavement Subgrade Preparation

Lincoln Wastewater Treatment and Reclamation Facility Phase 1 and Phase 2 Expansion Project WWTP Improvements Placer County, CA

6	RISK MANAGEMENT	. 23
7	LIMITATIONS	23

FIGURES

Figure 1: Vicinity Map Figure 2: Site Map

Figure 3: Regional Geologic Map Figure 4: Regional Fault Map

APPENDIX A

Boring Logs (LWWTRF-1 through 7) Legend of Boring Logs

APPENDIX B

Laboratory Test Results

APPENDIX C

Important Information About This Geotechnical Engineering Report, Geoprofessional Business Association

1 INTRODUCTION

1.1 Purpose

Blackburn Consulting (BCI) prepared this Geotechnical Design Report for an expansion to the City of Lincoln Wastewater Treatment and Reclamation Facility located in Placer County, California. This report presents geotechnical and geologic data and provides recommendations to design and construct the WWTP new support facilities included in the Phase 1 and Phase 2 Expansion Project.

We are aware pf the following geotechnical investigations on this site:

- 8/30/99 "Remote Storage Basins, East of Fiddyment Road, Placer County, California" by Carlton Engineering
- 3/5/2001 "Geotechnical Investigation Report" by Kleinfelder
- 1/31/2002 "Updated Geotechnical Investigation Report" by Kleinfelder
- 4/29/2013 "Geotechnical Design Report, Mid-Western Placer Regional Sewer Project" by BCI
- 11/27/2017 "Geotechnical Design Report, Lincoln Wastewater Treatment and Reclamation Facility Phase 1 and 2 Expansion Project" by BCI. This report updates and supersedes our 4/29/2013 report.

BCI prepared this report for Stantec to use during design and construction of the proposed improvements. Do not rely upon this report for different locations or improvements without the written consent of BCI.

1.2 Scope of Services

To prepare this report, BCI:

- Discussed the expansion improvements with Stantec
- Reviewed published geologic mapping, geotechnical information previously obtained for the project, and available geotechnical reports for existing facilities
- Reviewed and updated our engineering analysis and calculations

1.3 Site Location and Description

The expansion proposed project is located in an unincorporated area of Placer County. Figure 1 shows the project location.

The project consists of improvements at the City of Lincoln Wastewater Treatment and Reclamation Facility (WWTRF), as shown on Figure 2.

1.4 Project Description

We list the significant structural improvements included in the Phase 1 and 2 Expansion Project are listed in Table 1, below.

TABLE 1

Planned Structure	Approximate Plan Dimensions	Approximate Foundation Depth below grade
Grit Removal, basin and channels	Varied	10 ft
Oxidation Ditch	340 ft x 78 ft	22 ft
Oxidation Ditch Pump Station	18 ft x 21 ft	8 ft
Secondary Clarifier	110 ft diameter	23-38 ft
Dissolved air flotation system (DAFS)	64 ft diameter	17 ft to 26 ft
DAF Splitter	33 ft x 14 ft	16 ft
DAF Pump Station	9 ft diameter with 10.5 x 10.5 ft bottom slab	19 ft
Tertiary Filter Cell	59 ft x 33 ft	3 ft to 8ft

BCI will address the new tertiary storage basin and the new maturation pond outlet pump station in separate reports.

2 GEOLOGIC CONDITIONS

2.1 General Geology

Our site work and published geologic mapping¹ show the site is underlain by Quaternary deposits of the Riverbank Formation. Our borings confirm that the site is underlain by interbedded clays, silts, and sands.

The Riverbank Formation is an alluvial deposit typically composed of interbedded medium dense to dense sands, often cemented, and stiff to hard silts and clays. Bedding is typically horizontal, lenticular, and discontinuous. These sediments were deposited in the Late Pleistocene age (deposited over 150,000 years ago). This unit is shown as "Qrl" and "Qru" (Lower and Upper Riverbank) on Figure 3.

¹ Helley, E.J. and Harwood, D.S., 1985, Geologic Map of the Late Cenozoic Deposits of the Sacramento Valley and Northern Sierra Foothills: U.S. Geological Survey, Map MF-1790.

Lincoln Wastewater Treatment and Reclamation Facility Phase 1 and 2 Expansion Project WWTP Improvements
Placer County, California

File No. 3228.X April 10, 2018

2.2 Faulting

The Fault Activity Map of California² does not identify Historic or Holocene age faults (displacement within the last 11,700 years) within or adjacent to the project site. The nearest mapped fault is the Cleveland Hill Fault located approximately 40 miles north of the site. Figure 4 shows the approximate location of faulting in the region.

3 FIELDWORK AND LABORATORY TESTS

3.1 Exploratory Borings

To characterize the subsurface conditions, BCI drilled, logged, and sampled 7 borings (LWWTRF-1 through LWWTRF-7) on September 24 and 25, 2012. Boring depth ranged from 21.5 to 51.3 feet below existing ground surface. Figure 2 shows the approximate boring locations. We include boring logs in Appendix A.

We located exploration points with a handheld GPS and using geographic features shown on the project topographic mapping. We did not survey the exploration points.

Our subcontractor, Taber Drilling, drilled the borings using 4-inch solid-stem auger and rotary wash techniques. We obtained soil samples at various intervals using a 3.0-inch O.D. Modified California (MC) sampler (equipped with 2.4-inch diameter brass liners), driven with an automatic hammer, weighing 140-pounds and falling approximately 30 inches.

A BCI geologist logged the borings and retrieved samples for laboratory testing. We used plastic caps to seal and label the 2.4-inch diameter, 6-inch long brass tubes retrieved from MC sampling. We also retrieved bulk soil samples from auger cuttings at varied depths, placed this material in large cloth bags, and labeled for laboratory identification.

During our field exploration, we performed field strength testing with a pocket penetrometer on select cohesive and/or cemented soil samples. We note the results of field tests on the boring logs.

3.2 Laboratory Testing

We completed the following laboratory tests on representative soil samples from our exploratory borings:

- Moisture content and unit weight for soil classification and in-place soil characteristics
- Plasticity index for soil classification and correlations
- Sieve analysis for soil classification and correlations

² Jennings, Charles W., and Bryant, William A., 2010 Fault Activity Map of California: California Geological Survey, Geologic Data Map No. 6.

Lincoln Wastewater Treatment and Reclamation Facility Phase 1 and 2 Expansion Project WWTP Improvements
Placer County, California

File No. 3228.X April 10, 2018

- Unconfined compression for strength
- Maximum dry density for compaction characteristics
- Soil corrosivity (pH, minimum resistivity, chlorides and sulfates) performed by Sunland Analytical Laboratories for soil corrosion characteristics

We attach a laboratory summary sheet and laboratory test results in Appendix B and show test results on the boring logs.

4 SUBSURFACE FINDINGS

4.1 Soil Conditions

We encountered the following soil profile in our borings:

- Stiff to hard lean clays, lean clays with sand, and sandy lean clays with occasional dense clayey sands to depths of approximately 6 to 16 feet below ground surface (bgs)
- Interbedded layers of medium to very dense silty sands and clayey sands with stiff to hard lean clays and clean clays with sand to depths of approximately 18 to 23 feet bgs
- Very stiff to hard lean clays, lean clays with sand, and sandy clays to depths of approximately 38 to 41 feet bgs or to the base of the shallowest three explorations
- Dense and weakly cemented silty sand to the maximum depth explored (51.3 feet bgs)

Pocket penetrometer tests recorded on fine-grained soil samples retrieved from the borings were consistently at or above 4.0 tons per square foot (tsf), and unconfined compressive strengths test measured from 1.9 to 4.5 tsf, indicating relatively high compressive strengths. The silty sands have fines that are cohesive and/or are weakly to moderately cemented. Pocket penetrometer tests that we recorded on the silty sands were at or above 3.75 tsf and unconfined compressive strength tests measured 2.6 and 3.4 tsf.

Refer to the boring logs (Appendix A) for more specific subsurface conditions.

4.2 Groundwater

During our field exploration we encountered groundwater at the locations and depths listed in Table 2:

TABLE 2

Groundwater Summary			
Boring/Approximate Elevation (ft)	Depth to Water/Approximate Elevation (ft)		
LWWTRF-1/110.5	23.9/86.9		
LWWTRF-2/110.5	22.3/88.2		
LWWTRF-3/110.5	26.5/84.0		
LWWTRF-4/110.5	28.0/82.5		
LWWTRF-5/110.5	27.1/83.4		
LWWTRF-7/110.5	22.9/87.6		

Groundwater has previously been recorded at shallower depths than what is shown above. Kleinfelder³ recorded groundwater in their borings at depths ranging from 11.5 to 28.5 feet bgs (approximate elevations of 99 ft to 82 ft) in March-April 2000. A monitoring well placed by Kleinfelder, B-8, near the headworks, showed groundwater depths ranging from 13.0 ft in March 2000 to 16.9 feet in January 2001 (approximate elevations of 97.5 ft and 93.6 ft). It is not unusual to encounter channel sand lenses which can contain perched groundwater at varied depths within the Riverbank Formation. We also reviewed the Western Placer County Water Supply Appraisal⁴, which shows regional groundwater elevations near 50 ft.

For project design, assume the highest groundwater elevation observed which is at a depth of 11.5 feet (approximately elevation 99 ft).

5 CONCLUSIONS AND RECOMMENDATIONS

The site will be suitable for the planned facilities when constructed in accordance with the project plans, industry standards, and our geotechnical recommendations. Some of the more significant site limitations include the presence of clay soils that will not be suitable for wall backfill, and relatively shallow groundwater that will require dewatering for some structure installations.

_

³ Kleinfelder, 2002, Updated Geotechnical Investigation Report, Proposed Lincoln Wastewater Treatment Plant, Fiddyment Road, Placer County, California; consultant's report to Del Webb California Corporation

⁴ Boyle Engineering, Western Placer County Water Supply Appraisal, Groundwater Elevations, Spring 1987.

Lincoln Wastewater Treatment and Reclamation Facility Phase 1 and 2 Expansion Project WWTP Improvements
Placer County, California

File No. 3228.X April 10, 2018

5.1 Geologic Hazards

- Faulting—The potential for surface rupture or creep due to faulting at the site is very low. The Fault Activity Map of California⁵ and the Geologic Map of the Sacramento Quadrangle⁶ does not identify Historic or Holocene age faults (displacement within the last 11,700 years) within or immediately adjacent to the site. The site does not lie within or adjacent to an Alquist—Priolo Earthquake Fault Zone⁷.
- Ground Shaking—The USGS, Earthquake Hazards Program, Seismic Design Maps (https://earthquake.usgs.gov/designmaps/us/application.php) indicate that for the design seismic event, a peak horizontal ground acceleration (PGA) of approximately 0.171g could be expected.
- Liquefaction—Our investigation shows a soil profile that consists of stiff to hard clays and medium dense to dense silty and clayey sands that are not liquefiable. Therefore, the potential for damaging liquefaction at the site is very low.
- Landslides and Slope Stability—Due to the relatively low topographic relief we do not expect landslides or natural slope failure.
- Seismically Induced Settlement—During a seismic event, ground shaking can cause densification of granular soil that can result in settlement of the ground surface.
 Considering the cohesive soils and medium dense soils observed in the borings, we consider the potential for significant seismically induced settlement to be very low.

5.1 Seismic Design

The project site is underlain by dense/very stiff to hard soils which is considered as Site Class C in the California Building Code (CBC).⁸

⁵ Jennings, Charles W., and Bryant, William A., 2010 Fault Activity Map of California: California Geological Survey, Geologic Data Map No. 6.

⁶ Wagner, D.L., et al, 1981, Geologic map of the Sacramento quadrangle, California, 1: 250,000: California Division of Mines and Geology, Regional Geologic Map 1A, scale 1: 250,000.

⁷ Bryant, W.A., and Hart, E.W., 2007 (Interim Revision), <u>Fault-Rupture Hazard Zones in California</u>: California Department of Conservation, Division of Mines and Geology, Special Publication 42.

⁸ California Building Code, 2016, California Code of Regulations, Title 24, Part 2 (Volume 2); published by International Conference of Building Officials and the California Building Standards Commission.

For seismic design of plant components, use the values in Table 3:

TABLE 3

CBC Seismic Design Parameters ⁹ (Site Class C)		
S_s – Acceleration Parameter	0.513 g	
S_1 – Acceleration Parameter	0.253g	
F_a — Site Coefficient	1.195	
F_{ν} – Site Coefficient	1.547	
S_{MS} – MCE* Spectral Response Acceleration, Short Period	0.613 g	
S_{MI} – MCE* Spectral Response Acceleration, 1-Second Period	0.391 g	
S_{DS} – 5% Damped Design Spectral Response Acceleration, Short Period	0.408 g	
S_{D1} – 5% Damped Design Spectral Response Acceleration, 1-Second	0.261 g	
T_L – Long Period Design Period**	12 seconds	
PGA – Peak Ground Acceleration	0.171 g	
PGA _M – Site Modified Peak Ground Acceleration	0.206 g	

^{*} Maximum Considered Earthquake

5.2 General Grading Recommendations

5.2.1 Excavation Conditions

Based on the soil conditions and drilling performance, excavation is possible with conventional equipment (common earthmoving equipment and large backhoe/excavator). The fine-grained and hard soil conditions can create slow excavation conditions.

5.2.2 Site Clearing

Prior to trenching or making any cuts and fills, remove all debris, trees and brush including the root system and strip surface vegetation to a depth of 4 inches below the surface. Excavations resulting from trees, brush, and debris removal should be deepened and widened to provide access to self-propelled compaction equipment. Remove strippings from the site or use as landscape soil in designated areas.

^{**} Figure 22-12, ASCE 7-10

⁹ California Building Code, 2016, California Code of Regulations, Title 24, Part 2 (Volume 2); published by International Conference of Building Officials and the California Building Standards Commission.

5.2.3 Original Ground and Subgrade Preparation

Process and compact the exposed soil in at-grade, cut, and fill areas as follows:

- Scarify the exposed soil to a depth of approximately 8 inches.
- Moisture condition subgrade to within 3% of the optimum moisture content.
- Compact the subgrade soil to a minimum 90% relative compaction based on ASTM D1557

Where fill will be placed on or against slopes with a gradient of 5(H):1(V) or steeper, fill must be benched into the slope. Benching must remove loose surficial soils and result in stepped benches, generally one to two feet in height and depth into the existing slope. Where benching will interfere with existing structures, utilities, or vegetation, BCI can review modifications and on a case-by-case basis.

For fills that are 5 feet or higher and placed on or against a slope with a gradient of 5:1 or steeper, provide a key at the toe of the fill slope. The key must be a minimum of 10 feet wide, one foot deep, sloped a minimum of 2% into the slope, and extend 2 feet beyond the fill toe. Where restricted access will not allow for a toe-bench 10 feet wide, the bench can be reduced to a minimum width of 6 feet provided the fill slope is less than 10 feet in height and the contractor can show that compaction equipment can achieve the specified compaction for the full width of the bench.

5.2.4 General Fill Placement and Compaction

General fill (**not trench or structure backfill**) may consist of on-site soil provided it contains no rocks larger than 4 inches in maximum dimension. Fill should be free of debris and concentrations of vegetation.

If import for general fill is required, it must meet the following requirements:

Classified as Silt (ML), Silty Sand (SM), Silty Gravel (GM),

G	eneral Backfill Im	port Requirements	
Gradat	tion	Test Pro	cedures
Sieve Size	Percent Passing	ASTM	Caltrans
3 inch	100	D6913	202
No. 200	20-70	D6913	202
	Organic	Content	
Less than 3%		D2974	
	Expansio	on Index	
Less than 20		D4829	

Approved by BCI prior to site delivery.

Lincoln Wastewater Treatment and Reclamation Facility Phase 1 and 2 Expansion Project WWTP Improvements
Placer County, California

File No. 3228.X April 10, 2018

Place and compact fill as follows:

- Place fill in maximum 8-inch-thick loose lifts,
- Moisture condition the soil within 3% of optimum
- Compact the soil to a minimum 90% relative compaction based on ASTM D1557.

Test all fill at vertical increments of not more than 1 foot and at final grade or pavement subgrade. For horizontal testing frequency, use the following minimums:

- One test for every 100 square feet around structures
- One test for every 500 square feet for structure pads

Complete at least one compaction curve (Proctor) for each material type, source location (for import), and as changes in native materials occur. Material changes include a change in material designation based on the Unified Soil Classification System.

5.2.5 Fill Slopes

Construct fill slopes no steeper than 2(H):1(V). To achieve adequate compaction on the face of fill slopes, over-build the slopes and then cut back to the design grade. Track-walking is not an adequate method to compact the face of slopes.

5.3 Dewatering

Dewatering may be required for installations greater than approximately 11 feet deep (see Section 4.2). Significant groundwater inflow should be anticipated at the deeper excavations such as for the oxidation ditch, secondary clarifier, DAFS, DAF splitter, and DAF Pump Station.

Dewatering can consist of:

- Deep sumps within the excavation. Considering the presence of fine-grained soils and relatively flat lying bedding, sumps within the excavation are not likely to provide good drawdown.
- Well points. Well points will likely work better to cut off flow into the excavation and drawdown the water level over a larger area.

To facilitate work at the base of the excavation, groundwater should be drawn down at least 5 feet below the planned bottom of excavation. The need for dewatering can be reduced by planning excavations during the lowest anticipated seasonal water levels (expected during the late summer and fall months).

File No. 3228.X April 10, 2018

5.4 Temporary Excavations

Temporary excavations will require sloping and/or shoring in accordance with Cal OSHA requirements. Based on our subsurface exploration and laboratory testing, preliminary excavation and shoring design may be based on Type A soil to planned excavation depth. For Type A soil conditions, temporary excavations may be sloped at ¾(H):1(V). Where groundwater is present or cohesionless/uncemented granular soils are encountered, Type C soil conditions will apply and a 1.5(H):1(V) slope gradient is required.

The impact of existing structures, traffic vibrations, actual soil conditions exposed in the open trenches, and other factors that may promote trench wall instability must be evaluated at the time of construction and trench sloping/shoring adjusted accordingly. Surcharge loads such as trench spoils, equipment, etc. should not be placed adjacent to an open excavation (within a distance of ½ the height of the trench). *The above is guideline information only.*The contractor is responsible for the safety of all excavations and should provide appropriate excavation sloping and shoring in accordance with current Cal OSHA requirements and observe conditions observed during construction for necessary modification and safety.

5.5 Foundation Design

5.5.1 At-Grade Shallow Foundations

If the designers and contractors follow our grading and construction recommendations below, foundations for structures such as the tertiary filter cell can consist of shallow strip footings and isolated spread footings. We expect footings for at-grade structures to be founded on compacted fill and/or firm native soils.

- Embed continuous strip and isolated footings a minimum of 18 inches into the lowest adjacent prepared subgrade.
- Both strip and isolated footings must be a minimum of 18 inches wide. Size strip and isolated footings not to exceed an allowable bearing capacity of 3,000 pounds per square foot (dead load plus live load). The allowable bearing capacity may be increased by one-third if seismic and/or wind loads are included.
- Total settlement is expected to be less than ¾-inch and differential settlement less than ½-inch over a length of 50 feet.
- To resist lateral movement, use a coefficient of friction of 0.40 psf at the base of the foundation and a passive earth pressure of 300 psf per foot of embedment depth up to a maximum of 3,000 psf. Ignore the upper one-foot of footing depth (below the lowest adjacent soil grade) in determination of the passive pressure. Both frictional resistance and passive earth pressure can be combined for lateral resistance; when combined, increase the safety factor against sliding from a minimum of 1.5 to 2.0.
- Concrete slabs with crushed rock underlayment may be designed using a Modulus of Subgrade Reaction, k_s, of 150 pounds per cubic inch (pci) in cut or fill locations where engineered fill is placed as recommended in this report.

- Clean footing excavations of debris and loose soil prior to placing concrete.
- BCI must observe all footing excavations prior to reinforcement placement to verify competent bearing materials.
- Slope the ground surface away from foundations at a minimum of 2 percent for a distance of at least 5 feet.

5.5.2 Below-Grade Foundations

5.5.2.1 Bearing Capacity

Most of the planned structures listed in Table 1 are substantially below-grade structures. For these structures, the net pressure exerted upon the subsurface will be similar to or less than the current load. Excavation for below-grade structures reduces the net pressure by removing soil that acts as a "preload" to the underlying soils, thus "unloading" the bearing materials before "loading" by placement of the structure.

Below grade structures will use mat type foundations for support. For structures at depths greater than 8 feet:

- Use a maximum net contact pressure of 3,500 psf.
- Use a Modulus of Subgrade Reaction, k_s, equal to 200 pci.
- We expect settlement of mat foundations is expected to be less than 1 inch with differential settlement less than ½-inch over a distance of approximately 100 feet.
- Clean footing excavations of debris and loose soil prior to placing concrete.
- BCI must observe all footing excavations prior to reinforcement placement to verify competent bearing materials.
- For ground preparation and subgrade uniformity, Class 2 aggregate baserock can be used as underlayment (this is not geotechnically necessary provided a firm uniform subgrade is obtained). If an aggregate underlayment is used, place a minimum thickness of 6-inches and compact to a minimum of 95% relative compaction (per ASTM D 1557 test method).
- Crushed rock underlayment may also be used (and can benefit excavation dewatering).
 Envelope the crushed rock with a geotextile filter fabric (ie. Mirafi 140N) and compact the rock with a static roller.

If isolated spread footings or piers are required for column support, BCI can provide additional recommendations when the planned design and approximate loading is available.

5.5.2.2 Structure Backfill

Native soils consist predominately of lean clay which will not be suitable for structure backfill. The contractor may import structure backfill or lime treat native soils.

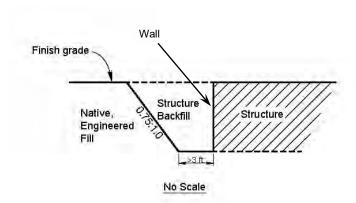
BCI must approve import structure backfill prior to delivery. Use the specifications in Table 4 for import structure backfill for all below-grade structures:

TABLE 4

Im	port Structure Ba	ckfill Requirements	
Gradat	ion	Test Pro	cedures
Sieve Size	Percent	ASTM	Caltrans
	Passing		
3 inch	100	D6913	202
¾ inch	70-100	D6913	202
No. 4	50-100	D6913	202
No. 200	0-50	D6913	202
	Plast	icity	
Plasticity Index	<15	D4318	204
	Organic	Content	
Less than 3%		D2974	
	Expansio	on Index	
Less than 20		D4829	

Prior to placement of lime treated soil as structure backfill the contractor must:

- Perform lab testing to sufficiently determine the percentage of lime needed to meet specifications. Retain BCI to provide concurrent quality control tests and approve proposed percentage of lime to be used.
- Provide written means and methods of lime treatment.


BCI must observe mixing of lime with soil.

Based on previous experience at the site, we recommend 3% lime for preliminary planning and bidding purposes. Use the specifications in Table 5 for lime treated structure backfill requirements.

TABLE 5

Lime	Treated Structure	Backfill Requireme	nts
Gradat	tion	Test Pro	cedures
Sieve Size	Percent	ASTM	Caltrans
	Passing		
3 inch	100	D6913	202
¾ inch	70-100	D6913	202
No. 4	50-100	D6913	202
No. 200	20-70	D6913	202
	Plast	icity	
Plasticity Index	<12	D4318	204
	Organic	Content	
Less than 3%		D2974	
	Expansio	n Index	
Less than 20		D4829	

As shown below, the zone of placement for structure backfill should extend up from the base of the wall at a slope of 0.75(H):1(V) and at least 3 feet behind the wall. Native, engineered fill may be placed beyond the structure backfill zone.

- Moisture condition backfill to within 2% of optimum and place in maximum 8-inch thick, horizontal, loose lifts.
- Compact backfill to a minimum 92% relative compaction based on the ASTM D 1557 test method.

To minimize the residual lateral earth pressures on structure walls compaction equipment used behind the walls must be restricted (by load and distance from wall) so that wall design values are not exceeded. We recommend compaction within a horizontal distance equal to one-half of the wall height (to a maximum distance of 5 feet), be completed with hand-operated equipment (i.e., jumping jack).

To minimize the potential for significant settlement around deep walls, controlled low strength material (CLSM) can be used to backfill to the surface or to a manageable depth (e.g. 10 feet below grade).

5.5.2.3 Lateral Earth Pressures

The below grade structures will act as retaining structures. Walls will retain compacted select imported soils meeting the requirement for structure backfill. For evaluation of lateral earth pressures, use the equivalent fluid weights (EFW) shown below in Table 6. We show values for both drained and undrained backfill with level ground conditions; the drained condition assumes groundwater cannot accumulate behind the wall (backfill is drained).

LATERAL EARTH PRESSURES Equivalent Fluid Weight (pcf) Condition Drained Undrained 62 At-Rest 95 40 84 Active **Passive** 300 160 Seismic (Active and At-Rest) 6 6

TABLE 6

The above pressures assume structure backfill placed against the structure wall in accordance with our recommendations, a saturated (total) unit weight of approximately 135 pounds per cubic foot (pcf) and a minimum internal angle of friction of 32 degrees. Notify BCI if these assumptions are not valid so that we may assess the situation and provide additional recommendations, if necessary. Backfill with CLSM is an acceptable alternative.

For seismic loading, add the Seismic EFW to the at-rest or active EFW weight and apply the total force as a uniform load on the wall with a resultant located at 0.5H where H is the backfill height. We estimated the EFWs for seismic loading using the Mononobe-Okabe equation and a horizontal seismic acceleration coefficient, k_h , of approximately ½ the expected PGA. This k_h value assumes that the walls displace at least 1-inch during the design seismic event.

Lincoln Wastewater Treatment and Reclamation Facility Phase 1 and 2 Expansion Project WWTP Improvements
Placer County, California

File No. 3228.X April 10, 2018

Surface loads (footings, storage, vehicle traffic) applied near the wall will increase the lateral pressure on the wall. A uniform surface load of 200 psf to 300 psf is often used to approximate construction traffic loading on walls. In general, if surface loads are closer to the edge of the retaining wall than three-fourths of the retained height, increase the design wall pressure by 0.5q over the area of the retaining wall. In this expression, q is the surface surcharge load in psf. This is a conservative procedure and lower design pressures may be applicable upon evaluation of individual surface loads and setback distances.

For drained conditions, provide adequate drainage to avoid build-up of hydrostatic pressures. Positive drainage for retaining walls should consist of a vertical layer of permeable material, such as a graded sand and gravel (graded to meet Caltrans Standard Specifications for Class 1, Type A Permeable Material), pea gravel, or crushed rock, at least 6 inches thick, positioned between the retaining wall and the backfill.

If pea gravel or crushed rock is used, place a nonwoven filter fabric between it and the backfill to prevent the drain from becoming clogged. A synthetic drainage fabric, such as Enkadrain (Colbond Geosynthetics Co.), Miradrain (TC Mirafi) or an equivalent, may be substituted for the permeable layer. Use care during installation to assure that the filter part of the material faces the backfill. Remove collected water by installing weep holes along the bottom of the wall or by a perforated drainage pipe along the bottom of the permeable material or drainage fabric continuously sloped towards suitable drainage facilities (i.e., gravity drain or sump pump).

5.5.2.4 <u>Buoyancy Resistance</u>

As discussed in section 4.2, groundwater may occur at depths as shallow as 11 feet bgs. In undrained conditions, below grade structures may be subjected to an uplift load (buoyancy). The uplift force will be resisted by the weight of the structure and the weight of the backfill overlying foundation extensions (if any).

If Stantec designs foundation extensions, calculate the resistance against uplift due to the weight of the soil, use a backfill unit weight of 130 pcf above groundwater and 73 pcf below groundwater, with a soil wedge extending up from foundation extensions at an angle of 30 degrees from vertical.

Frictional resistance from surrounding soils can be used to resist uplift as well. The frictional resistance will vary with depth but can be assumed as follows (apply a factor of safety of at least 2 to determine the allowable uplift resistance):

For structure backfill against a concrete structure:

- 24 psf per foot of depth where above the design groundwater level
- 13 psf per foot of depth when below the design groundwater level

File No. 3228.X April 10, 2018

For a vertical soil interface such as over a foundation extension:

- 38 psf per foot of depth where above the design groundwater level
- 21 psf per foot of depth when below the design groundwater level

Stantec has indicated they may use a system of Cast in Drilled Hole (CIDH) piles, likely with "belled" bottoms to resist uplift due to groundwater. Pile shafts are expected to be 2 feet in diameter. For the proposed piles, we provide the following options:

- Straight Shaft Pile (2-foot diameter):
 - o Allowable uplift resistance: 2,100 pounds per foot of pile (ignore lower 2 feet).
- Belled Pile (2-foot diameter shaft):
 - o Bell diameter: 5 feet
 - Minimum pile length: 14 feet (to bottom of bell)
 - o Allowable uplift resistance: 60 tons (not including the weight of the pile)
- Belled Pile (2-foot diameter shaft):
 - o Bell diameter: 4 feet
 - Minimum pile length: 10 feet (to bottom of bell)
 - o Allowable uplift resistance: 30 tons (not including the weight of the pile)

5.5.2.5 <u>Lateral Resistance</u>

Lateral resistance for retaining structures can be achieved through friction and passive earth pressures. For design, use a coefficient of friction of 0.40 (below or above groundwater) at the base of the concrete footing and a passive earth pressure of 300 psf per foot of embedment depth. Passive earth pressures may be increased up to 400 psf per foot if lateral movements of up to 2% of the embedment depth can be tolerated. Limit passive earth pressures to a maximum of 3,000 psf (additional passive pressure can be evaluated for specific locations if necessary). Decrease the passive pressure to 160 psf when below design groundwater levels. Do not include the upper 1-foot of soil in passive resistance calculations. Where passive pressure or friction alone is used against sliding, use a minimum factor of safety of 1.5 for lateral stability (1.1 if seismic loading is included). Where both passive pressure and friction are used to resist sliding, use a minimum factor of safety of 2.0.

5.6 Minor Structures (Valve Vaults, Access Ways, etc.)

Provided that the recommendations in this report are followed, minor structures (such as valve or blow-off vaults, access ways, etc.) may be founded on concrete mat or strip footings, or a compacted granular base (minimum of 6 inches of Class 2 baserock) if appropriate.

• Embed the foundations a minimum of 18 inches below the lowest adjacent prepared subgrade into firm native soil or compacted fill/backfill.

- Footings must be a minimum of 12 inches wide and sized not to exceed an allowable bearing capacity of 3,000 psf. The allowable bearing capacity may be increased by onethird if seismic and/or wind loads are included.
- If additional bearing capacity is required for specific minor structures, we can review and provide recommendations on a case-by-case basis.
- To resist lateral movement, use a coefficient of friction of 0.40 at the base of the foundation and a passive earth pressure of 300 psf per foot of embedment depth up to a maximum of 3,000 psf. Ignore the upper one-foot of footing depth (below the lowest adjacent soil grade) in determination of the passive pressure. Both frictional resistance and passive earth pressure can be combined for lateral resistance; when combined, increase the safety factor against sliding from a minimum of 1.5 to 2.0.

If necessary for evaluation of lateral loading on shallow vaults, use an At-Rest equivalent fluid weight of 65 pcf for the drained condition and 95 pcf for undrained. The drained condition assumes groundwater does not accumulate; the undrained condition would be applied below an assumed groundwater level.

We based these values on foundations bearing on native soil and native soil backfill compacted against vault walls.

5.7 Soil Corrosivity

Our subcontractor, BSK, tested soil samples from our borings for corrosion characteristics (pH, resistivity, chlorides, and sulfates). We show the corrosion test results in Table 7.

TABLE 7

	Laboratory	Soil Corro	sivity Results		
Boring/Trench Location	Sample No./ Depth (ft)	рН	Minimum Resistivity (ohm-cm)	Chloride (mg/kg)	Sulfate (mg/kg)
LWWTRF-1	Bag B/ 0.0- 10.0	7.7	1,930	18	20
LWWTRF-5	5/ 25.0-26.5	7.5	1,040	24	8
LWWTRF-7	3/ 15.0-16.5	7.7	1,220	28	10

American Concrete Institute (ACI) 318 Table 4.3.1 provides guidance on concrete exposed to sulfate. Results of laboratory testing indicate a negligible sulfate exposure for the representative soil samples.

Lincoln Wastewater Treatment and Reclamation Facility Phase 1 and 2 Expansion Project WWTP Improvements
Placer County, California

File No. 3228.X April 10, 2018

Caltrans considers a site to be corrosive if one or more of the following conditions exist for the representative soil samples taken at the site:

- Chloride concentrations greater than or equal to 500 parts per million (ppm),
- Sulfate concentration is greater than or equal to 2000 ppm, or
- pH is 5.5 or less.

Based on these test results, the site would be considered non-corrosive. However, the relatively low resistivity values and the presence of the fine-grained soils suggest the soil may be corrosive to metals. We recommend that a corrosion engineer review these results and provide corrosion mitigation recommendations.

5.8 Concrete Slabs on Grade

5.8.1 Slab Underlayment

Concrete slab-on-grade may be used provided the contractor(s) prepares the structure pads in accordance with our grading recommendations and any addenda by BCI. Underlay the concrete slabs with a minimum of 4 inches of washed, crushed, and compacted rock to provide uniform support. Grade crushed rock used beneath floor slabs such that 100% passes the ¾ inch sieve and less than 5% passes the No. 4 sieve. Compact crushed rock with at least two passes of a vibratory type compactor.

Exterior flatwork may be placed directly on the prepared subgrade without the use of rock underlayment. Subgrade must be free of debris, uniformly compacted, and thoroughly wetted before placing concrete.

5.8.2 Slab Design

Concrete slabs with crushed rock underlayment may be designed using a Modulus of Subgrade Reaction, k_s , of 150 pci in cut or fill locations where structural fill is placed as recommended in this report.

5.9 Trench Backfill and Compaction

5.9.1 Pipe Bedding and Pipe Zone Material

Support pipe on a minimum of 4 inches of granular bedding and in accordance with the pipe manufacturer's recommendations. Although we do not anticipate soft, unsuitable pipe subgrade at any particular location, it can occur with shallow groundwater conditions and sandy soils. Notify the project engineer and BCI for review and mitigation recommendations if encountered. To achieve a stable and non-yielding subgrade suitable for pipe placement and backfilling, typical mitigation may include:

- Replacement of unsuitable subgrade with %-inch minus crushed rock (minimum of 6 inches)
- Enclose rock in geotextile filtration fabric such as Mirafi 140N (or equivalent).

A granular pipe zone material may be used. Native soils will contain a significant amount of fines (passing #200 sieve) and will **not** be suitable for bedding or pipe zone backfill. For pipe bedding and initial backfill material (which extends to 1 foot above the top of pipe) use material that meet the specification in Table 8.

TABLE 8

Pipe I	Bedding and Initia	l Backfill Requireme	ents
Grada	tion	Test Pro	cedures
Sieve Size	Percent	ASTM	Caltrans
	Passing		
1 inch	100	D6913	202
¾ inch	90-100	D6913	202
No. 4	35-60	D6913	202
No. 30	10-30	D6913	202
No. 200	2-5	D6913	202
	Sand Eq	uivalent	
Minimum 25		D2974	

BCI considers the following materials to be suitable as alternative pipe zone (bedding) backfill material:

- Controlled Low Strength Material (CLSM)
- Controlled Density Fill (CDF)

A modulus of soil reaction (E') of 4,000 psi can be used for granular pipe zone backfill if compacted to >90% relative compaction (ASTM D 1557).

File No. 3228.X April 10, 2018

5.9.2 Trench Backfill

Trench backfill (intermediate backfill) may consist of excavated soils. Fill should be free of debris and concentrations vegetation or clay soils and meet the specifications in Table 9.

Intermediate Trench Backfill Requirements Gradation **Test Procedures Sieve Size ASTM Caltrans** Percent Passing 3 inch 100 D6913 202 No. 200 20-70 202 D6913 **Organic Content** D2974 Less than 3% **Expansion Index** D4829 Less than 20

TABLE 9

5.9.1 Trench Backfill Compaction

Follow the pipe manufacturer's requirements for initial backfill to avoid damage to the pipe. To facilitate compaction in the pipe zone area (top of bedding up to 12 inches above pipe), use a trench width that provides a minimum clearance of 12 inches between the pipe and trench wall.

- Moisture condition trench backfill to within 2% of optimum moisture content and compact to a minimum 92% relative compaction (based on ASTM 1557).
- Use a maximum compacted lift thickness of 8 inches unless field performance testing can demonstrate adequate compaction of thicker lifts.
- Jetting is not acceptable for compaction.

Test all trench backfill (bedding, pipe zone backfill, trench zone, etc.):

- At vertical increments of not more than 1 foot and at final grade or pavement subgrade.
- At horizontal testing frequencies of at least one test for every 200 linear feet of pipe (both sides of pipe in pipe zone).
- Complete at least one compaction curve (Proctor) for each material type, source location (for import), and as changes in native materials occur. Material changes include a change in material designation based on the Unified Soil Classification System.
- Testing frequency can be adjusted based on contractor performance, ease of compaction, and material variability.

Soil excavated during pipe installation can have moisture contents well over optimum, especially during the winter and spring months or if perched water is encountered. In this case, it will be necessary to dry back the soil to within 2% of optimum moisture content prior to use as backfill.

It is important to achieve compaction of pipe zone materials at the pipe haunches and spring line; compaction below the pipe spring line will be a difficult task for the contractor. We recommend a compaction demonstration section to test placement and compaction means and methods for each material type that will be used.

5.9.2 Trench Backfill Settlement

If pipeline backfill is placed, compacted, observed, and tested as recommended above, we expect potential settlement at the surface to be less than ½-inch (0.25% to 0.50% of backfill depth) for planned pipeline depths. The magnitude of surface settlement will be affected by the degree and uniformity of backfill compaction; therefore, it is important that backfill methods are observed and compaction checked at frequent intervals where limiting potential settlement is important. This is especially critical where the pipeline crosses beneath roadways and other utilities.

5.10 Hot Mix Asphalt (HMA) Pavement Design

New pavement may be planned at the project site. Kleinfelder provided design recommendations for the existing pavement at the site. Kleinfelder obtained Resistance (R)-Values for the subgrade soils that range from 9 to 19 with most values in the range of 9 to 12. These R-Values are appropriate for the material types (lean clay to sandy clay) we observed at or near planned subgrade elevation. Stantec indicates that the existing pavement has performed well and there are no apparent deficiencies.

Use Table 10 for pavement design from Klienfelder's report dated January 31, 2002¹¹ and checked by BCI.

TABLE 10

	R Value = 10	
Design	Material Type/De	epth Required
Traffic Index	Dense Graded Asphalt Concrete, inches	Aggregate Baserock Class 2, inches
5.5	3.0	11.5
7.5	4.5	15.5

¹⁰ Kleinfelder, 2002, Updated Geotechnical Investigation Report, Proposed Lincoln Wastewater Treatment Plant, Fiddyment Road, Placer County, California; consultant's report to Del Webb California Corporation.

¹¹ Kleinfelder, 2002, Updated Geotechnical Investigation Report, Proposed Lincoln Wastewater Treatment Plant, Fiddyment Road, Placer County, California; consultant's report to Del Webb California Corporation.

File No. 3228.X April 10, 2018

5.10.1 Pavement Subgrade Preparation

To develop the pavement structural sections above, we assume that the native soils will be used as indicated for subgrade materials and the subgrade will be prepared, placed, and compacted as outlined below:

- 1. Strip vegetation, where applicable, to the maximum depth of the vegetative layer or a minimum depth of 4 inches bgs. Do not use strippings within engineered fill.
- 2. Scarify a minimum depth of 8 inches, moisture condition to near the optimum moisture content, and compact to a minimum of 90% relative compaction based on ASTM D 1557.
- 3. Check subgrade stability by running a loaded water truck over the subgrade. Mitigate unstable areas as recommended by BCI (see the options a through d, presented below).
- 4. Place and compact aggregate base (AB) to a minimum 95% relative compaction (ASTM D 1557).
- 5. Check AB stability under construction equipment. Mitigate unstable areas observed in the AB layer as recommended by BCI prior to placing asphalt.

Yielding subgrade soil conditions can typically be stabilized using one of the methods listed below; however, BCI and/or the project engineer should review soil conditions and approve mitigation methods prior to implementation.

- a) Deep scarify and allow wet subgrade soils to air dry.
- b) Remove wet soils to a firm base and allow the exposed soil to dry to near optimum moisture content and/or replace with drier soil.
- c) Lime or cement treat to reduce the moisture content of subgrade soils.
- d) Remove yielding soils to a firm base or 2 feet below subgrade elevation, whichever is less. Place a layer of stabilization fabric or grid (such as Mirafi 500X, Tensar BX1100, or an equivalent) and backfill the overexcavation with compacted Class 2 AB.

The long-term performance of the pavement is dependent upon:

- 1. Uniform and adequate compaction of the soil subgrade,
- 2. Adequate compaction of engineered fill and utility trench backfill beneath the pavement,
- 3. Positive drainage,
- 4. Limiting water under pavement with cut-offs at planter areas.

Perform earthwork within pavement areas in accordance with the recommendations contained within this report.

File No. 3228.X April 10, 2018

The design TIs used are assumed and the project civil engineer should select the appropriate TI based on the anticipated traffic frequency and load. BCI can provide structural sections based on additional TIs if necessary.

6 RISK MANAGEMENT

Our experience and that of our profession clearly indicates that the risks of costly design, construction, and maintenance problems can be significantly lowered by retaining the geotechnical engineer of record to provide additional services during design and construction.

For this project, we recommend that the project owner retain us to:

- Review and provide comments on the civil plans and specifications prior to construction.
- Monitor construction to check and document our report assumptions. At a minimum, BCI should observe foundation excavations, approve backfill, test backfill compaction, observe and test placement and compaction of fill for structures.
- Update this report if design changes occur, 2 years or more lapses between this report and construction, and/or site conditions have changed.

If we are not retained to perform the above applicable services, we are not responsible for any other party's interpretation of our report, and subsequent addendums, letters, and discussions.

7 LIMITATIONS

BCI performed services in accordance with generally accepted geotechnical engineering principles and practices currently used in this area. Where referenced, we used ASTM and California Test Method standards as a general (not strict) guideline only. Do not use or rely upon this report for different locations or improvements without the written consent of BCI. We do not warranty our services.

BCI based this report on the current site and alignment conditions. We assume the soil and groundwater conditions encountered in our explorations are representative of the subsurface conditions throughout the site. Conditions at locations other than our explorations could be different.

Logs of our explorations are presented in Appendix A. The lines designating the interface between soil types are approximate. The transition between material types may be abrupt or gradual. Our recommendations are based on the final logs, which represents our interpretation of the field log and general knowledge of the site and geological conditions. Soil and rock descriptions on the boring and test pit logs are based on our field logging, geologic mapping, seismic refraction surveys, and laboratory testing.

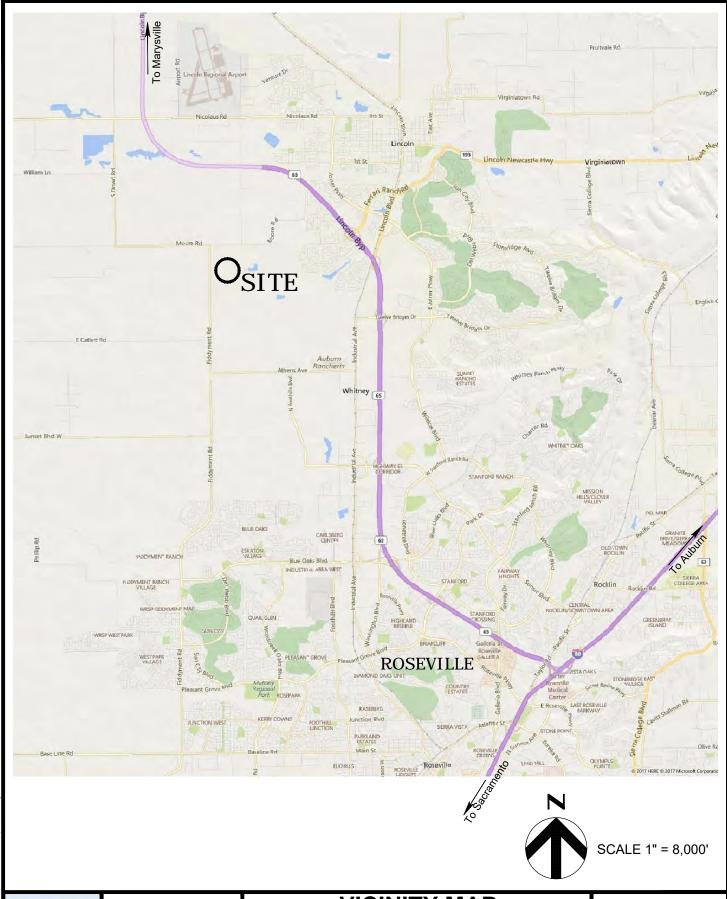
Lincoln Wastewater Treatment and Reclamation Facility Phase 1 and 2 Expansion Project WWTP Improvements
Placer County, California

File No. 3228.X April 10, 2018

The groundwater elevations discussed in this report represent the groundwater elevation during the time of our subsurface exploration, at the specific exploration locations, and groundwater observed by others. The groundwater table may be lower or higher in the future and at other locations.

Modern design and construction are complex, with many regulatory sources/restrictions, involved parties, construction alternatives, etc. It is common to experience changes and delays. The owner should set aside a reasonable contingency fund based on complexities and cost estimates to cover changes and delays.

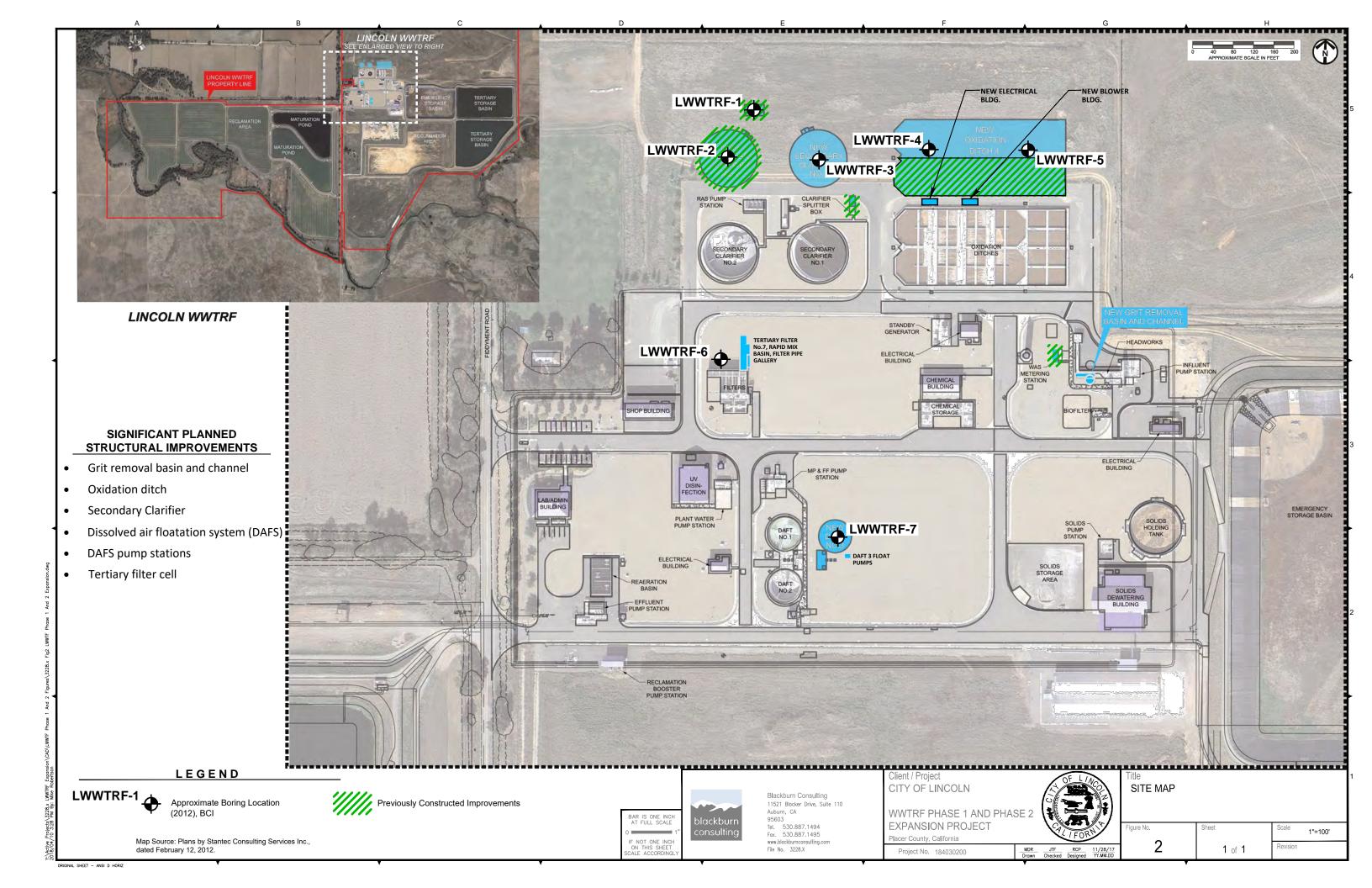
We include guidelines for using this report in Appendix C.

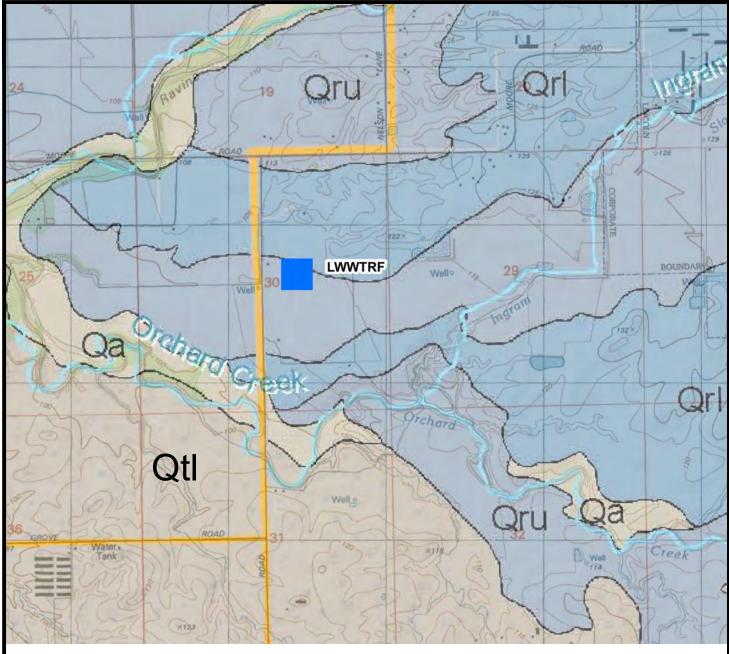

Lincoln Wastewater Treatment and Reclamation Facility

Phase 1 and Phase 2 Expansion Project
WWTP Improvements
Placer County, CA

FIGURES

Vicinity Map
Site Map
Regional Geologic Map
Regional Fault Map


11521 Blocker Drive, Suite 110 Auburn, CA 95603 Phone: (530) 886-1494 Fax: (530) 886-1495 www.blackburnconsulting.com


VICINITY MAP
Lincoln Wastewater Treatment and Reclamation Facility, Phase 1 and Phase 2 Expansion Project Placer County, California

File No. 3228.x

April 2018

Figure 1

LEGEND

Holocene alluvium- silt, sand, and gravel Qa

Holocene basin deposits- fine grained silt Qb and clay

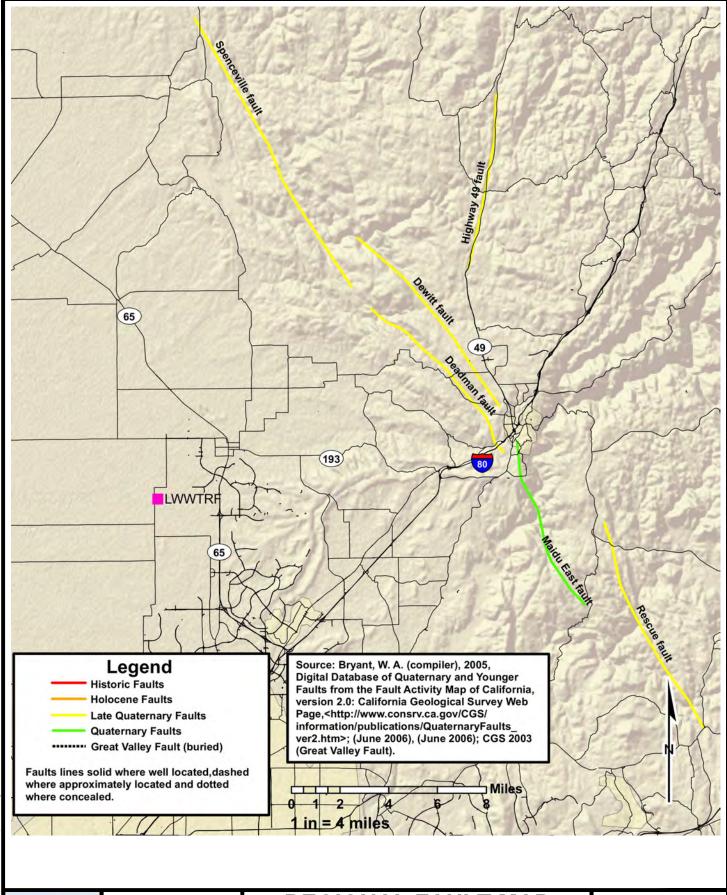
Quaternary Upper Member, Riverbank Qru Formation-unconsolidated silt, sand and gravel

Quaternary Lower Member, Riverbank Qri Formation-semiconsolidated silt, sand, and

Quaternary Turlock Lake Formation- silt, sand, QII and gravel

Source: MAPTECH Terrain Navigator Pro, v. 8.0, USGS topographic 7.5 minute quadrangle, Lincoln, 1992, Pleasant Grove, 1967 (revised 1981),

Geologic Map of the Late Cenozoic Deposits of the Sacramento Valley and Northern Sierran Foothills, California, Helly, J.H., Hardwood, D.S., USGS, MF-1790, 1985, reproduced by State of California Department of Water Resources, 2006.


11521 Blocker Drive, Suite 110 Auburn, CA 95603 Phone: (530) 886-1494 Fax: (530) 886-1495 www.blackburnconsulting.com

REGIONAL GEOLOGIC MAP Lincoln Wastewater Treatment and Reclamation Facility, Phase 1 and Phase 2 Expansion Project Placer County, California

File No. 3228.x

April 2018

Figure 3

11521 Blocker Drive, Suite 110 Auburn, CA 95603 Phone: (530) 886-1494 Fax: (530) 886-1495 www.blackburnconsulting.com

REGIONAL FAULT MAP Lincoln Wastewater Treatment and Reclamation Facility, Phase 1 and Phase 2 Expansion Project Placer County, California

File No. 3228.x

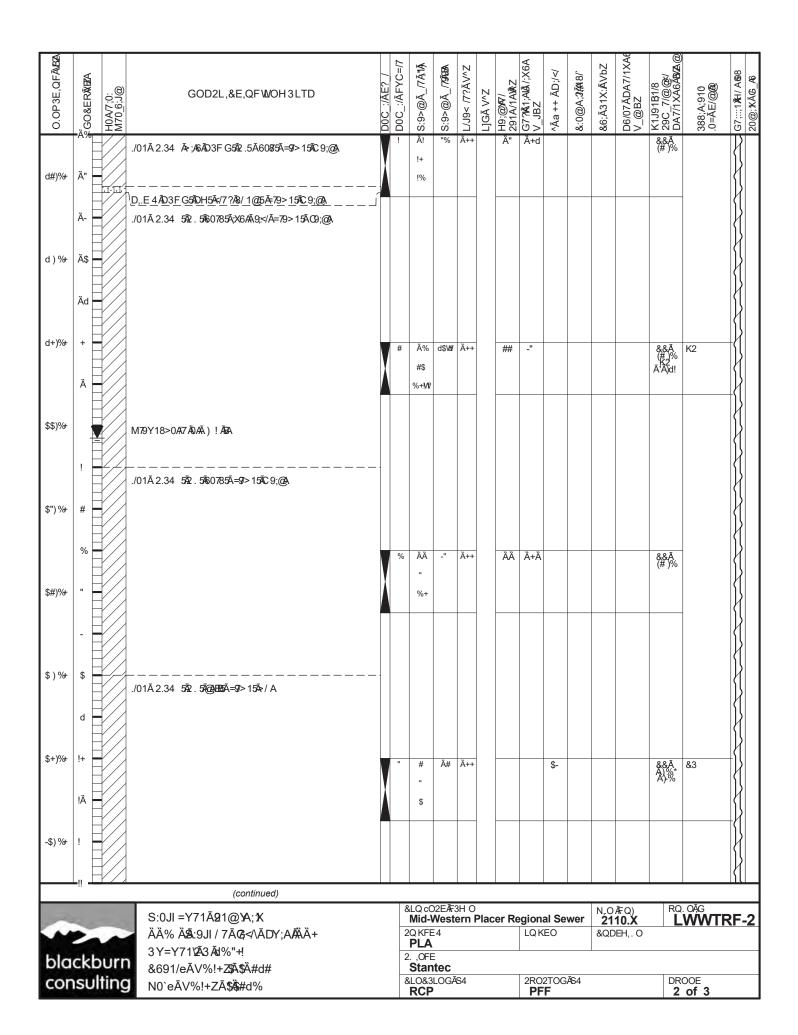
April 2018

Figure 4

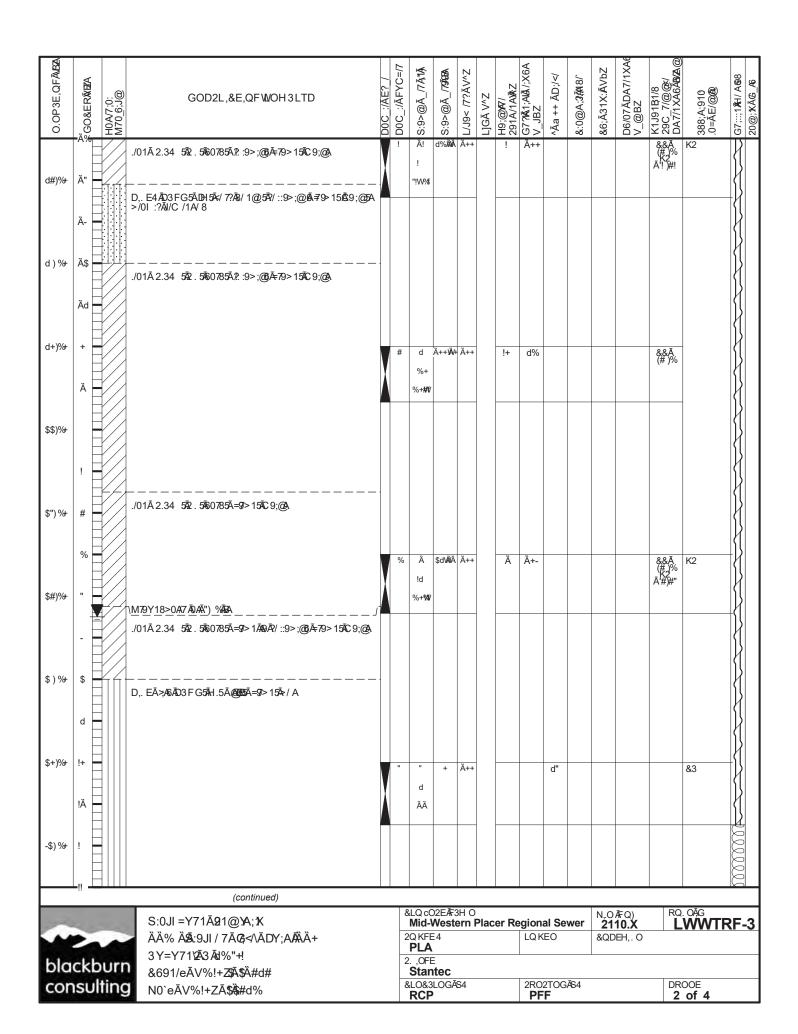
Lincoln Wastewater Treatment and Reclamation Facility

Phase 1 and Phase 2 Expansion Project
WWTP Improvements
Placer County, CA

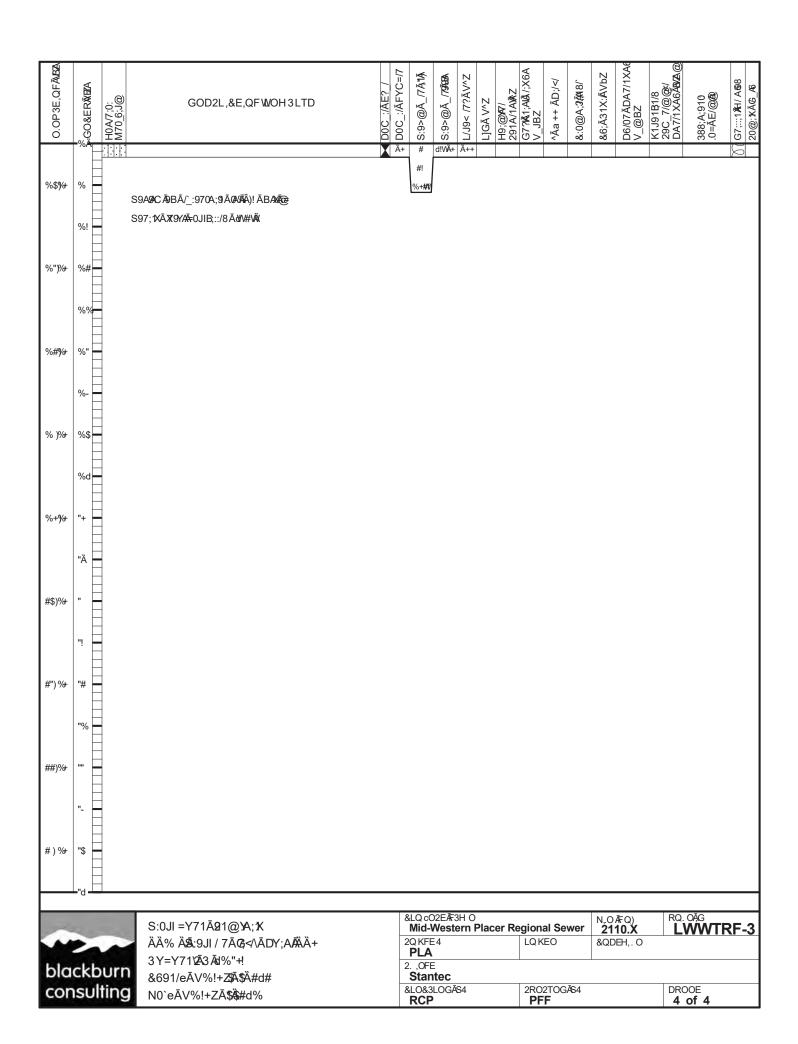
APPENDIX A


Boring Logs (LWWTRF-1 through 7) Legend of Boring Logs

.QMMO				-ĀG3EO 4-12	2 QH &. OF	E,QFĀŒEO 2	SQL ORQ 38.863	3° /	-12	1.34	749°	N/	\D8	3		Ā @A ⁄	CZ		RQ. O	;G WTR	F-1	
GL,,F Tabe		FEL32	E QL				SQLORQ	. OĀ	.Q23	E,QF	V OBB	@ \Ā Æ	00A;9I\	Ā.;1/ Z	7					320Ā0.0).5 ft	P3E,QF	
GL,,F Solic	MĀHC I-Ste OLĀE4	m Au &O\DZĀ		D Z ĀļGZ			GL, . Ā , i Diedrie R3HH OL Safety	ch l Æ48	kO		natio	c dr	ор (140#	[‡] / 30'	')			SQLO 4 in	RQ. OĀĢ	3HOEOL 2,OF24∖Ā	Φ;
				H&. OE,QF 1 9/24/12	:		ML QKFG LO3G, FM	U 31			FMĀ			3N	EOL ĀC	Ĺ,,F on 9-:			EQE3.		ĀQNĀSQL,F	M
O.OP3E,QFĀBĀ	GO&ERÑEZA	H0A/7;0: M70_6;J@		GOD2	L,&E,QFW/0	OH3LTD		D0C :/AE? /		S:9>@Ā_/7Ā%	S:9>@Ā_/79ĀBA	L/J9< / 7?ĀV^Z	L]GĀ V^Z	H9;@⁄4/ 291A/1A¥^Z	G7?Ñ(1;AÚ)(,X6A V_JBZ	^Āa ++ ĀD;/ </th <th>&:0@A;3#8/</th> <th>&6;Ā31X:Ā/bZ</th> <th>D6/07ĀDA7/1XA6 V_@BZ</th> <th>K1J91B1/8 29C_7/@@/ DA7/1XA6ABA@</th> <th>388;A;910 .0=ĀE/@®</th> <th>G7;::;1ÄHA®8 20@; XĀG_A</th>	&:0@A;3#8/	&6;Ā31X: Ā /bZ	D6/07ĀDA7/1XA6 V_@BZ	K1J91B1/8 29C_7/@@/ DA7/1XA6ABA@	388;A;910 .0=ĀE/@®	G7;::;1ÄHA®8 20@; XĀG_A
À+\$}%+	À		./01Ā 2.34	· 522.54607	85ĀQ Ā=79	1 5 Ā8 7																
Ä+")%+	# -		 ./01Ā 2.34	 512.51@AB	————— BBA 980785A2::	 9>; @ Æ79>1	 5ĀC9;@A	_	Ä	Ä !"	\$#	Ä++		Ä\$	À+-		Ä\$			&&.Ā. (#)%	&,	
Ä+#)%+ Ä+)%+										#\$ 												
Ä++}%+								_ \		\$	%-	Ä++								Ř ^{&} ,**∫+		
d\$)%+	ÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ		D, E 4 ĀD3 J/ C/ 1 Æ 8	F G5ĀDH5Ā	:17?ks/1@5A=	79>151C9;@s	፟፟ጱ/ OI :?			!%												
d") %+	Ä# =		./01Ā 2.34	———— ⊹5Ā2.5Ā607		—————— 154€9;@	 Þ															}
			_		(continued	d)			Ιρ	LQ cC	12 E Ā⊏	ᆲᄼ						N. C	Ī-Ω\	I DO	. OĀG	
blad	ckb	urn	ÄÄ% 3Y=	ÄSĀ:9JI/ Y71\ZĀ3Ā:	11@YA;X 7ĀG;<∖ĀD I%"+! +Z\$Ā\$Ä#d#	Υ;Α Æ Ä+			2	Mid-N QKFE PLA . ,OFE Stan	Nest	ern I	Plac	er Re	gion LQK	EO	wer		ÆFQ) 10.X ÞEH,.O	L	WWTI	RF-1
con			400				8	LO&3 RCP	LOGĀ	S4			2RO PF	2TOG	Ā64				OOE of 2			

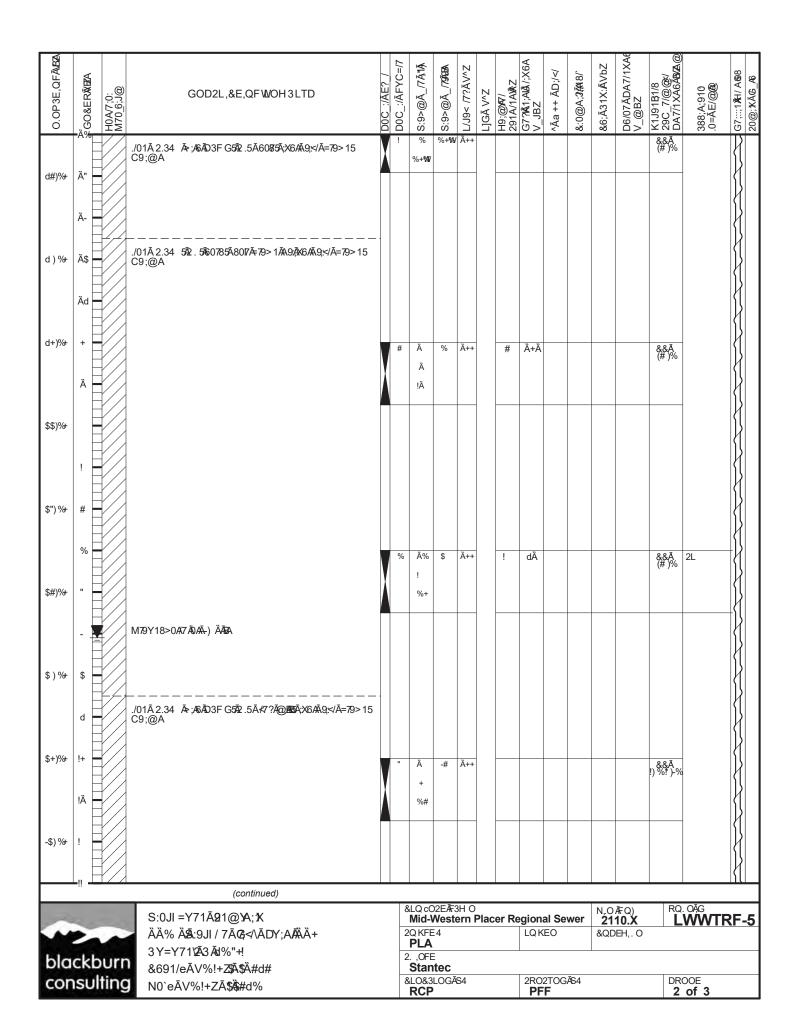

O.OP3E,QFĀKKA	SGO&ER ŇIZ A	H0A/7;0: M70_6;J@	GOD2L,&E,QFWOH3LTD	DOC -/ĀF? /	D0C_:/ĀFYC=/7	S:9>@Ā_/7¹Ā	S:9>@A_/79438A	L/J9< /7?ĀV^Z	LJGĀ V^Z	Н9;@ № / 291А/1А № Z	G7? k 1;Akl.;X6A V_JBZ	^Āa ++ ĀD;/ </th <th>&:0@A;3##8/</th> <th>&6;Ā31X:ĀVbZ</th> <th>D6/07ĀDA7/1XA6 V_@BZ</th> <th>K1J91B1/8 29C_7/@@/ DA7/1XA6ABA@</th> <th>388;A;910 .0=ĀE/@@</th> <th>G7;;;;1ÅH/A®8 20@;XĀG_Æ</th>	&:0@A;3##8/	&6;Ā31X:ĀVbZ	D6/07ĀDA7/1XA6 V_@BZ	K1J91B1/8 29C_7/@@/ DA7/1XA6 ABA @	388;A;910 .0=ĀE/@@	G7;;;; 1Å H/A ® 8 20@; X ĀG_Æ
d#)%+	Ä" =		./01Ā 2.34 5Ā . 5Ā 0785Ā 2: 9>;@Ā 79>15Ā 0 9;@Ā D,E 4Ā D3F G5Ā DH5Ā:/7?ĀS/1@5Ā 79>15Ā 0 9;@Ā / OI :? J/ C/ 1Ā 8		!	À# ! %#	\$"	Ä++								&&Ā (#)%		
d)%+	Ä- =		./01Ā2.34 5Ā2.5760785Ā2::9>;@GĀ=79>157C9;@AA9Ā/A															
d+)%+	Àd + Ä				#	Äd !	-+ ·	À++		%	Ä++					&&Ā (#)%		
\$\$)%+	!					!\$ 												
\$")%+	# %		M79Y18>0A7Ā0AĀ) dĀBA		%	-	*	Ä++										\{\} \{\}
\$#)%+	"					!" #Ä												
\$)%	\$ d		\$9A\$PCĀBĀ/_:970A;\$IĀ(AĀ")%ABAĀ(@ \$97;\$VĀXI\$YĀ—ROJIB;::/8Ā&M#VĀ															
\$+)%+	!+ !Ä	-																
-\$)%+	! =																	
T.			S:0JI=Y71Ā291@YA;YX ÄÄ%Ä—Š—Š—Š—Š—Š—Š—Š—Š—Š—Š—Š—Š—Š—Š—Š—Š—Š—Š		2	LQ cC Mid-V Q KFE PLA . ,OFE	Vest	BH O ern I	Plac	er Re	egion LQK		wer	N,O 21 &QD	春Q) 10.X EH,. O	RQ.	OĀG WWTF	RF-1
bla con			1 &691/eĀV%!+ ZĀ\$ Ä#d#		8	Stan LO&3 RCP	tec Logā	S4			2RO PF	2TOG F	Ā64			DR0 2	OOE of 2	

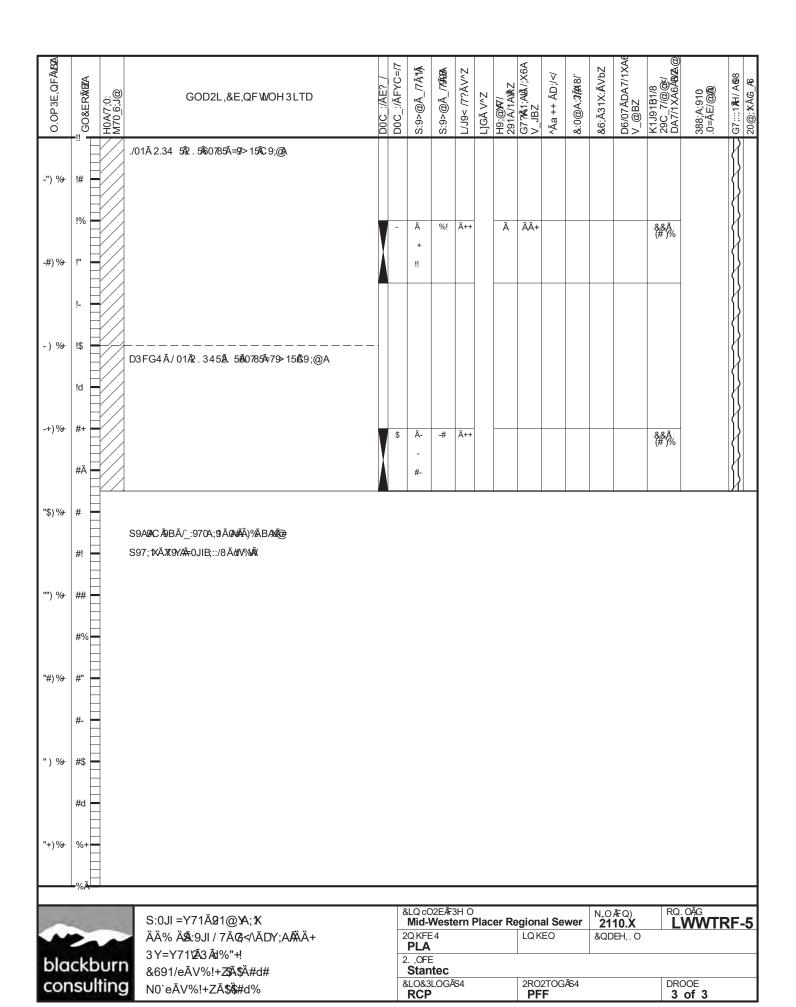
.QMMO RCP GL,,F	−MĀ2Q	FEL32	9-2	FĀG3EO 2 5-12	2 QH &. C 9-25-1	DE,QFĀŒSEO 2	SQLORQ 38.863 SQLORQ	01° / -	121.3	4766	s° N	AD	83		Ā ౷A (CZ		DKLN:	ĀG /WTR 320ĀO. O 0.5 ft		
	d-Ste	m Au		/DZĀ/GZ			GL,Ā.,N Diedri c R'3HH OL	ch D12 Æ4&0										4 in		3HOEOL 2,OF24\Ā(D;
2.5"			ĀSFGĀ2 (QH&. OE,QF	=		Safety ML QKFG	U 3EOL						#/ 30" EOL <i>Ā</i> G		-MĀV	BEOZ	EQE3.	ĀGO&ER	ĀQNĀ SQL,F	М
	ng gr	out b	ackfille	d 9/25/12			LO3G,FM		22.3	3 ft				.3 ft c	on 9-	25-12	2	41.5			
O.OP3E,QFĀ ß Ā	+ GO&ERÑÆA	H0A/7;0: M70_6;J@		GOD2	L,&E,QFW	/OH3LTD		D0C :/AE? / D0C :/ĀFYC=/7		S:9>@Ā_/79498	L/J9< / 7?ĀV^Z	LJGĀ V^Z	H9;@ ¼ 7/ 291A/1A ¾ ^Z	G7?M[1;AM]/;X6A V_JBZ	^Āa ++ ĀD;/ </td <td>&:0@A;3#18/`</td> <td>&6;Ā31X:Ā/bZ</td> <td>D6/07ĀDA7/1XA6 V_@BZ</td> <td>K1J91B1/8 29C_7/@@/ DA7/1XA6ARA@</td> <td>388;A;910 .0=ĀE/@&</td> <td>G7;::;1ÄHA698 20@;%ĀG_Æ</td>	&:0@A;3#18/`	&6;Ā31X: Ā /bZ	D6/07ĀDA7/1XA6 V_@BZ	K1J91B1/8 29C_7/@@/ DA7/1XA6ARA@	388;A;910 .0=ĀE/@&	G7;::;1ÄHA698 20@;%ĀG_Æ
Ä+\$ <i>)</i> %+	À		./01Ā 2.3· AĀ₹9>1!	4 Ā:;/6Ā03 5Ā7? <i>Ā</i> 9Ā(9);	FG5Ñ2.5Ā#7 @A	?Ā @\$\$ ĀX6AĀ9	; Ā=79 1	S0) S			Ä++									2L	
Ä+")%+	# -		— — — — D3FG4Ā	— — — — ./ 01Ā2 . 34	———— 5 ā 5 ē 0785	 ;=79-15 Ē 9;@/	- — — — - A	Ä	- d	Ä	À++		Ä+	ÄÄ!					&&.ā. (#)%		
Ä+#}%+ Ä+)%+	-		— — — — D,. E4 <i>Ā</i> D3	———— 3 F G5ĀDH5Ā	 0:8; YC		 9;@		Ä												
À++}%+	d Ä+			 ./ 01Ā2 . 34		;=79-15∰9;@ <i>i</i>	Α		Ä+ Ä"	11 .	Ä++										
d\$)%+	ÄÄ				8/1@5\79> 	15ĀC9;@A 	 @∰X70?5	_	Ä-												
d") %+	À! -		./01Ā 2.3	———— 4 Ā-;A6ĀD3I	——————————————————————————————————————		 :@														
	/ 1/0				(continue	ed)			&LQ c0	70F =	oli o								100	OÃO	
blad	ckb	urn	ÄÄ% 3Y=	% Ä\$Ā:9JI/ Y71\2Ā3Ā:		DY;AÆÄÄ+ ‡			Mid- 2Q KFE PLA 2. ,OFI Star	West	ern I	Plac	er Re	e gion a LQK		wer		春Q) 10.X EH,.O	L	. OĀG WWTF	RF-2
con			400	eĀV%!+Z		•			&LO&3 RCF	BLOGĀ	iS4			2RO	2TOG. F	Ā64				ooe of 3	



O.OP3E,QFĀKBA	GO&ERÑÆA	H0A/7;0: M70 6:J@	GOD2L,&E,QFWOH3LTD	D0C :/AE? /	D0C_:/ĀFYC=/7	S:9>@Ā_/7¹Ā	S:9>@Ā_/70gBA	L/J9< /7?ĀV^Z	LJGĀ V^Z	H9;@ ¼ 7/ 291A/1A ⅓ Z	G7?1⁄k/1;A/k/1;X6A V_JBZ	^Āa ++ ĀD;/ </th <th>&:0@A;3##8/</th> <th>&6;Ā31X:ĀVbZ</th> <th>D6/07ĀDA7/1XA6 V_@BZ</th> <th>K1J91B1/8 29C_7/@@/ DA7/1XA6ÅBA@</th> <th>388;A;910 .0=ĀE/@@</th> <th>G7;::;1ÄH/ A®8 20@;XĀG_A6</th>	&:0@A;3##8/	&6;Ā31X:ĀVbZ	D6/07ĀDA7/1XA6 V_@BZ	K1J91B1/8 29C_7/@@/ DA7/1XA6Å B A@	388;A;910 .0=ĀE/@@	G7;::;1 Ä H/ A ® 8 20@; X Ā G_A 6
-") %	!#		./01Ā 2.34 5Ā: 5Ā@HBBĀ=97>15Ā:/A ./01Ā 2.34 5Ā: 5Ā60785Ā;X6ĀĀ9;≾/Ā=79>15Ā©9;@A	_		0)	03	П		1 (4			8			141		
-#) <i>%</i> +	!"				-	Ä! !Ä	##	Ä++								**(#) %)	\ \ \ \
-) % -	!- •		./01Ā 2.34 Ā; ÆĀD3F GĀZ .5Ā K7 ?Ā@MEĀK 9ĀO785Ā CDAN/8 :;X6AB:; Ā-79 1ĀD18Ā-79>15ĀC 9;@Ā															
-+)%+	#+				\$	Ä Ä\$!+	#\$	Ä++										\ \ \ \ \
"\$)%+	# •		D., E4ĀD3FG5ĀDH5ĀS/1@5Ā79>15ĀC9;@AĀ/0I:? U/C/1A88 S9A9CĀBĀ/_:9704;9ĀMAĀÄ)%ĀBAĀĀG															IИI
"") % -	## •		S97;1xĀX19YAĀ÷0JIB;::/8Ā&1V%AÑA															
"#)%+	#" •																	
")%+	#\$ •																	
"+)% -	%+ %å																	
₽	,,,,		S:0JI=Y71Ā221@YA;1X ÄÄ%Ä59JI/7ĀG≪\ĀDY;AÆÄÄ+		2	QKFE	Nest	BH O ern l	Plac	er Re	egiona LQK		wer		ĀFQ) 10.X EH,.O	RQ.	OĀG WWTF	RF-2
bla cor			3Y=Y71¼Ä3Ād%"+! &691/eĀV%!+Z∰Ä\$Ä#d#		8	PLA . ,OFE Stan LO&3 RCP	tec LOGĀ	S4			2RO2	2TOG	Ā64			DRO 3	DOE of 3	

.QMMC RCP GL,,F	FM Ã 2Q	FEL32	9-2	FĀG3EO 4-12		QH&. Œ 9-24-12	,QFĀ G EO	SQL ORQ. 38.8629 SQL ORQ.	99°	/ -1	21.3	4708	3° N	IAD	83		Ā @A ⁄	CZ		DKLN:	ĀG /WTR 320ĀO. 0 0.5 ft		
D3H&.	d-Ste OLÆ4	m Au &o\DZ		D ZĀ /GZ				GL, . Ā ,M Diedric R3HH OL	ch I Æ48	kO										4 in		3HOEOL 2,OF24\Ā	Φ;
	RQ. OĀ	632TN,	ĀSFGĀ2 C					Safety ML QKFGU LO3G, FM	J 3E		GKL	, FMĀ			3N	EOL <i>Ā</i> G	L , ,l					ĀQNĀSQL,F	M
	ng gi	rout b	ackfilled	1 9/24/1	12			LO3G, FIVI	Τ	1/	26.5		Z			.5 ft c		24-12		51.3			
O.OP3E,QFĀ ß Ā	GO&ERWERA	H0A/7;0: M70_6;J@		GOE	D2L,&I	E,QFW0	DH3LTD		D0C :/AE? /		S:9>@Ā_/7¶Ā	S:9>@A_/79@BA	L/J9< / 7?ĀV^Z	LJGĀ V^Z	H9;@ ¼ 7/ 291A/1A ¾ ^Z	G7?M[1;AM]/;X6A V_JBZ	^Āa ++ ĀD;/ </td <td>&:0@A;3#18/`</td> <td>&6;Ā31X:Ā/bZ</td> <td>D6/07ĀDA7/1XA6 V_@BZ</td> <td>K1J91B1/8 29C_7/@@/ DA7/1XA6ABA@</td> <td>388;A;910 .0=ĀE/@@</td> <td>G7;::;1ÄHA®8 20@;%ĀG_Æ</td>	&:0@A;3#18/`	&6;Ā31X: Ā /bZ	D6/07ĀDA7/1XA6 V_@BZ	K1J91B1/8 29C_7/@@/ DA7/1XA6ABA@	388;A;910 .0=ĀE/@@	G7;::;1ÄHA®8 20@;%ĀG_Æ
Ä+\$)%+	À		./01Ā 2.34 87?Ā\9Ā9	1 512.51(G GOA	<u> </u>	\$078 <i>5</i> A=9	>1 <i>Ā</i> 9 Ā/::9>	;@6Ā=79>15															
À+")%+	# -									Ä	-	#	Ä++				"À	Ä				&3\Ā&	
Ä+#) %+	"		— — — — · D018?Ā/0	— — — -)1Ā2.34	 582 . 584	. — — — «/ 7?Ā@\BB	————— Ā÷79>15ĀC9;(@A			d Ä%												
Ä+)%+	\$ d																						
Ä++ <i>]</i> %+	Ä+		./01Ā 2.34	———- I 5Ā2.5Ā6	— — — 6078 <i>5</i> Ā?	· — — — ?:9>; @ Ā	———— ≂79>15ÃC9;@	 <u>}</u>			Ä# Ä- Äd	i	Ä++		#	Ä+					# <u>&&</u> Ā #)+*(#) %	, 5	
d\$)%+	À Ä!																						
d") %+	Ä# -																						}
bla	> ckl		ÄÄ% 3Y=	Y711 2 Ā3	Ā21@ I / 7Ā	G∕√ĀD +!	/) Y;A Æ ÄÄ+			2	Q KFE PLA ,OFE	Vest 4	3H O ern l	Plac	er Re	e gion a LQK		wer		Æ(Q) 10.X DEH,. O	RQ L	. OĀG WWTI	RF-3
con			400	l/eĀV% :ĀV%!+						8	Stan LO&3 RCP	LOGĀ	iS4			2R0:	2TOG F	Ā64				OOE of 4	


O.OP3E,QFĀKKA	GO&ERÑŒA	H0A/7;0: M70_6;J@	GOD2L,&E,QFWOH3LTD	D0C :/AE? /	D0C_:/ĀFYC=/7	S:9>@Ā_/7Ā'\Ā	S:9>@Ā_/799BA	L/J9< /7?ĀV^Z	L]GĀ V^Z	Н9;@ м 7/ 291A/1A й Z	G7? k 1;Ak/;X6A V_JBZ	^Āa ++ ĀD;/ </th <th>&:0@A;3#8/</th> <th>&6;Ā31X:ĀVbZ</th> <th>D6/07ĀDA7/1XA6 V_@BZ</th> <th>K1J91B1/8 29C_7/@@/ DA7/1XA6ABZ</th> <th>388;A;910 .0=ĀE/@®</th> <th>G7;::;1ÄH/A®8 20@;XĀG_Æ</th>	&:0@A;3#8/	&6;Ā31X:ĀVbZ	D6/07ĀDA7/1XA6 V_@BZ	K1J91B1/8 29C_7/@@/ DA7/1XA6ABZ	388;A;910 .0=ĀE/@®	G7;::;1ÄH/A®8 20@;XĀG_Æ
-") % +	!#		D,. EĀ->A6ĀD3 F G5Ā-1.5Ā@\$\$\$Ā=\$7>15Ā-/A ./01Ā 2.34 5克.5Ā60785Ā.2:9>;@6Ā-79>15ĀC9;@A															<u> </u>
-#) % -	!%				-	Ä% !% %\$	d!	À++		%	Ä+					&&Ā (#)%		30000000
-) %+	!-		—————————————————————————————————————															
-+)%+	!d =	•	D., E4ĀO3FG\$ĀOH\$Ā8/1@\$\$\$79>1\$Ā;A5Ā/0I:? J/C/1A/8		\$	Ä%	!d	Ä++										<u> </u>
"\$)%-	#Ä =					Äd +												DDDDDDDDD
"") %+	#! =																	DODDDDDDD
,	#%			Y	d	À"	%	Ä++		#	Ä+#					&&Ā (#)%		
"#) % -	#" =					!+			_)
") %+	#\$ -																	000000000000000000000000000000000000000
"+)%+	%+ -%Ä		(continued)	X	Ä+		d!VÅ+	Ä++								&&Ā (#)%		200000
₹			S:0JI=Y71Ā921@;\A;\X ÄÄ%Ä\$59JI/7Ā@;<\\ĀDY;AMÄÄ+ 3Y=Y71\ZĀ3Ād\%"+!		2	Q KFE PLA . ,OFE	Vest	3H O ern I	Plac	er Re	egion LQK		wer	N.O 21 &QD	春Q) 10.X EH,.O	RQ.	OĀG MWTR	RF-3
bla con						Stan LO&3 RCP	tec	S4			2RO PF	2TOG F	Ā64			DRO 3	OOE of 4	

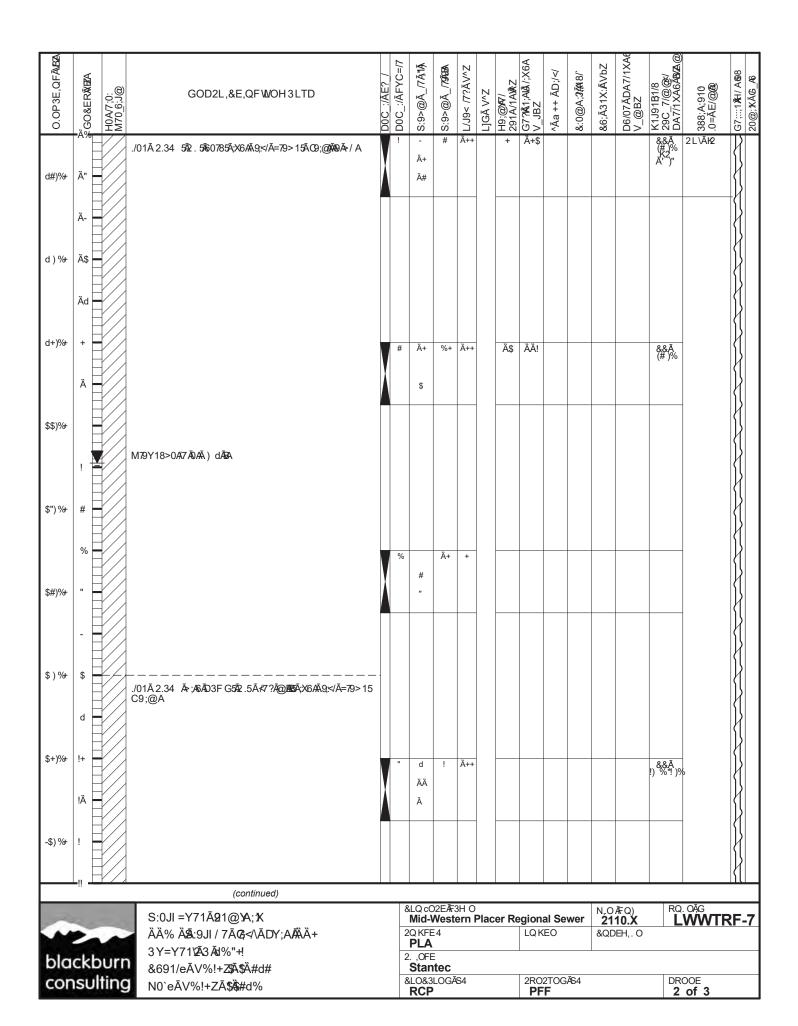


.QMMC								SQLORQ. OĀ.Q23E,QFĀ/.0AV91XĀ9'Ā\$7A\$90@Ā18Ā19A'CZ 38.86304° / -121.34632° NAD83													RQ. OÄG LWWTRF-4					
GL,,FM2AQFEL32EQL Taber GLEMALOFROG						SQLORQ. OĀ.Q23E,QFĀ/08B@\Ā\$A\$;9\Ā;1/Z													DKLN320ĀO. OP3E,QF ~110.5 ft							
Solic D3H&.	GL,,F MĀIOERQG Solid-Stem Auger D3H&. OLÆ4&OVDÆ8FGÆJ,[OVDÆV,GZ 2.5" Cal Mod						GL, Ā.,M Diedrich D120 R3HH OLÆ4&O Safety semi-automatic drop (140#/ 30")													SQLORQ. OĀĢ3HOECL 4 in R3HHOLĀŌN,2,OF24VĀŪ;						
SQLOR	SQLORQ. OÆ32TN, ÆFGÆ2QH&. OE,QF Boring grout backfilled 9/24/12							_			GKL, FMĀGL, 28.0 ft									EQE3. ÄGO&ERÄQNÄSQL,FM 31.3 ft						
O.OP3E,QFĀBĀ	GO&ERŴEA	H0A/7;0: M70_6;J@	(GOD2L,	,&E,QFW/0	OH3LTD		D0C :/AE? /		S:9>@Ā_/7Ā'IĀ	S:9>@Ā_/799BA	L/J9< / 7?ĀV^Z	L]GĀ V^Z	Н9;@ № / 291А/1А № ^Z	G7?Ñ(1;AÑ();X6A V_JBZ	^Āa ++ ĀD;/ </th <th>&:0@A;3#8/</th> <th>&6;Ā31X:Ā/bZ</th> <th>D6/07ĀDA7/1XA6 V_@BZ</th> <th>K1J91B1/8 29C_7/@@/ DA7/1XA6AWA@</th> <th>388;A;910 .0=ĀE/@®</th> <th>G7;::;1ÄHA698 20@;*XĀG_Æ</th>	&:0@A;3#8/	&6;Ā31X: Ā /bZ	D6/07ĀDA7/1XA6 V_@BZ	K1J91B1/8 29C_7/@@/ DA7/1XA6AWA@	388;A;910 .0=ĀE/@®	G7;::;1ÄHA698 20@;*XĀG_Æ				
Ä+\$)%+	Ä	///	2. 3404ĀBJF >/01 :?ĀJ/C /1	FG5Ā1225Ā AV8	. 8 1@ <i>5</i> ₹79	>15 ā 7? ā 9ĀG	9;@A																			
À+")%+	# - %								Ä	%	!#	Ä++								&&&Ā #}%						
Ä+#) %+	-									-																
Ä+)%+	\$ -																									
À++}%+	Ä+									Ä+ !Ä "!	d#	Ä++		À	À"					&&Ā (#)%						
d\$)%+	Ä -							_																		
d") %+	À# -		./01Ā 2.34 5Ā	. 54 0}.⊞ \$F	\801 7A 9:; Ā:</td <td>=<i>1</i>9>1<i>5</i>AO9;@</td> <td>9</td> <td></td>	= <i>1</i> 9>1 <i>5</i> AO9;@	9																			
	, 170				(continue	d)			1.0	10.0		211.0									OĀC					
bla	> ckb	ourn	3Y=Y71	āi:9JI/7 IVZĀ3Ād%	'Ā Ģ <∖ĀD	Υ;Α Æ ÄÄ+			2	LQ cO Mid-\ Q KFE PLA . ,OFE Stan	Nest	ern I	Plac	er Re	e gion a LQK		wer		春Q) 10.X)EH,.O	L'	OĀG WWTI	RF-4				
		ting	0001/0/						8	LO&3	LOGĀ	S4			2RO	2TOG F	Ā64				of 2					

O.OP3E,QFĀBĀ	Ž.	C C C C C C C C C C C C C C C C C C C	H0A/7;0: M70_6;J@	GOD2L,&E,QFWOH3LTD	D0C :/AE? /	D0C_:/ĀFYC=/7	S:9>@Ā_/7¹Ā	S:9>@Ā_/73438	L/J9< /7?ĀV^Z	LJGĀ V^Z	H9;@₩7/ 291A/1A₩Z	G7? k 1;Ak1;X6A V_JBZ	^Āa ++ ĀD;/ </th <th>&:0@A;3##8/</th> <th>&6;Ā31X:ĀVbZ</th> <th>D6/07ĀDA7/1XA6 V_@BZ</th> <th>K1J91B1/8 29C_7/@<i>@</i>/ DA7/1XA6ĀWA@</th> <th>388;A;910 .0=ĀE/@@</th> <th>G7;::;1¾H/A©8 20@;XĀ©_Æ</th>	&:0@A;3##8/	&6;Ā31X:ĀVbZ	D6/07ĀDA7/1XA6 V_@BZ	K1J91B1/8 29C_7/@ <i>@</i> / DA7/1XA6Ā WA @	388;A;910 .0=ĀE/@@	G7;::;1 ¾ H/A © 8 20@; X Ā ©_Æ
d#)%+	Ä"					!	Ä ! #!	****	Ä++										
d)%+	Ä- Äs	-		D., E4ĀD3FGSĀDHSĀ:/7?ĀB/1@SĀ;X6ĀB:; Ā=79 15ĀC9;@FA >/OI:?ĀJ/C/1A/8															\{\}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
d+)%+	+ À			PIOL ::MIC TIM 6	Y	#	+ #d %+ # %	dd \ X+	Ä++		Ä	Ä+					&&Ā (#)%		\{\} \{\}
\$\$)%							70 + 4+ 1/2												\{\} \}
\$")%+	#			./01Ā 2.34 5Ā2 . 5Ā60785ĀC9AAV8Ā=79>1Ā018Ā;X6AĀ9;≾/ X70?5Ā\$9;@A															\ \ \ \ \
\$#)%+	"					%	Ä #! %+ !//f /	d!Wd	Ä++					Ä+			&&Ā (#)%	&,	
\$)%-	\$			M79Y18>0A7ĀQĀ\$ĀBA															
\$+)%+	!+ !Ä!				Y	"	#% %\$ # 7	Ä+!WÄ+	À++								&&Ā (#)%		
-\$)%																			
S:0JI =Y71Ā21@;A; X ÄÄ% Ä5:9JI / 7ĀG \ĀDY;AĀÄÄ+ 3Y=Y71½Ā3Ā1%"+! &691/eĀV%!+ZĀ\$Ä#d# N0`eĀV%!+ZĀ\$Ä#d%</td <td>LQcC Mid-N QKFE PLA . ,OFE Stan LO&3 RCP</td> <td>Vesto 4 tec</td> <td colspan="5">r3H O tern Placer Regional LQKE LQKE 2RO2' PFF</td> <td colspan="3">TOGĀS4</td> <td colspan="3">DÆQ) RQ. OÄG LWW DEH,. O</td>							LQcC Mid-N QKFE PLA . ,OFE Stan LO&3 RCP	Vesto 4 tec	r3H O tern Placer Regional LQKE LQKE 2RO2' PFF					TOGĀS4			DÆQ) RQ. OÄG LWW DEH,. O		

.QMMC			SOM,F ĀG3E 9-25-12		SQL ORQ. 38.863				RQ. OĀG LWWTRF-5																	
GL,,F		SQL ORQ.	OĀ.Q2	3E,QF		DKLN320ĀO. OP3E,QF ~110.5 ft																				
	GL,,F MÄHCERQG Solid-Stem Auger								20		SQLORQ. OĀĢ3HOEOL															
D3H&.	D3H&. OLĀE4&OVDZĀFGĀD,[OVDZĀ/GZ										4 in R3HHOLĀΦN,2,OF24\ĀΦ;															
SQLOR	Boring grout backfilled 9/25/12								Safety semi-automatic drop (140#/ 30") MLQKFGU 3EOL GKL, FMÄGL, , FM 3 NEOLÄGL, , FMÄV®EC LO3G, FMD 27.1 ft 27.1 ft on 9-25-12												Z EQE3. ĀGO&ERĀQNĀSQL,FM					
	Dorning grout backlined 3/23/12							1/:	1		Ņ							41.5 ft								
O.OP3E,QFĀ <u>BĀ</u>	GO&ERMERA	H0A/7;0: M70_6;J@	G	GOD2L,	,&E,QFWOH	H3LTD		D0C :/AE? / D0C :/ĀFYC=/7	S:9>@Ā_/7¶Ā	S:9>@Ā_/73ĒBBA	L/J9< / 7?ĀV^Z	L]GĀ V^Z	H9;@⁄47/ 291A/1A¥^Z	G7?M[1;AM]/;X6A V_JBZ	^Āa ++ ĀD;/ </td <td>&:0@A;3##8/`</td> <td>&6;Ā31X:Ā/bZ</td> <td>D6/07ĀDA7/1XA6 V_@BZ</td> <td>K1J91B1/8 29C_7/@@<!--<br-->DA7/1XA6AWA@</td> <td>388;A;910 .0=ĀE/@@</td> <td>G7;::;1ÄHA698 20@;%ÄG Æ</td>	&:0@A;3##8/`	&6;Ā31X: Ā /bZ	D6/07ĀDA7/1XA6 V_@BZ	K1J91B1/8 29C_7/@@ <br DA7/1XA6AWA@	388;A;910 .0=ĀE/@@	G7;::;1ÄHA698 20@;%ÄG Æ					
Ä+\$ <i>]</i> %+	À		./01Ā 2.34 Ā:; =79>15Ā 8 7Ā 9ĀC	ASĀD3F(C9;@A	G5Ā2.5Ā@∰AĀ	ĐĀ(7 ?Ā@ BS Ā;	X6AĀ.9; </td <td>S0 3</td> <td>X</td> <td></td> <td>À++</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2&</td> <td></td>	S0 3	X		À++									2&						
Ä+")%+	# -		 2. 3404ĀBF0	——— G <i>5</i> Ā 12 5Ā	. — — — — .81@5\:; Ā</td <td>- — — — — =79>1<i>5</i>iC9;((</td> <td> @A</td> <td>Ä</td> <td># À</td> <td>!À</td> <td>Ä++</td> <td></td> <td>Ä"</td> <td>ÄÄ-</td> <td></td> <td></td> <td></td> <td></td> <td>&&Ā (#)%</td> <td></td> <td></td>	- — — — — =79>1 <i>5</i> i C9;((@A	Ä	# À	!À	Ä++		Ä"	ÄÄ-					&&Ā (#)%							
Ä+#}%+	-								Äd			-														
Ä++%+	d =		./01Ā 2.34 5Ā2.	. <i>5</i> 460785	Ā;X6ÆQ; Ā=7</td <td>19>15ĀŒ);@</td> <td>,</td> <td></td> <td>Ä\$</td> <td>% W</td> <td>' Ä++</td> <td></td> <td>Ä</td> <td>d%</td> <td></td> <td></td> <td></td> <td></td> <td>&&Ā.</td> <td>K2</td> <td></td>	19>15ĀŒ);@	,		Ä\$	% W	' Ä++		Ä	d%					&&Ā.	K2						
d\$)%+	ÄÄ		 D,.E.4ĀD3FG5Ā J/C/1A/8	— — — ĀDH5Ā:/7	.———— ?&/1@5Ā=79:	-———— >151C9;@SA	— — — – k-/ 0I :?		% VVf										&&Ā (#,5%) Ā ^K ?‰							
	À! =			— — —			70> 45	-																		
d") %+	Ä#		./01Ā 2.34 Ā· ;/ C9;@A	<i>A</i> 6AD3F (;;Xb <i>H</i> AY; <td><i>t</i>⊌> 15</td> <td></td>	<i>t</i> ⊌> 15																			
				7 ~ :	(continued)				&LQ c	O2EĀ	3H C)					N.O	ĀFQ)	RQ	. OĀG						
bla	ckh	Ulrin	3V-V71V	:9JI/7 V2Ā3Ād%	'Ā Ğ< \ĀDY; %"+!	;A Ä Ä+			Mid- 2Q KF PLA 2. ,OF	West E4 L	tern	Plac	er Re	egion LQK		wer		Æ(Q) 10.X DEH,.O	<u> [</u>	WWTI	RF-5					
con		Stantec &LO&3LOGĀS4 2RO2TOGĀS4 RCP PFF									DROOE 1 of 3															

.QMMO			SOM,F.		2 QH & OE,QFĀGE 9-25-12	38	SQLORQ. OĀ.Q23E,QFĀ/.0AV\$1XĀ\$TĀ\$7A\$\$0@AĀ13BĀ@A*CZ 38.86191° / -121.34771° NAD83 SQLORQ. OĀ.Q23E,QFĀ/@BB@\Ā\$0A;9\Ā,1/Z										rq. oặg LWWTRF-6					
GL,,F Tabe		FEL32	QL			SQI	LORQ.	OĀ.Q	23E	,QF	VOBB	@ \Ā Æ	00A;9\	Ā.;1/ Z	7					320ĀO.O 0.5 ft	P3E,QF	
	d-Ster	n Aug 80VDZŘ	ger BFGÆD,[OVD.	Ā ĶGZ		Di R'3H	Ā.,M iedric ⊣H OLĀ afety:	:h D′ €4&0)		natio	c dr	op (140#	#/ 30 '	')			SQLORQ. OĀG3HOECL 4 in R3HHOLĀON,2,OF24\ĀO;			
			. ÆFGÆQI ackfilled			ML	QKFGL	QKFGU 3EOL GKL, FMÄGL,,FM 3NEOLÄGL,,FMÄV&EO G, FMD None None						SE OZ	EQE3. ĀGO&ERĀQNĀSQL,FM 21.5 ft							
O.OP3E,QFĀBĀ	GO&ERÄEZA	H0A/7;0: M70_6;J@		GOD2l	.,&E,QFWOH3LTC)		D0C :/AE? /	D0C_:/AFYC=/7	S:9>@Ā_/7¶Ā	S:9>@Ā_/79@BA	L/J9< / 7?ĀV^Z	LJGĀV^Z	H9;@Y/ 291A/1A\vec{R}^Z	G7?MŽ1;AMŽ/;X6A V_JBZ	^Āa ++ ĀD;/ </th <th>&:0@A;3#18/`</th> <th>&6;Ā31X:Ā/bZ</th> <th>D6/07ĀDA7/1XA6 V_@BZ</th> <th>K1J91B1/8 29C_7/@@/ DA7/1XA6A¶A@</th> <th>388;A;910 .0=ĀE/@@</th> <th>G7;::;1ÄHA698 20@;%ĀG_Æ</th>	&:0@A;3#18/`	&6;Ā31X: Ā /bZ	D6/07ĀDA7/1XA6 V_@BZ	K1J91B1/8 29C_7/@@/ DA7/1XA6A¶A@	388;A;910 .0=ĀE/@@	G7;::;1 Ä HA698 20@;%ĀG_ Æ
À+\$}%+	Ä		./01Ā 2.34	512.51@H	ĀA9Ā(7?Ā@ BB Ā=\$7>15Ā	C9;@A																
Ä+")%+	# -		- — — — - ./01Ā 2.34 =79> 15Ā (9)	-———- Ā÷;A6ĀD3F @A		———— CĀX70?Ā49)		Ä	#	%	À++		Ä-	ÄÄ\$					&&Ā (#)%		
À+#}%+	-									Ä+ Ä%												
Ä+)%+ Ä++%+	d -									d	!%	Ä++										
d\$)%+	ÄÄ		- — — — — D,.E 4 <i>Ā</i> D3F	- — — — - · G\$ĀDH\$Ā&	 %/1@51=79>151\O;@\					Ä\$ Ä-												
d") %+	À! -																					
			0.00	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(continued)				&L	_Q cC	2EĀF	3H O				_		N.O	ĀFQ)	RQ.	OĀG	
blad	ckb	urn	ÄÄ% 3Y=Y	ÄSĀ:9JI/ 7112Ā3Ād		+			20 F	Mid-N OKFE PLA OFE Stan	4	ern	Plac	er Re	Egion LQK		wer		ÆQ) 10.X)EH,. O	L'	ŴWTF	RF-6
con			G 0 0 17	eAV%!+ \\V%!+Z/	ZĀ\$Ä#d# Ā\$ Ä #d%				&L		LOGĀ	S4			2RO PF	2TOG	Ā64				OOE of 2	

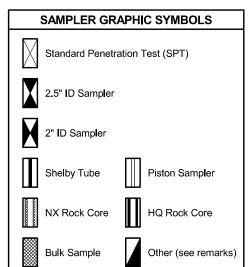

-/-																-			
O.OP3E,QFĀÆA	GO&ERÄBA	0 1 4 0 1	M70_6;J@	GOD2L,&E,QFWOH3LTD	D0C :/AE? /	DOC_:/ĀFYC=/7	S:9>@Ā_/7¶Ā	S:9>@Ā_/79438A	L/J9< /7?ĀV^Z	LJGĀ V^Z	H9;@M7/ 291A/1AM≩Z	G7?M1;AM/;X6A V_JBZ	^Āa ++ ĀD;/ </td <td>&:0@A;3#\8/`</td> <td>&6;Ā31X:ĀVbZ</td> <td>D6/07ĀDA7/1XA6 V_@BZ</td> <td>K1J91B1/8 29C_7/@@/ DA7/1XA6A®A@</td> <td>388;A;910 .0=ĀE/@@</td> <td>G7;::;1%H/A®8 20@;XĀG_A6</td>	&:0@A;3#\8/`	&6;Ā31X:ĀVbZ	D6/07ĀDA7/1XA6 V_@BZ	K1J91B1/8 29C_7/@@/ DA7/1XA6A® A @	388;A;910 .0=ĀE/@@	G7;::;1 % H/A ® 8 20@; X ĀG_ A 6
	−À%			./01Ā 2.34 Ār; A6ĀD3F G5Ā2.5Ā-{7?Ā@ (BBSĀ=5/7> 15ĀC 9; @A		!	Ä!	%+	Ä++		À%	ÄÄ#					&&Ā !) -%		}
d#)%+	Ä"			D,E.4ĀD3FG\$ĀDH\$Ā:/7?Ās/1@5Ā=79>15ĀC9;@\$Ā:/01:? J/C/1A/8			\$., ,,		
d)%+	Ä- Ä\$																		
d+)%+	+ À					#	\$ ÄÄ Ä%	п	À++								!) -%#)+		
\$\$)%+	!			\$9 A9C Ā9BĀ/_:970A; 9 Ā(A ĀÄ)%ĀB A ĀĒ \$97; 1 XĀ X 9YĀĒOJIB;::/8Ā dV %Ā															
\$")%+	# %																		
\$#)%+																			
\$)%+	\$ d																		
\$+)%+	!+ !Ä																		
-\$)%	! -!! -																		
30				S:0JI =Y71ĀQ1@YA;X		8	LQ cC Mid-\	02EÆ€ Nest e	3H O ern l	Plac	er Re	giona	al Sev	wer	N,O	ĀFQ) 10.X	RQ.	OĀG WWTF	RF-6
-			2	ÄÄ% Ä\$Ā:9JI / 7ĀG;<\ĀDY;AAÄÄ+		2	Q KFE	4				LQK			&QD	EH,. 0			<u> </u>
bla	ch	h	IFF	3 Y=Y71½Ā3 Ād%"+!		2	. ,OFE												
				ασσ 1/ σ/ τν /σ Δφ τφ τ//α//			Stan LO&3		S/I			2P.01	2TOG/	<u> </u>			DB	DOE	
cor	SU	Ш	пe	N0`eĀV%!+ZĀ \$ \$#d%		8	RCP	LUGA	04			2RO2	ر ا الطار F	-04				of 2	

2RO2TOGĀS4 **PFF**

&LO&3LOGĀS4 RCP

DROOE 2 of 2

RCP	,FM&QFEL32E QL aber ,F M&IOERQG						SQLORQ. QĀ.Q23E,QFĀ/.0AV91XĀ9TĀB7AV90@Ā18Ā(BAYCZ 38.86093° / -121.34693° NAD83 SQLORQ. QĀ.Q23E,QFĀ/OBB@\Ā\$OA;9\Ā;1/ Z										RQ. OĀG LWWTRF-7 DKLN32OĀO. OP3E,QF ~110.5 ft					
GL,,F Solid	м л нс	m Au	ger	D = 107			GL, . Ā, l	ch l		0									SQLORQ. OĀĢ3HOEOL 4 in R3HHOLĀØN,2,0F24\Ā@;			
2.5"	Cal N	/lod	\$FGĀD,[O				R3HH OLÄE4&O Safety semi-automatic drop (140#/ 30") MLQKFGU 3EOL GKL, FMÄGL,,FM 3NEOLÄGL,,FMÄV®EOZ															
				QH&. OE,0 ed 9/25/1			ML QKFG LO3G, FN	IU 31 ID	EOL	EOL GKL, FMÄGL, , FM 3 NEOLÄGL, , FMÄ V (SEC)2 22.9 ft 22.9 ft on 9-25-12						36.5 ft						
O.OP3E,QFĀ B Ā	GO&ERWERA	H0A/7;0: M70_6;J@		GOD)2L,&E,Q	FWOH3LTD		D0C :/AE? /		S:9>@Ā_/7¶Ā	S:9>@Ā_/7998A	L/J9< / 7?ĀV^Z	L]GĀ V^Z	H9;@ ¼ 7/ 291A/1A ਔ ^Z	G7? k 1;Akl/;X6A V_JBZ	^Āa ++ ĀD;/ </td <td>&:0@A;3##8/`</td> <td>&6;Ā31X:№bZ</td> <td>D6/07ĀDA7/1XA6 V_@BZ</td> <td>K1J91B1/8 29C_7/@@/ DA7/1XA6ABAA@</td> <td>388;A;910 .0=ĀE/@&</td> <td>G7;::;1ÄHA698 20@;XĀG_Æ</td>	&:0@A;3##8/`	&6;Ā31X: № bZ	D6/07ĀDA7/1XA6 V_@BZ	K1J91B1/8 29C_7/@@/ DA7/1XA6ABAA@	388;A;910 .0=ĀE/@&	G7;::;1ÄHA698 20@;XĀG_Æ
Ä+\$) %+	Ä		./01Ā 2.3	34 572.576	078 <i>5</i> Ā= 9 >	1,749,768,071 /=79>154	Œ9; @															
Ä+")%+	# -								À	#	#	Ä++		À"	ÀÀ-		À"			&&Ā (#)%	&,	
Ä+# <i>)</i> %+	" -									d Ä%										(#)%		
Ä+)%+	\$ -																					
Ä++}%+	Ä+		 D,. E4Ā		— — — 5ĀG8; YC∄					" Ä Ä#	n ·	À++										
d\$)%+	À Ä!																					
d") %+	Ä# -	1.1.1.1.1	./01Ā 2.3	 34 572.576	— — — 0785Ā;X6Æ	9,≤/Ā=79>15ĀŒ;((2949,Ā⊹/A															
			_		•	tinued)			8	LQ cC)2EĀF:	3H O						NΩ	ĀF(O)	RO	. OĀG	
bla	ckl	Ulra	ÄÄ ⁰ 3Y:	=Y71½Ā3	I/7Ā G ;≪ Ād%"+!	∖ĀDY;A Æ ÄÄ+			2	Mid-\ Q KFE PLA . ,OFE	West	ern	Plac	er Re	LQ K		wer		ÆQ) 10.X ŒH,.O	L	ŴWTI	RF-7
con			a a a	91/eĀV% eĀV%!+					8	Stan LO&3 RCP	LOGĀ	iS4			2RO	2TOG F	Ā64				OOE of 3	



O.OP3E,QFĀBBA	= GO&ERÑØA	H0A/7;0:	M70_6;J@	GOD2L,&E,QFWOH3LTD	D0C :/AE? /	D0C_:/ĀFYC=/7	S:9>@Ā_/7¶Ā	S:9>@Ā_/79498A	L/J9< /7?ĀV^Z	L]GĀ V^Z	Н9; @∕4 7/ 291А/1А∕∯Z	G7?Mk1;Ald/;X6A V_JBZ	^Āa ++ ĀD;/ </th <th>&:0@A;3##8/</th> <th>&6;Ā31X:ĀVbZ</th> <th>D6/07ĀDA7/1XA6 V_@BZ</th> <th>K1J91B1/8 29C_7/@@/ DA7/1XA6ABA@</th> <th>388;A;910 .0=ĀE/@@</th> <th>G7;:::1%H/A®8 20@;XĀG_A6</th>	&:0@A;3##8/	&6;Ā31X:ĀVbZ	D6/07ĀDA7/1XA6 V_@BZ	K1J91B1/8 29C_7/@@/ DA7/1XA6ABA@	388;A;910 .0=ĀE/@@	G7;:::1 % H/A®8 20@; X ĀG_ A 6
-") %+	!#			(01Ā.2.34 Ār;A6Ā03FG5Ā2.5Ā47?Ā@MESĀX6AĀ9;≺Ā≕79>15 29;@A															
-#) % -	!% !"					-	Ä#	#-	Ä++										
	!-		<u></u>	59A 9 CĀBĀ/_:970A; 9 Ā (WĀ')%ĀB A (@															<u> { </u>
-) %	!\$!d		S	\$97;1 %ĀЖ9YÆ ∙OJIB;::/8Ā&NV%AÑ															
-+)%	#+																		
"\$) <i>%</i> +	#Ä																		
"") % -	#!																		
) /0	#%																		
"#) % -	#"																		
")%+	#\$																		
"+)%-	#d %+																		
	- %À			S:0JI =Y71Ā 2 1@ Y A; %		8	LQ cO	2EĀF3	ВН О	Dias	Or D-	ala:			N,O	春Q) 10.X	RQ.	OĀG MWTF	
bla				ÄÄ%ħÄ:9JI/7ĀG; \ĀDY;AĀÄÄ+<br 3Y=Y71½Ā3Ād%"+! &691/eĀV%!+Z\$Ā\$Ä#d#		2	MIG-V QKFE PLA ,OFE Stan LO&31	4 tec		-iace	er Ke	LQK			21 ′ &QD	10.X EH,. O	DRO		XF-/
con	SU	ш	ıy	N0`eĀV%!+ZĀ \$\$ #d%			RCP		- 1			PF	F				3	of 3	

GROUP SYMBOLS AND NAMES									
iraphic	/ Symbol	Group Names	Graphic	/ Symbol	Group Names				
0000	GW	Well-graded GRAVEL Well-graded GRAVEL with SAND Poorly graded GRAVEL Poorly graded GRAVEL with SAND		CL	Lean CLAY Lean CLAY with SAND Lean CLAY with GRAVEL SANDY lean CLAY SANDY lean CLAY with GRAVEL GRAVELLY lean CLAY				
	GW-GM	Well-graded GRAVEL with SILT Well-graded GRAVEL with SILT and SAND		CI MI	GRAVELLY lean CLAY with SAND SILTY CLAY SILTY CLAY with SAND SILTY CLAY with GRAVEL				
	GW-GC	Well-graded GRAVEL with CLAY (or SILTY CLAY) Well-graded GRAVEL with CLAY and SAND (or SILTY CLAY and SAND)		CL-ML	SANDY SILTY CLAY SANDY SILTY CLAY with GRAVEL GRAVELLY SILTY CLAY GRAVELLY SILTY CLAY with SAND				
90,9	GP-GM	Poorty graded GRAVEL with SILT Poorty graded GRAVEL with SILT and SAND		ML	SILT SILT with SAND SILT with GRAVEL SANDY SILT				
	GP-GC	Poorty graded GRAVEL with CLAY (or SILTY CLAY) Poorty graded GRAVEL with CLAY and SAND (or SILTY CLAY and SAND)			SANDY SILT with GRAVEL GRAVELLY SILT GRAVELLY SILT with SAND				
	GM	SILTY GRAVEL SILTY GRAVEL with SAND		OL	ORGANIC lean CLAY ORGANIC lean CLAY with SAND ORGANIC lean CLAY with GRAVEL SANDY ORGANIC lean CLAY				
200 200 100	GC	CLAYEY GRAVEL CLAYEY GRAVEL with SAND			SANDY ORGANIC lean CLAY with GRAVEL GRAVELLY ORGANIC lean CLAY GRAVELLY ORGANIC lean CLAY with SAND ORGANIC SILT				
60	GC-GM	SILTY, CLAYEY GRAVEL SILTY, CLAYEY GRAVEL with SAND		OL	ORGANIC SILT with SAND ORGANIC SILT with GRAVEL SANDY ORGANIC SILT				
	sw	Well-graded SAND Well-graded SAND with GRAVEL			SANDY ORGANIC SILT with GRAVEL GRAVELLY ORGANIC SILT GRAVELLY ORGANIC SILT with SAND				
	SP	Poorly graded SAND Poorly graded SAND with GRAVEL Well graded SAND with SUT			Fat CLAY Fat CLAY with SAND Fat CLAY with GRAVEL SANDY fat CLAY SANDY fat CLAY with GRAVEL				
	SW-SM	Well-graded SAND with SILT Well-graded SAND with SILT and GRAVEL			GRAVELLY fat CLAY GRAVELLY fat CLAY GRAVELLY fat CLAY with SAND Elastic SILT				
	sw-sc	Well-graded SAND with CLAY (or SILTY CLAY) Well-graded SAND with CLAY and GRAVEL (or SILTY CLAY and GRAVEL)		мн	Elastic SILT with SAND Elastic SILT with GRAVEL SANDY elastic SILT				
	SP-SM	Poorty graded SAND with SILT Poorty graded SAND with SILT and GRAVEL			SANDY elastic SILT with GRAVEL GRAVELLY elastic SILT GRAVELLY elastic SILT with SAND				
	SP-SC	Poorly graded SAND with CLAY (or SILTY CLAY) Poorly graded SAND with CLAY and GRAVEL (or SILTY CLAY and GRAVEL)		ОН	ORGANIC fat CLAY ORGANIC fat CLAY with SAND ORGANIC fat CLAY with GRAVEL SANDY ORGANIC fat CLAY				
	SM	SILTY SAND SILTY SAND with GRAVEL		:	SANDY ORGANIC fat CLAY with GRAVEL GRAVELLY ORGANIC fat CLAY GRAVELLY ORGANIC fat CLAY with SAND				
	sc	CLAYEY SAND CLAYEY SAND with GRAVEL		ОН	ORGANIC elastic SILT ORGANIC elastic SILT with SAND ORGANIC elastic SILT with GRAVEL SANDY elastic ELASTIC SILT				
	SC-SM	SILTY, CLAYEY SAND SILTY, CLAYEY SAND with GRAVEL		!	SANDY ORGANIC elastic SILT with GRAVEL GRAVELLY ORGANIC elastic SILT GRAVELLY ORGANIC elastic SILT with SAND ORGANIC SOUL				
* 77 7 77 77	PT	PEAT		OL/OH	ORGANIC SOIL ORGANIC SOIL with SAND ORGANIC SOIL with GRAVEL SANDY ORGANIC SOIL				
		COBBLES COBBLES and BOULDERS BOULDERS		OL/OH	SANDY ORGANIC SOIL with GRAVEL GRAVELLY ORGANIC SOIL GRAVELLY ORGANIC SOIL with SAND				

FIELD AND LABORATORY TESTS С Consolidation (ASTM D 2435-04) CL Collapse Potential (ASTM D 5333-03) CP Compaction Curve (CTM 216 - 06) CR Corrosion, Sulfates, Chlorides (CTM 643 - 99; CTM 417 - 06; CTM 422 - 06) CU Consolidated Undrained Triaxial (ASTM D 4767-02) DS Direct Shear (ASTM D 3080-04) Expansion Index (ASTM D 4829-03) EI Moisture Content (ASTM D 2216-05)

- Organic Content (ASTM D 2974-07)
- Permeability (CTM 220 05)
- PA Particle Size Analysis (ASTM D 422-63 [2002])
- Liquid Limit, Plastic Limit, Plasticity Index (AASHTO T 89-02, AASHTO T 90-00)
- PL Point Load Index (ASTM D 5731-05)
- PM Pressure Meter
- Pocket Penetrometer
- R-Value (CTM 301 00)
- Sand Equivalent (CTM 217 99)
- Specific Gravity (AASHTO T 100-06)
- Shrinkage Limit (ASTM D 427-04)
- SW Swell Potential (ASTM D 4546-03)
- TV Pocket Torvane
- Unconfined Compression Soil (ASTM D 2166-06) Unconfined Compression Rock (ASTM D 2938-95)
- **UU** Unconsolidated Undrained Triaxial (ASTM D 2850-03)
- UW Unit Weight (ASTM D 4767-04)
- **VS** Vane Shear (AASHTO T 223-96 [2004])

DRILLING METHOD SYMBOLS

Auger Drilling

Rotary Drilling

Dynamic Cone or Hand Driven

Diamond Core

WATER LEVEL SYMBOLS

▼ Static Water Level Reading (short-term)

▼ Static Water Level Reading (long-term)

Blackburn Consulting 11521 Blocker Drive, Suite 110 Auburn, CA 95603

Phone: (530) 887-1494 Fax: (530) 887-1495

BORING RECORD LEGEND									
COUNTY		ROUTE		POSTMILE					
Placer									
PROJECT NAME Mid-Wester		Regional Sew	er						
File No. 2110.X	PREPARE RCP	D BY	DATE		SHEET 1 of 3				

	CO	NSISTENCY OF CO	HESIVE SOILS	
Descriptor	Unconfined Compressive Strength (tsf)	Pocket Penetrometer (tsf)	Torvane (tsf)	Field Approximation
Very Soft	< 0.25	< 0.25	< 0.12	Easily penetrated several inches by fist
Soft	0.25 - 0.50	0.25 - 0.50	0.12 - 0.25	Easily penetrated several inches by thumb
Medium Stiff	0.50 - 1.0	0.50 - 1.0	0.25 - 0.50	Can be penetrated several inches by thumb with moderate effort
Stiff	1.0 - 2.0	1.0 - 2.0	0.50 - 1.0	Readily indented by thumb but penetrated only with great effort
Very Stiff	2.0 - 4.0	2.0 - 4.0	1.0 - 2.0	Readily indented by thumbnail
Hard	> 4.0	> 4.0	> 2.0	Indented by thumbnail with difficulty

APPARENT DENSITY OF COHESIONLESS SOILS							
SPT N ₆₀ - Value (blows / foot)							
0 - 4							
5 - 10							
11 - 30							
31 - 50							
> 50							

	MOISTURE								
Descriptor	Criteria								
Dry	Absence of moisture, dusty, dry to the touch								
Moist	Damp but no visible water								
Wet	Visible free water, usually soil is below water table								

PERCENT	OR PROPORTION OF SOILS
Descriptor	Criteria
Trace	Particles are present but estimated to be less than 5%
Few	5 to 10%
Little	15 to 25%
Some	30 to 45%
Mostly	50 to 100%

	SOIL PARTICLE SIZE							
Descriptor		Size						
Boulder		> 12 inches						
Cobble		3 to 12 inches						
Gravel	Coarse	3/4 inch to 3 inches						
Gravei	Fine	No. 4 Sieve to 3/4 inch						
	Coarse	No. 10 Sieve to No. 4 Sieve						
Sand	Medium	No. 40 Sieve to No. 10 Sieve						
	Fine	No. 200 Sieve to No. 40 Sieve						
Silt and Clay		Passing No. 200 Sieve						

	PLASTICITY OF FINE-GRAINED SOILS							
Descriptor	Criteria							
Nonplastic	A 1/8-inch thread cannot be rolled at any water content.							
Low	The thread can barely be rolled, and the lump cannot be formed when drier than the plastic limit.							
Medium	The thread is easy to roll, and not much time is required to reach the plastic limit; it cannot be rerolled after reaching the plastic limit. The lump crumbles when drier than the plastic limit.							
High	It takes considerable time rolling and kneading to reach the plastic limit. The thread can be rerolled several times after reaching the plastic limit. The lump can be formed without crumbling when drier than the plastic limit.							

CEMENTATION				
Descriptor	Criteria			
Weak	Crumbles or breaks with handling or little finger pressure.			
Moderate	Crumbles or breaks with considerable finger pressure.			
Strong	Will not crumble or break with finger pressure.			

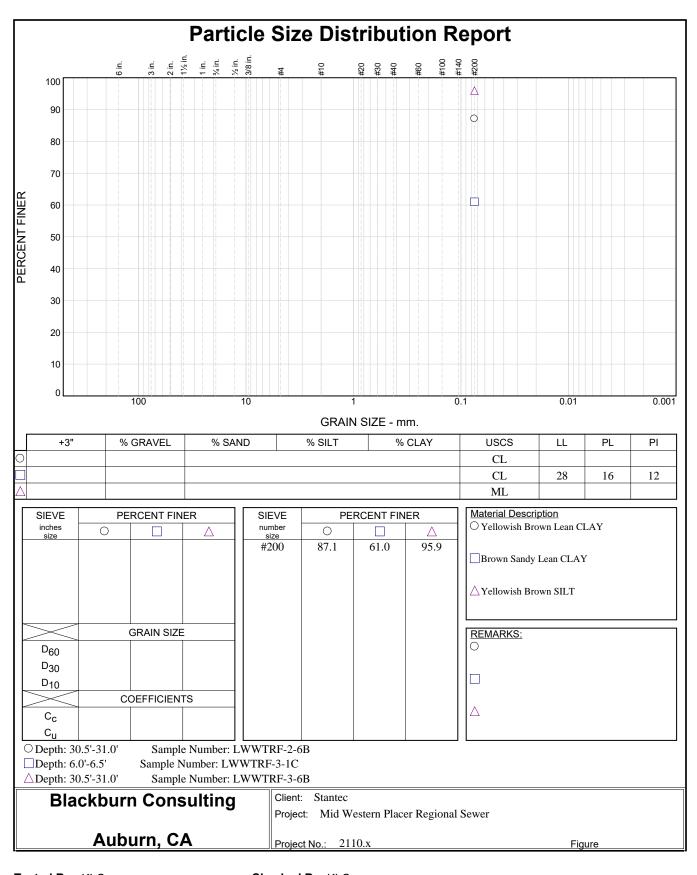
NOTE: This legend sheet provides descriptors and associated criteria for required soil description components only. Refer to Caltrans Soil and Rock Logging, Classification, and Presentation Manual (July 2007), Section 2, for tables of additional soil description components and discussion of soil description and identification.

Blackburn Consulting 11521 Blocker Drive, Suite 110 Auburn, CA 95603

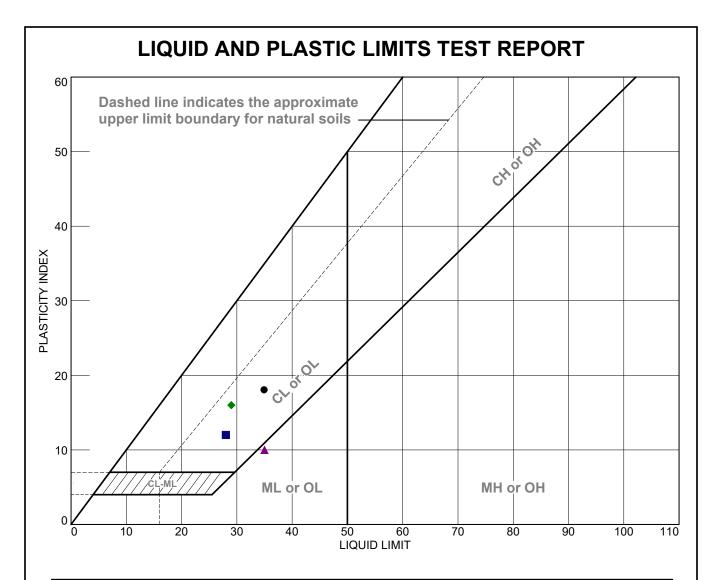
Phone: (530) 887-1494 Fax: (530) 887-1495

BORING RECORD LEGEND						
COUNTY ROUTE POSTMILE						
Placer						
PROJECT NAME Mid-Western Placer Regional Sewer						
File No.	PREPARE	D BY	DATE		SHEET	

GEOTECHNICAL DESIGN REPORT

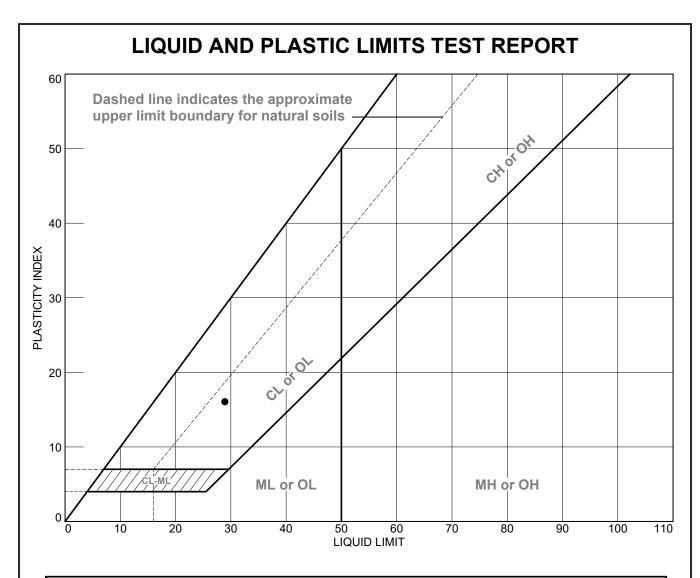

Lincoln Wastewater Treatment and Reclamation Facility

Phase 1 and Phase 2 Expansion Project
WWTP Improvements
Placer County, CA


APPENDIX B

Laboratory Test Results

Tested By: KLC Checked By: KLC



SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs
•		LWWTRF-1-	5.5'-6.0'		17	35	18	
		1B						
		LWWTRF-3-	6.0'-6.5'		16	28	12	CL
		1C						
A		LWWTRF-4-	25.25'-25.75'		25	35	10	

Blackburn Consulting Client: Stantec **Project:** Mid Western Placer Regional Sewer Auburn, CA

Figure

Project No.: 2110.x

SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs
•		LWWTRF-7-	5.5'-6.0'		13	29	16	
		1B						

Blackburn Consulting

Client: Stantec
Project: Mid Western Placer Regional Sewer

Auburn, CA

Project No.: 2110.x

Figure

Tested By: KIC Checked By: RP

Unconfined Compression Test ASTM D 2166

Project Name: Mid Western Placer Regional Sewer

Project Number: 2110.X

Sample: <u>LWWTRF-B2 #4c</u> Depth: <u>20.75-21.25'</u>

Sample Description: <u>Lean CLAY</u>, <u>yellowish brown (cemented)</u>

Date: 1/28/2013

Tested By: KAC

Test Results

Rate of Strain (in/min) 0.060 (1%/min)

blackburn consulting

Average cross-sectional area (in²) 4.62

Deflection at Max. Load (in) 0.128

Maximum Load (lbs) 124

Strain at Failure (%) 2.1

Compressive Strength (tsf) 1.93

Moisture Density Remarks:

5.97

2.40

2.5 : 1

4.52

109.4

76.1

Tube and Sample (g) 1061.20 Tube (g) 286.30 Sample Weight (g) 774.90 Tare Number B7 Tare Weight (g) 152.70 Wet Weight (g) 607.50 Dry Weight (g) 469.10 Dry Weight (g) 316.40 Water Weight (g) 138.40 Percent Moisture (%)* 43.7

Compression Tests

Wet Density (pcf)

Dry Density (pcf)

Original Sample Length

Original Diameter (in)

Height-to-Diameter Ratio

Sample Area (in²)

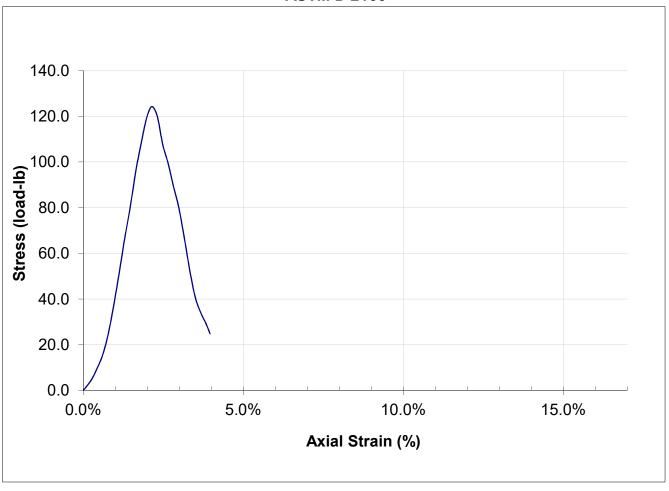
Dial reading @ 0 lb 0.000

Unconfined Compression Test Readings

Dial Reading	Lb	Dial Reading	Lb	Dial Reading	Lb	Dial Reading	Lb
0.006	2	0.169	89				
0.016	5	0.179	80				
0.026	10	0.189	66				
0.036	16	0.199	52				
0.047	25	0.209	41				
0.057	37	0.219	34				
0.067	51	0.229	29				
0.077	66	0.236	25				
0.088	80						
0.097	95						
0.108	108						
0.118	119						
0.128	124						
0.138	120			·	•		
0.148	108			·	•		
0.158	99						

Project

Mid Western Placer Regional Sewer
Project Number
2110.X



Sample Number LWWTRF-B2 #4c

Material Description

Lean CLAY, yellowish brown (cemented) **Tested By**KAC

ASTM D 2166

Wet Density (pcf)	109.4
Dry Density (pcf)	76.1
% Moisture	43.7

Unconfined Compressive Strength (tsf) _______ 1.93

Unconfined Compression Test ASTM D 2166-06

Project Name: Mid Western Placer Regional Sewer

Project Number: 2110.X

Sample: LWWTRF B3-3c Depth: 15.9-16.4'

Sample Description: SILTY SAND, light olive brown (Partially Cemented)

Date: 10/22/2012

6.00

2.40

2.5 : 1

4.52

Tested By: B. Moore

Test Results

3.6% Axial Strain at Max. Load Average cross-sectional area (in²) 4.69 Deflection at Max. Load (in) 0.213 Maximum Load (lbs) 223 1.28 Strain at Failure (%) 3.43 Compressive Strength (tsf)

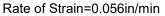
Moisture Density

Original Sample Length

Original Diameter (in)

Height-to-Diameter Ratio

Sample Area (in²)


Remarks:

* % moisture taken after test.

Tube and Sample (g)	1141.90
Tube (g)	266.50
Sample Weight (g)	875.40
Tare Number	A7
Tare Weight (g)	153.80
Wet Weight (g)	556.90
Dry Weight (g)	481.90
Dry Weight (g)	328.10
Water Weight (g)	75.00
Percent Moisture (%)*	22.9
Wet Density (pcf)	122.9
Dry Density (pcf)	100.0

Compression Tests

Dial reading @ 0 lb 0.000

Unconfined Compression Test Readings

Checimine Compression restrictionings							
Dial Reading	Lb	Dial Reading	Lb	Dial Reading	Lb	Dial Reading	Lb
	2	0.162	154				
0.010	11	0.173	171				
0.021	16	0.183	187				
0.030	20	0.193	201				
0.041	25	0.203	213				
0.051	30	0.213	223				
0.061	36	0.224	222				
0.071	42	0.233	208				
0.081	50	0.244	142				
0.092	59	0.254	42				
0.101	69	0.264	41				
0.112	79	0.274	31				
0.122	93	0.285	29				
0.132	107	0.285	26				
0.142	122				•		
0.153	138		·		·		

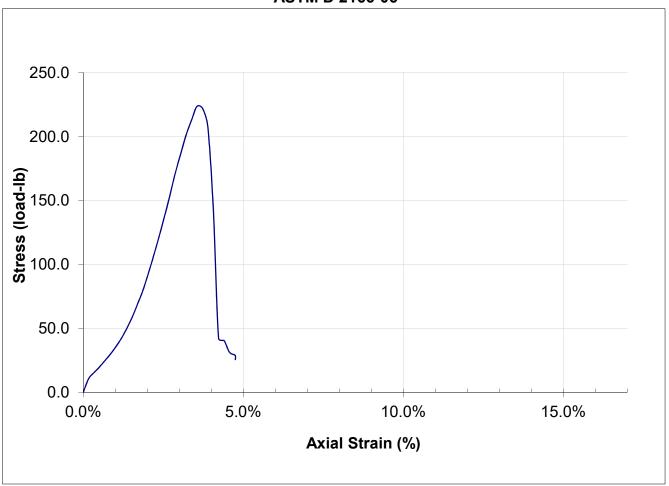
Project

Mid Western Placer Regional Sewer **Project Number**

2110.X

Sample Number

LWWTRF B3-3c


Material Description

SILTY SAND, light olive brown (Partially Cemented)

Tested By

B. Moore

ASTM D 2166-06

Wet Density (pcf)	122.9
Dry Density (pcf)	100.0
% Moisture	22.9

Unconfined Compressive Strength (tsf) 3.43

Unconfined Compression Test ASTM D 2166-06

Project Name: Mid Western Placer Regional Sewer

Project Number: 2110.X

Sample: <u>LWWTRF-B3 #5c</u> Depth: <u>26.0-26.5'</u>

Sample Description: Lean CLAY, yellowish red (cemented)

5.98

2.40

2.5 : 1

4.52

106.6

Date: 1/30/2013

Tested By: KAC

Test Results

Rate of Strain (in/min) 0.060 (1%/min)

blackburn consulting

Average cross-sectional area (in²) 4.69

Deflection at Max. Load (in) 0.206

Maximum Load (lbs) 291

Strain at Failure (%) 3.4

Compressive Strength (tsf) 4.46

Moisture Density

Original Sample Length

Original Diameter (in)

Height-to-Diameter Ratio

Sample Area (in²)

Remarks:

Tube and Sample (g) 1201.70 Tube (g) 286.40 Sample Weight (g) 915.30 Tare Number B6 Tare Weight (g) 154.10 Wet Weight (g) 588.30 Dry Weight (g) 513.30 Dry Weight (g) 359.20 Water Weight (g) 75.00 Percent Moisture (%)* 20.9 Wet Density (pcf) 128.9

Compression Tests

Dry Density (pcf)

Dial reading @ 0 lb 0.000

Rate of Strain=0.056in/min

*% moisture taken after test.

2110.X

WINTRF

B3-5C

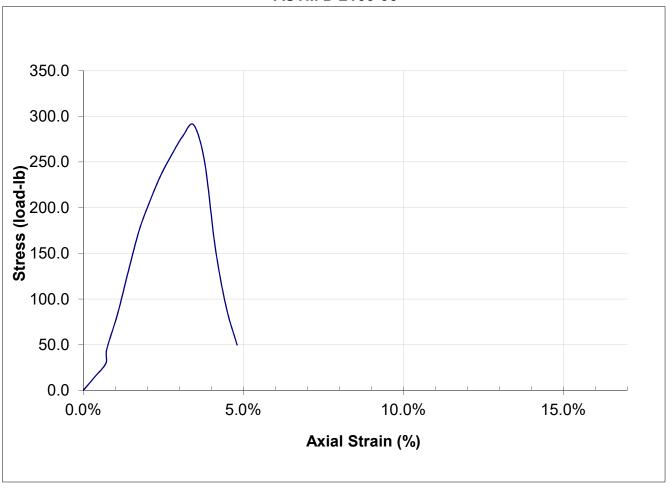
26.0-26.5

Unconfined Compression Test Readings

			p.: \		touugc	I	T
Dial Reading	Lb	Dial Reading	Lb	Dial Reading	Lb	Dial Reading	Lb
0.022	15	0.328	43				
0.042	30	0.348	45				
0.044	45	0.369	48				
0.064	84	0.389	52				
0.084	131	0.409	56				
0.105	176	0.429	59				
0.125	208	0.450	60				
0.145	236	0.470	63				
0.166	258	0.490	56				
0.186	278						
0.206	291						
0.227	251						
0.247	156						
0.267	91						
0.287	50						
0.308	43						

Project

Mid Western Placer Regional Sewer
Project Number
2110.X



Sample Number LWWTRF-B3 #5c

Material Description

Lean CLAY, yellowish red (cemented) **Tested By**KAC

ASTM D 2166-06

Wet Density (pcf)	128.9
Dry Density (pcf)	106.6
% Moisture	20.9

Unconfined Compressive Strength (tsf) 4.46

Unconfined Compression Test ASTM D 2166-06

Project Name: Mid Western Placer Regional Sewer

Project Number: 2110.X

Sample: <u>LWWTRF-B5 #2c</u> Depth: <u>11.0-11.5'</u>

Sample Description: Lean CLAY (top)/SILTY SAND (bottom), yellowish brown (cemented)

Date: 1/30/2013

5.99

2.40

2.5 : 1

4.52

Tested By: KAC

Test Results

Rate of Strain (in/min)	0.060	(1%/min)
Average cross-sectional area (in [*]) Deflection at Max. Load (in)	4.60 0.102	
Maximum Load (lbs)	163	

Strain at Failure (%) 1.7
Compressive Strength (tsf) 2.55

Moisture Density

Original Sample Length

Original Diameter (in)

Height-to-Diameter Ratio

Sample Area (in²)

Remarks:

* % moisture taken after test

Tube and Sample (g)	1023.80
Tube (g)	211.50
Sample Weight (g)	812.30
Tare Number	C1
Tare Weight (g)	153.00
Wet Weight (g)	639.50
Dry Weight (g)	556.90
Dry Weight (g)	403.90
Water Weight (g)	82.60
Percent Moisture (%)*	20.5
Wet Density (pcf)	114.3
Dry Density (pcf)	94.9

Compression Tests

Rate of Strain=0.056in/min

Dial reading @ 0 lb 0.000

0.000

Unconfined Compression Test Readings

				500:0:: 1 000:	touumge		
Dial Reading	Lb	Dial Reading	Lb	Dial Reading	Lb	Dial Reading	Lb
0.011	2						
0.021	9						
0.031	22						
0.042	36						
0.052	54						
0.062	76						
0.072	99						
0.082	125						
0.092	149						
0.102	163						
0.113	124						
0.123	10						
0.133	10						
0.143	11						

2110.X

Project

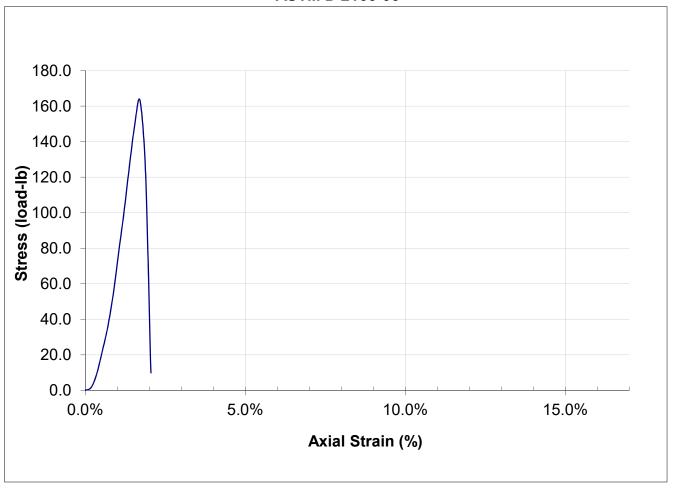
Mid Western Placer Regional Sewer **Project Number**

2110.X

consulting

Sample Number

LWWTRF-B5 #2c


Material Description

Lean CLAY (top)/SILTY SAND (bottom), yellowish brown (cemented)

Tested By

KAC

ASTM D 2166-06

Wet Density (pcf)	114.3
Dry Density (pcf)	94.9
% Moisture	20.5

Unconfined Compressive Strength (tsf) 2.55

Unconfined Compression Test ASTM D 2166-06

Project Name: Mid Western Regional Sewer

Project Number: 2110.X

Sample: <u>LWWTRF B7-3c</u> Depth: <u>16.0-16.5'</u>

Sample Description: Sandy Lean CLAY, dark yellowish brown

6.00

2.40

2.5 : 1

4.52

Date: 10/22/2012

Tested By: B. Moore

Test Results

Axial Strain at Max. Load

Average cross-sectional area (in²)

Deflection at Max. Load (in)

Maximum Load (lbs)

Strain at Failure (%)

Compressive Strength (tsf)

7.8%

4.91

0.470

2.82

Moisture Density

Original Sample Length

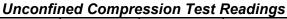
Original Diameter (in)

Height-to-Diameter Ratio

Sample Area (in²)

Remarks:

* % moisture taken after test.


Midwestern Placer Regional Sever 2116 x U.C. B7-36 16-16.5

Tube and Sample (g)	921.70
Tube (g)	0.00
Sample Weight (g)	921.70
Tare Number	A1
Tare Weight (g)	154.80
Wet Weight (g)	473.60
Dry Weight (g)	419.70
Dry Weight (g)	264.90
Water Weight (g)	53.90
Percent Moisture (%)*	20.3
Wet Density (pcf)	129.4
Dry Density (pcf)	107.5

Compression Tests

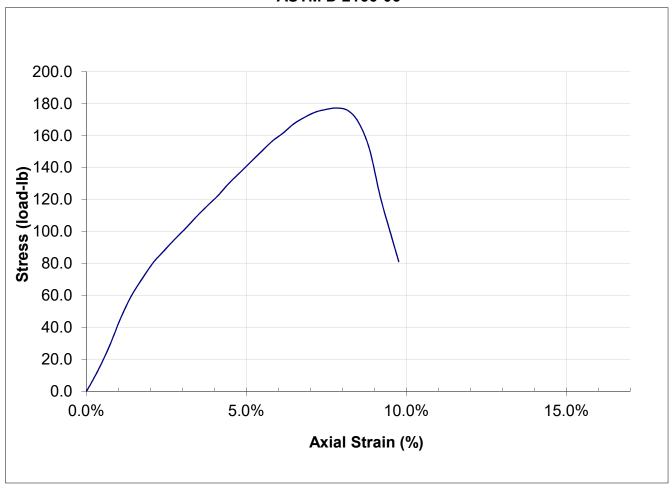
Dial reading @ 0 lb 0.000

Rate of Strain=0.056in/min

Checkmied Compression rest redunings									
Dial Reading	Lb	Dial Reading	Lb	Dial Reading	Lb	Dial Reading	Lb		
0.003	2	0.328	150						
0.024	14	0.349	156						
0.044	29	0.369	161						
0.064	46	0.389	167						
0.084	60	0.409	171						
0.105	70	0.430	175						
0.125	80	0.450	176						
0.145	88	0.470	177						
0.166	95	0.491	175						
0.186	102	0.511	168						
0.207	109	0.531	151						
0.226	116	0.551	122						
0.247	122	0.571	98						
0.267	130	0.586	81						
0.287	137								
0.308	143								

Project

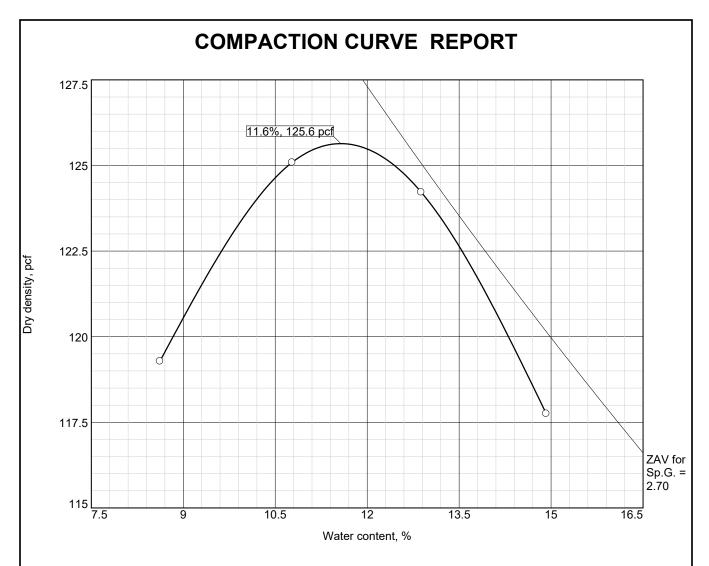
Mid Western Regional Sewer
Project Number
2110.X


Sample Number LWWTRF B7-3c

Material Description

Sandy Lean CLAY, dark yellowish brown **Tested By**

B. Moore


ASTM D 2166-06

Wet Density (pcf)	129.4
Dry Density (pcf)	107.5
% Moisture	20.3

Unconfined Compressive Strength (tsf) 2.60

Sample		2110.x									
-		Project No: 2110.x JOB				Mid Wester Placer Regional Sewer			ASTM D4829-11		
		LWWTRF	B6-1B			DATE	1	0/24/2012		BY	KLC
Initia	al Ht =	1	inches	$G_s =$	2.7		Factor =	(4)(1728) (π)(4.01))(2.2046) ² (1000)	=	0.3016
EI _{raw} =	(1000)(∆ <i>H</i>)			Dry Dens	ity (pcf) =	$\gamma_d = C$	alc'd Dry	Wt, gms)		
	H		(5.0.0) (0.5	, \		0/			ht. in inch		
E	corrected =	El _{raw} -	<u>(50-S)(65</u>	0+ E I _{raw}) 220-S	where:	w = % mo S = satura	isture in de ation in per			'ERY LOW LOW	
				2200		H = initial	height		51 - 90 I	MEDIUM	
Satu	ration =	(100)(w)(0) [(Gs)(62.4)				ΔH = total	change in	height	91 - 130 > 130 \	HIGH VERY HIGH	
			¥L 1					TRI			
DATE	TINAL	LOAD	DIAL	REV	TOTAL	DATE	TINAC	1040	DIAL	REV	TOTAL
DATE	TIME	LOAD	READ RY	COUNT	EXPAN	DATE	TIME	LOAD DI	READ RY	COUNT	EXPAN
25-Oct	7:25	1 lb/in^2		0	0.0000						
25-Oct	7:35	1 lb/in^2	0 1113	0	0.0000						
20 001	7.00	W		- U	0.0000			w	<u> </u> ET		
25-Oct	7:37	1 lb/in^2		0	0.0178			- "			
25-Oct	7:55	1 lb/in^2		0	0.0093						
25-Oct	8:21	1 lb/in^2		0	0.0086						
25-Oct	9:40	1 lb/in^2	0.1032	0	0.0081						
25-Oct	10:55	1 lb/in^2	0.1035	0	0.0078						
25-Oct	14:16	1 lb/in^2	0.1036	0	0.0077						
25-Oct	6:30	1 lb/in^2	0.1038	0	0.0075						
25-Oct	7:30	1 lb/in^2	0.1038	0	0.0075						
		TRIA	\L 1					TRIA	AL 2		
Mois	ture Con			Density	A 51	Moi	sture Con			Density	A 51
Tare No.	Before	After		Before R1	After	Tare No.	Before	After		Before	After
Gross Wet	T11	500.0	Wet+ ring	700.0		Gross Wet			Wet+ ring		
Wt (gm) Gross Dry	439.9	568.0	(gms) Ring (gms)	763.8		Wt (gm) Gross Dry			(gms) Ring (gms)		
Wt (gm) Water Loss	423.7	516.3	Wet Soil	367.1		Wt (gm) Water Loss			Wet Soil		
(gm)	16.2	51.7	(gms)	396.7		(gm)			(gms)		
Tare Wt. (gm)	258.1	306.6	Calc'd dry soil (gms)	361.4	361.4	Tare Wt. (gm)			Calc'd dry soil (gms)		
Net Dry Wt (gm)	165.6	209.7	Dry Dens (pcf)	109.0	107.1	Net Dry Wt (gm)			Dry Dens (pcf)		
% Moisture	9.8	24.7				% Moisture					
Calculated		on (%)		48.4	116.1		d Saturati	on (%)			
Total Swe))			.8 8	Total Sw)			
Expansion Expansion					8 7		n Index (ra n Index (co			1	

Test specification: ASTM D 1557-07 Method A Modified

Elev/	Classit	ication	Nat.	C C	1.1	Di	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200
0'-10.0'				2.70			2.0	

TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 125.6 pcf	Yellowish Brown Sandy Lean CLAY
Optimum moisture = 11.6 %	
Project No. 2110.x Client: Stantec	Remarks:
Project: Mid Western Placer Regional Sewer	Sampled 9-25-2012 Specific Gravity estimated at 2.70
O Depth: 0'-10.0' Sample Number: LWWTRF-5-Bag A	
Blackburn Consulting	
Auburn, CA	Figure

Tested By: KLC Checked By: RP

MINIMUM RESISTIVITY OF SOILS

1415 Tuolumne St. Fresno, CA 93706 Ph: (559) 497-2868 Fax: (559) 485-6140

Caltrans Test Method 643

Project Name: Blackburn Consulting Report Date: 10/29/2012 G10-085-10F PO: 10306 Sample Date: 9/25/2012 Project Number: Lab Tracking ID: F12-544 Test Date: 10/22/2012 Sample Location: 2110.x Midwestern Placer Regional Sewer / LWWTRF B2-Bag B Sample Description: Sandy Clay (CL) fine-medium grained, yellow-brown Tested By: S.M.

Sampled By: T. McCrea (Blackburn)

HOS ideals

23.8 °C Soil temperature at minimum resistance =

Total Moisture Added (ml)	Meter Dial Multiplier Reading Setting		Resistance Measured (ohms)	Resistivity (ohm-cm)	
10	4.9	1,000	4,900	5,917	
20	1.7	1,000	1,700	2,053	
30	1.6	1,000	1,600	1,932	
40	1.8	1,000	1,800	2,174	
Minimum	1,930				

Remarks:

Certificate of Analysis

Isaac Chavarria BSK Associates - Fresno 567 W Shaw, Suite B Fresno, CA 93704 Report Issue Date: 10/26/2012 15:16 Received Date: 10/22/2012

Received Time: 09:36

Lab Sample ID:

Sample Type:

A2J1821-01

Sample Date: 05

09/25/2012 09:30

Other

Client Project: G10-085-10F/F12-544

Sampled by: Blackburn Consulting

Matrix: Solid

Sample Description: LWWTRF B2-Bag B Brown Sandy Lean Clay

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
*Chloride, Cal Trans Extract	California Test 422	18	3.0	mg/kg	1	A212057	10/24/12	10/24/12	
pH, Cel Trans Extract	California Test 543	7.7		pH Units	1	A212198	10/26/12	10/26/12	
*pH Temperature in *C		20,6							
"Sulfate as SO4, Cel Trans Extract	California Test 417	20	8,0	mg/kg	1	A212067	10/24/12	10/24/12	

MINIMUM RESISTIVITY OF SOILS

1415 Tuolumne St. Fresno, CA 93706 Ph: (559) 497-2868 Fax: (559) 485-6140

Caltrans Test Method 643

Report Date: 10/29/2012 Project Name: Blackburn Consulting G10-085-10F PO: 10306 Sample Date: 9/25/2012 Project Number: Lab Tracking ID: F12-544 Test Date: 10/22/2012 2110.x Midwestern Placer Regional Sewer / LWWTRF B5-5B Sample Location: Sample Description: Sandy Clay (CL) fine-medium grained, yellow-brown Sampled By: T. McCrea (Biackburn) Tested By: S.M.

Soil temperature at minimum resistance = 23.8 °C

Total Moisture Added (ml)	Meter Dial Multiplier Reading Setting		Resistance Measured (ohms)	Resistivity (ohm-cm)	
0	1.8	1,000	1,800	2,174	
10	8.6	100	860	1,038	
20	9.4	100	940	1,135	
			2		
Minimum	m	1,040			

Remarks:

Reviewed By: Les Arsh

Certificate of Analysis

Isaac Chavarria BSK Associates - Fresno 567 W Shaw, Suite B Fresno, CA 93704 Report Issue Date: 10/26/2012 15:16 Received Date: 10/22/2012

Received Date: 10/22/

Lab Sample ID:

A2J1821-02

Client Project: G10-085-10F/F12-544

Sample Date:

09/25/2012 11:00

Sampled by: Blackburn Consulting

Sample Type:

Other

Matrix: Solid

Sample Description: LWWTRF B5-5B Yellowish Brown Sandy Lean Clay

General Chemistry

Analyte	Method	Result	RL	Units	RL Muli	Batch	Prepared	Analyzed	Qual
Chloride, Cal Trans Extract	California Test 422	24	3.0	mg/kg	Ť	A212057	10/24/12	10/24/12	
pH, Cal Trans Extract	California Test 643	7.5		pH Units	1	A212198	10/28/12	10/26/12	
pH Temperature in °C		21.4							
Sulfate ee SO4, Cel Trans Extract	California Test 417	8.3	6.0	rng/kg	1	A212057	10/24/12	10/24/12	

MINIMUM RESISTIVITY OF SOILS

1415 Tuolumne St. Fresno, CA 93706 Ph: (559) 497-2868 Fax: (559) 485-6140

Caltrans Test Method 643

Project Name:	Blackhum c			
Project Number:	Blackburn Consulting G10-085-10F		Report Date: 10/29/2012	
lab Tearle	F12-544	PO: 10306	8	
Samuel I				
Samuel B	2110.x Midwestern Placer Re Sandy Clay (CL) fine	egional Sewer / LWWTRF I	B7-3B	····
Sampled D.	Sandy Clay (CL) fine-medium T. McCrea (Blackburn)	n grained, brown		
	(Blackburn)	Tested By: S.I	м.	
Soil tomposed				

Soil temperature at minimum resistance = 24.1 °C

otal Moisture Added (ml)	Meter Dial Reading	Multiplier Setting	Resistance Measured (ohms)	Resistivity (ohm-cm)
40	6.1	1,000		(=::m=cm)
10	1.2	1,000	6,100	7,412
20	1.0		1,200	1,458
30		1,000	1,000	
	1.3	1,000	1,300	1,215
Minimum				1,580
winimum R	esistivity at 15	.5°C. Ohm-cm		
	70.50 3460	, = 1111-G[1]		1,220

Remarks:

Reviewed By:

Certificate of Analysis

Isaac Chavarria BSK Associates - Fresno 567 W Shaw, Suite B Fresno, CA 93704

Report Issue Date: 10/26/2012 15:16 Received Date: 10/22/2012 Received Time: 09:36

Lab Sample ID: Sample Date:

A2J1821-03

09/25/2012 14:00

Sample Type: Other Client Project: G10-085-10F/F12-544

Sampled by: Blackburn Consulting

Matrix: Solid

Sample Description: LWWTRF B7-3B Brown Sandy Lean Clay

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
'Chloride, Cal Trans Extract	California Test 422	28	3,0	mg/kg	1	A212057	10/24/12	10/24/12	
*pH, Cal Trens Extract	California Test 643	7.7		pH Units	1	A212198	10/26/12	10/26/12	
*pH Temperature in "C		20.6							
*Builate as SO4, Cal Trans Extract	California Test 417	10	6.0	mg/kg	1	A212057	10/24/12	10/24/12	

GEOTECHNICAL DESIGN REPORT

Lincoln Wastewater Treatment and Reclamation Facility

Phase 1 and Phase 2 Expansion Project
WWTP Improvements
Placer County, CA

APPENDIX C

Important Information About This Geotechnical Engineering Report, Geoprofessional Business Association

Important Information about This

Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you – assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, clients can benefit from a lowered exposure to the subsurface problems that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed below, contact your GBA-member geotechnical engineer. **Active involvement in the Geoprofessional Business** Association exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Geotechnical-Engineering Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical-engineering study conducted for a given civil engineer will not likely meet the needs of a civilworks constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared solely for the client. Those who rely on a geotechnical-engineering report prepared for a different client can be seriously misled. No one except authorized client representatives should rely on this geotechnical-engineering report without first conferring with the geotechnical engineer who prepared it. And no one – not even you – should apply this report for any purpose or project except the one originally contemplated.

Read this Report in Full

Costly problems have occurred because those relying on a geotechnical-engineering report did not read it *in its entirety*. Do not rely on an executive summary. Do not read selected elements only. *Read this report in full*.

You Need to Inform Your Geotechnical Engineer about Change

Your geotechnical engineer considered unique, project-specific factors when designing the study behind this report and developing the confirmation-dependent recommendations the report conveys. A few typical factors include:

- the client's goals, objectives, budget, schedule, and risk-management preferences;
- the general nature of the structure involved, its size, configuration, and performance criteria;
- the structure's location and orientation on the site; and
- other planned or existing site improvements, such as retaining walls, access roads, parking lots, and underground utilities.

Typical changes that could erode the reliability of this report include those that affect:

- the site's size or shape;
- the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light-industrial plant to a refrigerated warehouse;
- the elevation, configuration, location, orientation, or weight of the proposed structure;
- the composition of the design team; or
- · project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes – even minor ones – and request an assessment of their impact. The geotechnical engineer who prepared this report cannot accept responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.

This Report May Not Be Reliable

Do not rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it; e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, that it could be unwise to rely on a geotechnical-engineering report whose reliability may have been affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If your geotechnical engineer has not indicated an "apply-by" date on the report, ask what it should be,* and, in general, *if you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying it. A minor amount of additional testing or analysis – if any is required at all – could prevent major problems.

Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface through various sampling and testing procedures. Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing were performed. The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgment to form opinions about subsurface conditions throughout the site. Actual sitewide-subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team from project start to project finish, so the individual can provide informed guidance quickly, whenever needed.

This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, *they are not final*, because the geotechnical engineer who developed them relied heavily on judgment and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* revealed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmation-dependent recommendations if you fail to retain that engineer to perform construction observation*.

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a full-time member of the design team, to:

- · confer with other design-team members,
- help develop specifications,
- review pertinent elements of other design professionals' plans and specifications, and
- be on hand quickly whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform construction observation.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, but be certain to note conspicuously that you've included the material for informational purposes only. To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report, but they may rely on the factual data relative to the specific times, locations, and depths/elevations referenced. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, only from the design drawings and specifications. Remind constructors that they may

perform their own studies if they want to, and *be sure to allow enough time* to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

Read Responsibility Provisions Closely

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnical-engineering report does not usually relate any environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Unanticipated subsurface environmental problems have led to project failures. If you have not yet obtained your own environmental information, ask your geotechnical consultant for risk-management guidance. As a general rule, do not rely on an environmental report prepared for a different client, site, or project, or that is more than six months old.

Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, none of the engineer's services were designed, conducted, or intended to prevent uncontrolled migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, proper implementation of the geotechnical engineer's recommendations will not of itself be sufficient to prevent moisture infiltration. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. Geotechnical engineers are not building-envelope or mold specialists.

Telephone: 301/565-2733 e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2016 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent

GEOTECHNICAL DESIGN REPORT

Lincoln Wastewater Treatment and Reclamation Facility
Phase 1 Expansion
Tertiary Storage Basin No. 3
Placer County, CA

Prepared by:

BLACKBURN CONSULTING

11521 Blocker Drive, Suite 110 Auburn, CA 95603 (530) 887-1494

April 2018

Prepared for:

Stantec

3875 Atherton Road Rocklin, CA 95765

Auburn Office:

11521 Blocker Drive, Suite 110 • Auburn, CA 95603 (530) 887-1494 • Fax (530) 887-1495

Fresno Office: (559) 438-8411 West Sacramento Office: (916) 375-8706

Geotechnical • Geo-Environmental • Construction Services • Forensics

File No. 3228.X April 10, 2018

Mr. Gabe Aronow, P.E. Stantec 3875 Atherton Road Rocklin CA 95765

Subject: **GEOTECHNICAL DESIGN REPORT**

Lincoln Wastewater Treatment and Reclamation Facility Phase 1 Expansion

Tertiary Storage Basin No. 3 Placer County, California

Dear Mr. Aronow:

Blackburn Consulting (BCI) is pleased to submit this Geotechnical Design Report for the Lincoln Wastewater Treatment and Reclamation Facility Phase 1 Expansion Project, Tertiary Storage Basin No. 3, located in Placer County, California. BCI prepared this report in accordance with our June 6, 2017 agreement.

This report presents geotechnical and geologic data and provides recommendations to design and construct the new basin.

Please call us if you have questions or require additional information.

ENGINEERING GEOLOGIST

Sincerely,

BLACKBURN CONSULTING

Rob Pickard, P.G., C.E.G

Project Engineering Geologist

Thomas W. Blackburn, G.E., P.E.

Senior Principal

GEOTECHNICAL DESIGN REPORT

Lincoln Wastewater Treatment and Reclamation Facility
Phase 1 Expansion
Tertiary Storage Basin No. 3
Placer County, CA

TABLE OF CONTENTS

1	INTRO	DDUCTION	1
	1.1	Purpose	1
	1.2	Scope of Services	1
	1.3	Site Location and Description	1
	1.4	Project Description	2
2	GEOL	OGIC CONDITIONS	2
	2.1	General Geology	2
	2.2	Faulting	3
3	FIELD	WORK AND LABORATORY TESTS	3
	3.1	Exploratory Borings and Test Pits	3
	3.2	Laboratory Testing	4
4	SUBS	URFACE FINDINGS	4
	4.1	Soil Conditions	4
	4.2	Groundwater	5
5	EMB <i>A</i>	NKMENT STABILITY AND SEEPAGE ANALYSIS	6
	5.1	Cross-section Development for Analysis	6
	5.2	Analysis Methodology and Results	8
	5.3	Steady State Seepage Analysis	9
6	CONC	CLUSIONS AND RECOMMENDATIONS	10
	6.1	Embankment Design	10
	6.2	Ground preparation and Keyway	10
	6.3	Embankment Fill Requirements	11
	6.4	Inlet/Outlet Pipe Installation	11
	6.5	Embankment Liner	14
	6.6	Erosion Control	14
	6.7	Dewatering	14
7	RISK I	MANAGEMENT	14
8	LIMIT	ATIONS	15

Lincoln Wastewater Treatment and Reclamation Facility
Phase 1 Expansion
Tertiary Storage Basin No. 3
Placer County, CA

FIGURES

Figure 1: Vicinity Map Figure 2: Site Map

Figure 3: Regional Geologic Map Figure 4: Regional Fault Map

Figure 5: North and East Embankment Cross-Section, Inner Slope Figure 6: North and East Embankment Cross-Section, Outer Slope Figure 7: South and West Embankment Cross-Section, Inner Slope Figure 8: South and West Embankment Cross-Section, Outer Slope

APPENDIX A

Boring Logs (B-1 through 6) Legend to Logs Test Pit Logs (TP-1 through 8)

APPENDIX B

Laboratory Summary Laboratory Test Results

APPENDIX C

Important Information About This Geotechnical Engineering Report, Geoprofessional Business Association

1 INTRODUCTION

1.1 Purpose

Blackburn Consulting (BCI) prepared this Geotechnical Memorandum for the planned third Tertiary Storage Basin included in the Phase 1 Expansion Project at the City of Lincoln Wastewater Treatment and Reclamation Facility located in Placer County, California.

BCI prepared this report for design and construction of the proposed embankments for the new tertiary storage basin. Do not rely upon this report for different locations or improvements without the written consent of BCI.

1.2 Scope of Services

To prepare this report, BCI:

- Discussed the proposed Tertiary Storage Basin No. 3 (TSB No. 3) with Stantec,
- Reviewed published geologic mapping,
- Reviewed available geotechnical reports for existing facilities, including:
 - Carlton Engineering, August 1999, Remote Storage Basins, East of Fiddyment Road, Placer County, California.
 - o Kleinfelder, March 2001, Geotechnical Investigation Report.
 - o Kleinfelder, January 2002, Updated Geotechnical Investigation Report.
 - BCI, April 2013, Geotechnical Design Report, Mid-Western Placer Regional Sewer Project.
 - o BCI, November 2017, Geotechnical Design Report, Lincoln Wastewater Treatment and Reclamation Facility Phase 1 and 2 Expansion Project.
- Reviewed plans for the existing tertiary storage basins, dated 1999 and 2006,
- Reviewed plans for the existing emergency storage basin, dated 2001 and 2003,
- Performed field investigation and laboratory analyses,
- Performed engineering analysis and calculations.

1.3 Site Location and Description

The expansion project is located in an unincorporated area of Placer County. Figure 1 shows the project location.

The project adds a third tertiary storage basin at the City of Lincoln Wastewater Treatment and Reclamation Facility (WWTRF). Figure 2 shows the approximate location of the third basin.

Lincoln WWTRF Phase 1 and Phase 2 Expansion Tertiary Storage Basin No. 3 Placer County, California

File No. 3228.X April 10, 2018

1.4 Project Description

Stantec's proposed design indicates that TSB No. 3 will:

- Hold approximately 80 million gallons,
- Have 24-foot high, homogeneous, blended soil embankments (no zones or cores) built to 3h:1v slopes on both water (inner) and land (outer) sides,
- Have a "berm" on the outer side of the south and west embankments built up to an elevation of about 110 feet,
- Have embankment crest elevations around 125 feet and bottom of basin elevations around 101 feet,
- Have piping and associated vaults installed in the northeast corner of the existing embankment.
- Be fully lined with an HDPE liner, to mitigate through seepage and underseepage.

Stantec has designated borrow sites on the north and east sides of the proposed TSB No. 3 to construct the south and west embankments of the new basin (see Figure 2). The existing south embankment of the Emergency Storage Basin (ESB) will form the north embankment of the new basin. The existing west embankment of Tertiary Storage Basin No. 2 (TSB No. 2) will form the east embankment of the new basin. The borrow excavation will increase the height of these two existing embankments from about 10 to 15 feet to about 21 to 24 feet, measured from the crest to the toe of the inner slope. Additionally, approximately 14- inches of fill will be added to the top of the existing northern embankment.

Figure 2 shows the approximate embankment location and borrow areas.

2 GEOLOGIC CONDITIONS

2.1 General Geology

Our site work and published geologic mapping¹ show the site is underlain by Quaternary deposits of the Riverbank Formation.

The Riverbank Formation is an alluvial deposit typically composed of interbedded medium dense to dense sands, often cemented, and stiff to hard silts and clays. Bedding is typically horizontal, lenticular, and discontinuous. These sediments were deposited in the Late Pleistocene age (deposited over 150,000 years ago). This unit is shown as "Qrl" and "Qru" (Lower and Upper Riverbank) on Figure 3. Our exploratory borings and test pits confirm that the site is underlain by interbedded clays, silts, and sands, which is consistent with the Riverbank Formation.

¹ Helley, E.J. and Harwood, D.S., 1985, Geologic Map of the Late Cenozoic Deposits of the Sacramento Valley and Northern Sierra Foothills: U.S. Geological Survey, Map MF-1790.

Lincoln WWTRF Phase 1 and Phase 2 Expansion Tertiary Storage Basin No. 3 Placer County, California

File No. 3228.X April 10, 2018

2.2 Faulting

The Fault Activity Map of California² does not identify Historic or Holocene age faults (displacement within the last 11,700 years) within or adjacent to the project site. The nearest mapped fault is the Cleveland Hill Fault located approximately 40 miles north of the site. Figure 4 shows the approximate location of faulting in the region.

3 FIELDWORK AND LABORATORY TESTS

3.1 Exploratory Borings and Test Pits

To characterize the subsurface conditions, BCI drilled, logged, and sampled six borings (B1 through B6) on October 6, 2017, and eight test pits (TP1 through TP8) on October 31, 2017. Borings extended to 26.5 feet below existing ground surface, and test pits extended 6.5 to 9.0 feet below existing ground surface. Figure 2 shows the approximate boring and test pit locations. We include logs of the explorations in Appendix A.

We located exploration points using a handheld GPS and geographic features shown on the project topographic mapping.

Our subcontractor, Taber Drilling, drilled the borings using 4-inch solid-stem auger. We obtained soil samples at various intervals using a 3.0-inch O.D. Modified California (MC) sampler (equipped with 2.4-inch diameter brass liners), driven with an automatic hammer, weighing 140-pounds and falling approximately 30 inches.

Our subcontractor, Rob Rasch, excavated test pits using a Bobcat E32.

A BCI engineer logged the borings and test pits and retrieved samples for laboratory testing. We used plastic caps to seal and label the 2.4-inch diameter, 6-inch long brass tubes retrieved from MC sampling. We also retrieved bulk soil samples from auger cuttings at varied depths, placed this material in large plastic bags, and labeled them for laboratory identification. Similarly, we took bulk samples from each soil type identified in the test pits and placed the samples in large plastic bags to be used for laboratory analysis.

During our field exploration, we performed field strength testing with a pocket penetrometer on select cohesive and/or cemented soil samples. We note the results of field tests on the boring logs.

² Jennings, Charles W., and Bryant, William A., 2010 Fault Activity Map of California: California Geological Survey, Geologic Data Map No. 6.

3.2 Laboratory Testing

We completed the following laboratory tests on representative soil samples from our exploratory borings:

- Moisture content and unit weight to classify and characterize the in-place soil characteristics
- Plasticity index to classify the soil
- Sieve analysis to classify the soil
- Triaxial undrained, unconfined compression to estimate strength
- Direct shear to estimate strength
- Maximum dry density to estimate compaction characteristics

See Appendix B for a laboratory summary sheet and laboratory test results. We also include these results in our the boring and test pit logs in Appendix A.

4 SUBSURFACE FINDINGS

4.1 Soil Conditions

We encountered the following soil profile in our test pits and borings:

- Proposed borrow areas:
 - Approximate north side of TSB No. 3 above about elevation 100 feet: (B-1, B-2, TP-1, TP-2, TP-3): Mostly stiff to hard lean clays and medium dense clayey sands.
 - Approximate east side of TSB No. 3, above about elevation 100 feet (B-3, B-5, B-6, TP-4, TP-7, TP-8): Mostly medium dense clayey sands and very stiff to hard lean clays.
- Proposed foundation soils for embankments from about elevation 100 feet to 90 feet (TP-1, B-1, TP-3, B-3, B-6, B-5, TP-6, B-4, TP-5, B-2): Mostly stiff to hard lean clays and medium dense sands. We recorded pocket penetrometer tests on fine-grained (clay) soil samples mostly above 4.0 tons per square foot (tsf), with some zones ranging from 1.3 to 3.8 tsf (see logs) and triaxial undrained, unconfined (UU) compression test strengths from 1.15 to 3.01 tsf.

The clayey sands are weakly to moderately cemented with pocket penetrometer tests at or above 4.5 tsf and direct shear strength tests with cohesion values ranging from 0 to 0.6 tsf and ϕ values of 33° to 39°.

• Underlying soils below approximate elevation 90 feet (B-1, B-2, B-3, B-4, B-6): Stiff to hard lean clays. We recorded pocket penetrometer tests on fine-grained (clay) soil samples mostly above 3.5 tsf.

Refer to the logs in Appendix A and laboratory tests in Appendix B for more specific subsurface conditions.

4.2 Groundwater

We encountered groundwater in the borings listed in Table 1. We did not encounter groundwater in any of our test pits, which were explored to depths of 6.5 to 9.0 feet bgs.

TABLE 1

Groundwater Summary										
Boring/Approximate Elevation (ft)	Depth to Water/Approximate Elevation (ft)									
B2/107.5	15/92.5									
B4/109	18/91									

Groundwater at the facility has previously been recorded at shallower depths than what is shown above. Kleinfelder³ recorded groundwater in their borings at depths ranging from 11.5 to 28.5 feet bgs (about elevation 99 to 82 ft) in March-April 2000. A monitoring well placed by Kleinfelder showed groundwater depths ranging from 13.0 ft in March 2000 to 16.9 feet in January 2001 (approximate elevations of 97.5 feet and 93.6 feet).

We recorded groundwater at depths ranging from 22.3 to 28.0 feet bgs (about elevation 88.2 to 82.5 feet) in our September 2012 borings⁴. It is not unusual to encounter sand lenses which can contain perched groundwater at varied depths within the Riverbank Formation.

For project design, assume a groundwater elevation of 99 feet. Groundwater may, on occasion, reach as high as the base of the new basin (elevation 101 feet). This level does not account for seepage from the adjacent basins. HDPE liners may be damaged when groundwater is close to, or above the bottom of the liner. For operation and maintenance, we recommend careful groundwater monitoring in the area TSB No. 3 (and the surrounding basins) to mitigate liner damage.

_

³ Kleinfelder, 2002, Updated Geotechnical Investigation Report, Proposed Lincoln Wastewater Treatment Plant, Fiddyment Road, Placer County, California; consultant's report to Del Webb California Corporation

⁴ BCI, 2013, Geotechnical Design Report, Midwestern Placer Sewer Project, Placer County, California.

5 EMBANKMENT STABILITY AND SEEPAGE ANALYSIS

We address possible embankment failure modes below:

- End of construction. This occurs on medium to tall earth embankments, when pore pressures build during construction and lower strengths. Given the low height of these embankments, proposed 3h:1v inner and outer slope gradients, and very stiff to hard clay foundation materials we do not expect failure from this condition.
- Rapid draw down of the basin. This occurs after an embankment becomes saturated, and the basin water level lowers so quickly that pore pressures in the embankment soils do not have time to dissipate. Since TSB No. 3 will be lined (assuming the HDPE liner is installed correctly and does not leak), the embankment soils should never become saturated from steady state seepage, and so rapid drawdown is not a consideration for TSB No. 3.
- Steady State Condition. We modeled the embankments using the for both static and pseudostatic conditions using Stantec's design slopes with an HDPE liner.

5.1 Cross-section Development for Analysis

To analyze embankment stability, we selected two embankment cross-sections based on our review of the existing topography, subsurface conditions, and preliminary drawings for the new basin provided by Stantec.

Our first cross-section represents the north and east embankments of the new basin (embankments shared with the ESB and TSB No. 2). Table 2 shows the soil properties used for our analysis of this cross-section.

TABLE 2

North and East Embankment	Cross-se	ection	
Soil Description	φ'	c', psf	Unit weight, γ, pcf
Existing embankment fill, sandy lean clay, and clayey sands to elev. 109 ft	32°	50	129
Native clayey sands, elev. 91 to 109 ft or	35°	110	126
Native sandy clays and lean clays, elev. 91 to 109 ft	0°	2000	126
Native sandy clays and lean clays below elev. 91 ft	0°	2000	122

Our second cross-section represents the south and west embankments. Table 3 shows the soil properties we used for this case.

File No. 3228.X April 10, 2018

TABLE 3

South and West Embankment Cr	oss-se	ection	
Soil Description	ф'	c', psf	Unit weight, γ, pcf
Embankment fill: sandy lean clay and clayey sands to elev. 98 to 101.5 ft	32°	50	129
Engineered fill: sandy lean clay and clayey sands, elev. 98 to 110 ft	31°	25	129
Native clayey sands, elev. 90 to 101.5 ft or	35°	110	126
Native sandy clays and lean clays, elev. 90 to 101.5 ft	0°	2000	126
Native sandy clays and lean clays below elev. 90 ft	0°	2000	122

As indicated in Tables 3 and 4, we evaluated both cross-sections for either a sandy clay upper foundation layer, or for a clayey sand upper foundation layer, based on variations observed in our exploratory borings and test pits. We discuss our analysis results in section 5.2, below.

We made the following assumptions in our analysis:

- Where borrow material is excavated along an existing embankment, slopes will continue at their existing angle (3h:1v and 2.5h:1v)
- New embankments will have slope gradients of 3h:1v on both sides, with a crest width of 12 feet.
- The pore pressures in the embankment will not be affected by the water held in the basin because the basin will be fully lined.
- For the north and east embankments, we conservatively assume that the ESB and TSB No. 2 have a water surface elevation at the top of the embankment when evaluating the inner slope of TSB No. 3, and that they are empty when evaluating the outer slope of TSB No. 3,
- For all embankments, we conservatively assume that TSB No. 3 has a water surface elevation at the top of the embankment when evaluating its outer slopes,
- We modeled groundwater at elevation 101 feet, based on a conservative evaluation of measured groundwater in the region.

Figures 4 through 8 show our model cross sections as described above.

5.2 Analysis Methodology and Results

BCI used the program SLOPE/W, version 7.23, to perform slope stability analysis.

For long term slope stability analysis, we used:

- The Spencer limit-equilibrium method of analysis,
- Profile representing the maximum crest height and lowest toe elevation for each embankment analyzed,
- Soil profile and strength characteristics as discussed in section 5.1, using a clayey sand foundation layer (most conservative),
- Pore pressures based on an assumed groundwater surface elevation of 101 feet,
- A tension crack search, which prevents the application of unrealistic tensile strengths in the clay embankment.

Table 4 summarizes our slope stability analysis results.

TABLE 4

	Slope Stability Results		
Location	Water Surface Condition	Steady-State Slope Stability Factor of Safety	Shown on Figure
North or East Embankment, Inner Slope	Emergency Storage Basin/Tertiary Storage Basin No. 2 full, Tertiary Storage Basin No. 3 empty	2.05	5
North or East Embankment, Outer Slope	Emergency Storage Basin/Tertiary Storage Basin No. 2 empty, Tertiary Storage Basin No. 3 full	2.39	6
South and West Embankment, Inner Slope	Tertiary Storage Basin No. 3 empty	2.25	7
South or West Embankment, Outer Slope	Tertiary Storage Basin No. 3 full	2.38	8

Lincoln WWTRF Phase 1 and Phase 2 Expansion Tertiary Storage Basin No. 3 Placer County, California

File No. 3228.X April 10, 2018

In general, higher risk structures such as earthen dams and levees are required to show minimum factors of safety against static slope failure of $1.4^{5,6,7}$ to 1.5^{8} .

We evaluated seismic vulnerability using a pseudostatic analysis with:

- The Bray & Travasarou method⁹ to calculate the seismic coefficient,
- A moment magnitude of 6.5,
- The same critical water surfaces shown in Table 5, above,
- The Spencer limit-equilibrium method of analysis,
- Soil profile and strength characteristics as discussed in section 5.1,
- Pore pressures based on an assumed groundwater surface elevation of 101 feet,
- A tension crack search, which prevents the application of unrealistic tensile strengths in the clay embankment.

We calculated seismic coefficients that range from 0.123 to 0.176. The coefficient calculation is based on site specific parameters and a 16% probability of a seismic displacement greater than 4 inches (vertical). For slope stability analysis using Slope/W we used a conservatively applied a seismic coefficient of 0.2. We calculated factors of safety over 1.2 for each section analyzed. Since the calculated factors of safety are greater than 1.0, we conclude there is less than a 16% probability that a seismic displacement of the embankments would exceed 4 inches.

5.3 **Steady State Seepage Analysis**

Steady State Seepage occurs when a basin fills and partially saturates an embankment. Since TSB No. 3 will be fully lined, we don't expect seepage through the embankments and therefore did not analyze this condition.

⁵ CA Department of Water Resources, Urban Levee Design Criteria, May 2012

⁶ URS for CA Department of Water Resources, Guidance Document for Geotechnical Analyses, Urban Levee Evaluations Project, April 2015

⁷ USACE, Engineering Manual 1110-2-1913: Design and Construction of Levees, April 2000.

⁸ USACE, Engineering Manual 1110-2-1902: Slope Stability, October 2003

⁹ Bray, Jonathan, and Travasrou, Thaleia, September 2009, Pseudostatic Coefficient for Use in Simplified Seismic Slope Stability Evaluation, ASCE Journal of Geotechnical and Geoenvironmental Engineering.

File No. 3228.X April 10, 2018

6 CONCLUSIONS AND RECOMMENDATIONS

We base our recommendations on an impermeable (HDPE lined) basin.

6.1 Embankment Design

Based on the results of our analysis we recommend the following embankment geometry:

- Minimum crown width of 10 feet,
- New interior and exterior fill slope gradients of 3h:1v,
- Extensions of existing slopes (cut) can be cut to match existing gradients (2.5 to 3h:1v).

6.2 Ground preparation and Keyway

Clear all debris and/or obstructions above the ground surface. This includes all brush and vegetation, as well as any structures to be abandoned.

Widen and remove all loose soil from all depressions/trenches made by vegetation and/or structure removal to allow for subsequent backfilling and compaction equipment.

Flatten the sides of all holes and depressions caused by the clearing and grubbing operations before backfilling. Backfill with materials similar to adjacent soils and place in compacted layers to grade.

Where borrow material has already been recently removed (anywhere below an elevation of approximately 105 feet), no keyway is required (organic material at the surface will still need to be removed).

Where the existing ground elevation is above 105 feet, over-excavate a 2-foot deep, minimum 10-foot-wide key centered under the embankment for foundation soil inspection and improved shear resistance. Retain BCI to observe the key for loose/soft soil or unsuitable materials.

Prior to placement of fill, scarify the ground surface to a minimum depth of 6 inches. Moisture condition the scarified soil to within 2% of optimum and compact to minimum of 90% of ASTM D 1557 test procedure.

6.3 Embankment Fill Requirements

The borrow site material should be suitable for embankment fill, provided that the contractor removes organics and any material greater than 3 inches in diameter.

Import fill should meet the following criteria:

- 100% passing the 3-inch sieve
- 90% to 100% passing the 2-inch sieve
- 75% to 100% passing the No. 4 sieve
- 20-60% passing the No. 200 sieve
- Liquid Limit ≤ 45
- Plasticity Index ≥ 8 and ≤ 30
- Shall not contain organics, debris or other deleterious material
- Approval from BCI prior to placement

Place fill in maximum 8-inch thick loose lifts, moisture condition to 1% to 2% above optimum, and compact to a minimum of 90% relative compaction based on ASTM D 1557 test procedure. Compact fill using a sheepsfoot or padded drum type roller.

Where fill is placed on sloping ground, blade back slopes horizontally during placement of embankment fill to create a stepped (or benched) fill surface (such that a uniform, sloping fill surface is avoided). Benching must remove loose surficial soils and result in stepped benches, generally one to two feet in height and depth into the existing slope. The lower bench should be sloped a minimum of 2% into the slope. Where benching will interfere with existing structures, utilities, or vegetation, BCI can review modifications on a case-by-case basis.

Construct fill slopes no steeper than 2(H):1(V). To achieve adequate compaction on the face of fill slopes, over-build the slopes and then cut back to the design grade. Track-walking is not an adequate method to compact the face of slopes.

Use the above embankment fill requirement for construction of the "berm".

6.4 Inlet/Outlet Pipe Installation

We anticipate that inlet and outlet pipes will be included in the final design of the new basin. We expect the pipes and outlet structure will be constructed within native, very stiff to hard or medium dense to dense clays and sands.

Lincoln WWTRF Phase 1 and Phase 2 Expansion Tertiary Storage Basin No. 3 Placer County, California

File No. 3228.X April 10, 2018

We expect adequate foundation support for pipes placed in native soil and that settlement will be negligible following proper placement and backfill. We expect trench excavations to be relatively stable. For preliminary consideration, use a Type A soil classification (Federal Register, OSHA, 29 CFR Part 1926) for trench sloping and/or shoring design. Excavations may encounter clayey or clean sands, or groundwater, in which case sloping/shoring will need to be modified for a Type C soil classification. Final sloping/shoring based on actual conditions is the responsibility of the contractor.

For pipe beneath the basin embankment, construct in accordance with the following:

• Best option: Use controlled, low strength material (CLSM) to backfill and encapsulate the pipe (which also allows a narrower trench).

Or:

- Bring embankment fill up to a grade of approximately 2 feet above the crown of the pipe prior to excavation for the pipe. Excavate the trench to a depth of approximately 2 feet below the bottom of the pipe and at least 4 feet wider than the pipe.
- Selectively stockpile material so the contractor can be reuse it as backfill.
- After the contractor excavates the trench, backfill it to the pipe invert elevation.
 Compact the backfill with mechanical compactors to a minimum of 90% percent relative compaction near optimum moisture content.
- Bring backfill up evenly on both sides of the pipe to avoid unequal side loads that could fail or move the pipe. Take special care in the vicinity of any protrusions such as joint collars to achieve proper compaction.

6.5 Structures in Embankments

Stantec plans (dated 3/7/2018) show two approximately 10 foot diameter vaults in the northeast corner TSB No. 3 in the existing embankment These are below-grade structures and the net pressure exerted upon the subsurface will be similar to or less than the current load. Excavation for below-grade structures reduces the net pressure by removing soil that acts as a "preload" to the underlying soils, thus "unloading" the bearing materials before "loading" by placement of the structure.

We anticipate the vaults will be founded on native soils and will use a mat type foundation for support. Based on these assumptions:

- Use a maximum net contact pressure for vault mat foundation of 1,500 psf.
- Expect settlement of mat foundations less than 1 inch with differential settlement less than ½-inch across the pump station structure.
- Clean footing excavations of debris and loose soil prior to placing concrete.
- BCI must observe all footing excavations prior to reinforcement placement to verify competent bearing materials.

- For subgrade uniformity, use Caltrans Class 2 aggregate baserock as underlayment (this is not geotechnically necessary provided a firm uniform subgrade is obtained). If an aggregate underlayment is used, place a minimum thickness of 6-inches and compact to a minimum of 95% relative compaction (per ASTM D 1557 test method).
- Crushed rock underlayment may also be used (and can benefit excavation dewatering). Underlay the crushed rock with a geotextile filter fabric (ie. Mirafi 140N) and compact the rock with at least 6 passes of a static roller.

Since TSB No. 1, which is not lined, is adjacent to the NE corner of TSB No. 3, we recommend using undrained shear strengths. For evaluation of lateral earth pressures, use the undrained backfill with level ground conditions equivalent fluid weights (EFW) shown in the Table 5 below.

TABLE 5

LATERAL EARTH PRESSURES										
Condition	Undrained Equivalent Fluid Weight (pcf)									
At-Rest	100									
Active	86									
Passive	270 (F.S. = 1)									
Seismic (Active and At-Rest)	6									

The above pressures assume structure backfill placed against the structure wall in accordance with our recommendations, and a saturated unit weight of approximately 133 pounds per cubic foot (pcf). Notify BCI if these assumptions are not valid so that we may assess the situation and provide additional recommendations, if necessary. Backfill with CLSM is an acceptable alternative.

For seismic loading, add the Seismic EFW to the at-rest or active EFW and apply the total force as a uniform load on the wall with a resultant located at 0.4H where H is the backfill height. We estimated the EFWs for seismic loading using the Mononobe-Okabe equation and a horizontal seismic acceleration coefficient, k_h , of approximately ½ the expected PGA. This k_h value assumes that the walls displace at least 1-inch during the design seismic event.

Surface loads (footings, storage, vehicle traffic) applied near the wall will increase the lateral pressure on the wall. A uniform surface load of 200 psf to 300 psf is often used to approximate construction traffic loading on walls. In general, if surface loads are closer to the edge of the retaining wall than three-fourths of the retained height, increase the design wall pressure by 0.5q over the area of the retaining wall. In this expression, q is the surface surcharge load in psf. This is a conservative procedure and lower design pressures may be applicable upon evaluation of individual surface loads and setback distances.

File No. 3228.X April 10, 2018

6.6 Embankment Liner

Stantec has not yet selected the final liner but we expect design and placement (subgrade preparation, bedding, drainage, etc.) to be in accordance with the manufacturer's recommendations. BCI can provide supporting information if necessary as addendum information to this report.

Groundwater can perch above the underlying soil in the area of the basin. Liner design should include considerations for groundwater buildup and drainage.

6.7 Erosion Control

The outer exposed slopes are subject to erosion. To reduce erosion rills and gulleys, use hydroseeding and/or erosion control surfacing to protect exterior slopes. If there is not adequate time for standard hydroseeding to become established before heavy rains are likely, use an erosion control blanket (such as Landlok® S2 or an equivalent) or a bonded, hydraulically applied blanket (such as Flexterra® FGM or an equivalent). Expect future maintenance, such as periodic addition of slope protection, slope re-grading, or occasional reworking and/or recompaction of the exposed surfaces

6.8 Dewatering

If construction proceeds in the late summer and fall months we do not anticipate groundwater will affect construction. If localized perched groundwater is encountered, well points will likely work best to cut off flow into the excavation by drawing down the water level over a large area. We recommend that if required, groundwater should be drawn down at least 5 feet below the planned bottom of excavation.

7 RISK MANAGEMENT

Our experience and that of our profession clearly indicates that the risks of costly design, construction, and maintenance problems can be significantly lowered by retaining the geotechnical engineer of record to provide additional services during design and construction.

For this project, we recommend that the project owner retain us to:

- Review and provide comments on the civil plans and specifications prior to construction.
- Monitor construction to check and document our report assumptions. At a minimum, BCI should observe excavations, approve backfill, observe and test placement and compaction of fill for embankments and structures.
- Update this report if design changes occur, 2 years or more lapses between this report and construction, and/or site conditions have changed.

File No. 3228.X April 10, 2018

If we are not retained to perform the above applicable services, we are not responsible for any other party's interpretation of our report, and subsequent addendums, letters, and discussions.

8 LIMITATIONS

BCI performed services in accordance with generally accepted geotechnical engineering principles and practices currently used in this area. Where referenced, we used ASTM and California Test Method standards as a general (not strict) guideline only. Do not use or rely upon this report for different locations or improvements without the written consent of BCI.

We do not warranty our services.

BCI based this report on the current site conditions. We assume our boring and test pit soil and groundwater conditions are representative of the subsurface conditions throughout the site. Conditions at locations other than our explorations could be different.

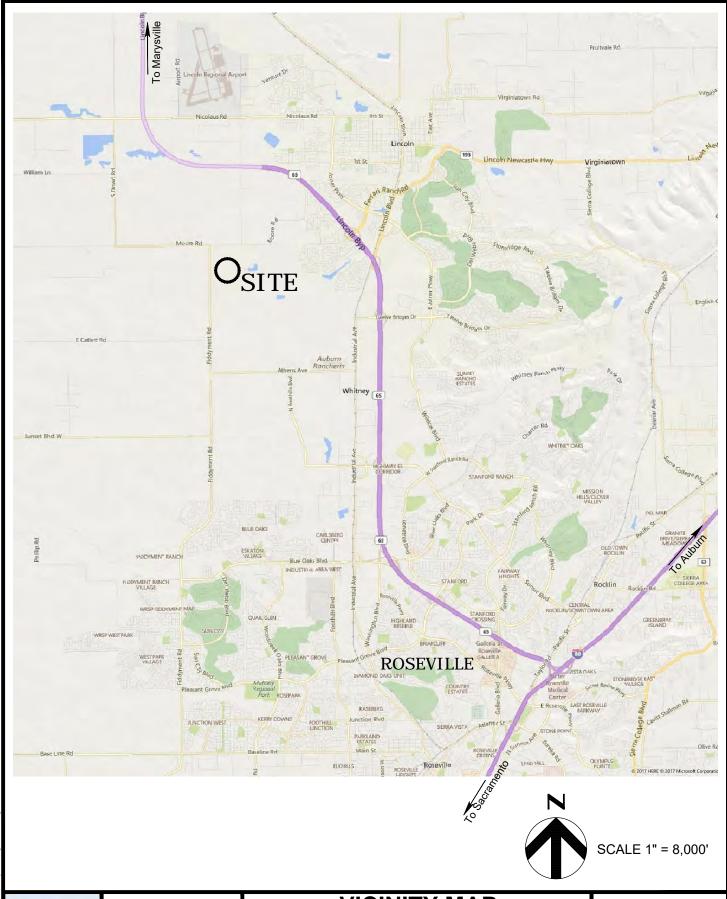
Appendix A shows logs of our explorations. The lines designating the interface between soil types are approximate. The transition between material types may be abrupt or gradual. We based our recommendations on the final logs, which represents our interpretation of the field log and general knowledge of the site and geological conditions. We based our boring and test pit log descriptions on our field logging, geologic mapping, and laboratory testing.

The groundwater elevations discussed in this report represent the groundwater elevation during the time of our subsurface exploration, at the specific exploration locations, and groundwater observed by others. The groundwater table may be lower or higher in the future – which may damage the TSB No. 3 liner. Consider potential groundwater levels in planning operation and maintenance of the basins.

Modern design and construction are complex, with many regulatory sources/restrictions, involved parties, construction alternatives, etc. It is common to experience changes and delays. The owner should set aside a reasonable contingency fund based on complexities and cost estimates to cover changes and delays.

Appendix C shows GBA guidelines for how to use this report.

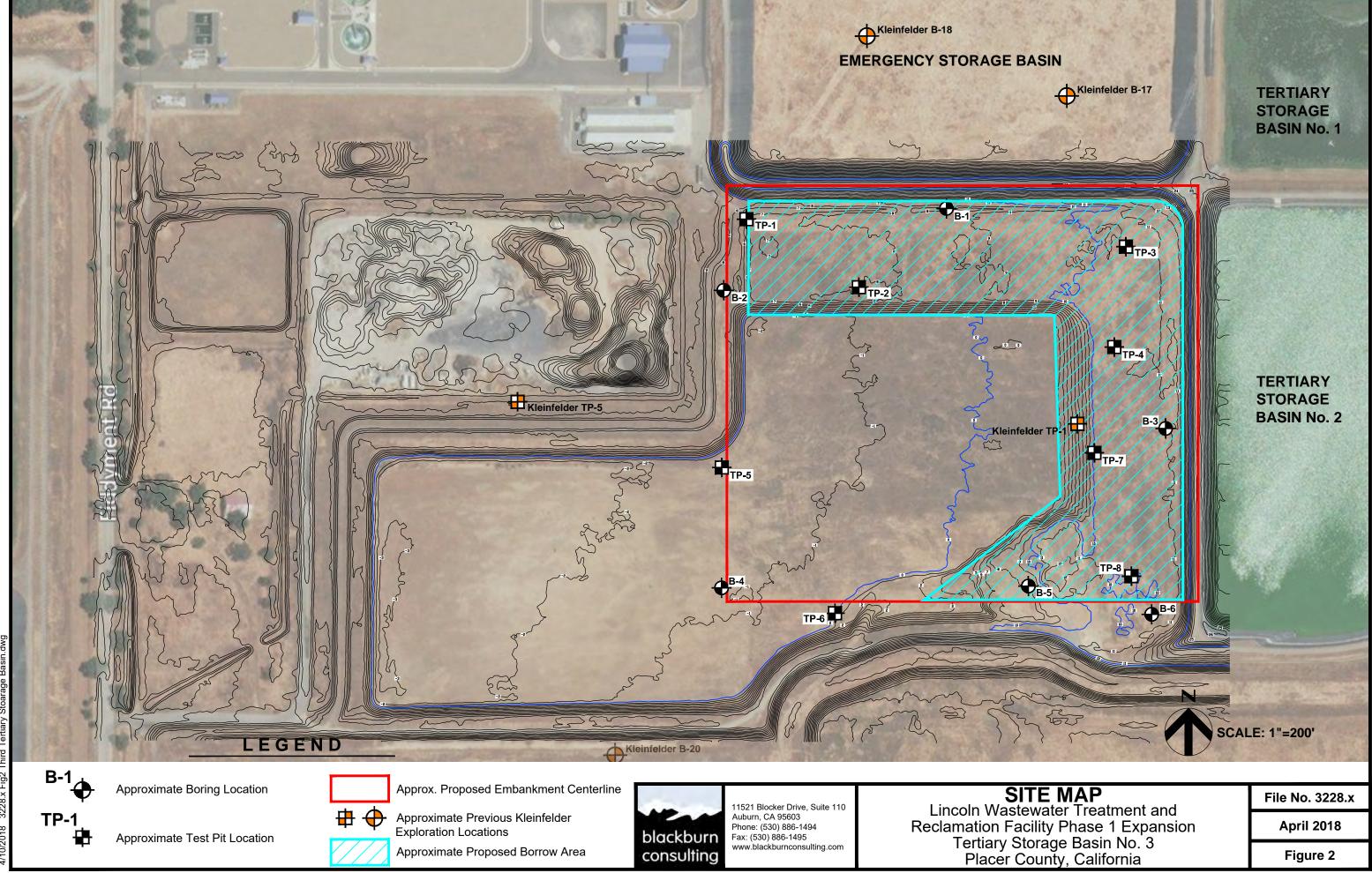
Lincoln Wastewater Treatment and Reclamation Facility


Phase 1 Expansion
Tertiary Storage Basin No. 3
Placer County, CA

FIGURES

Vicinity Map
Site Map
Regional Geologic Map
Regional Fault Map

North and East Embankment Cross-Section, Inner Slope North and East Embankment Cross-Section, Outer Slope South and West Embankment Cross-Section, Inner Slope South and West Embankment Cross-Section, Outer Slope



11521 Blocker Drive, Suite 110 Auburn, CA 95603 Phone: (530) 886-1494 Fax: (530) 886-1495 www.blackburnconsulting.com

VICINITY MAP
Lincoln Wastewater Treatment and Reclamation Facility Phase 1 Expansion Tertiary Storage Basin No. 3 Placer County, California

File No. 3228.x

April 2018

blackburn

consulting

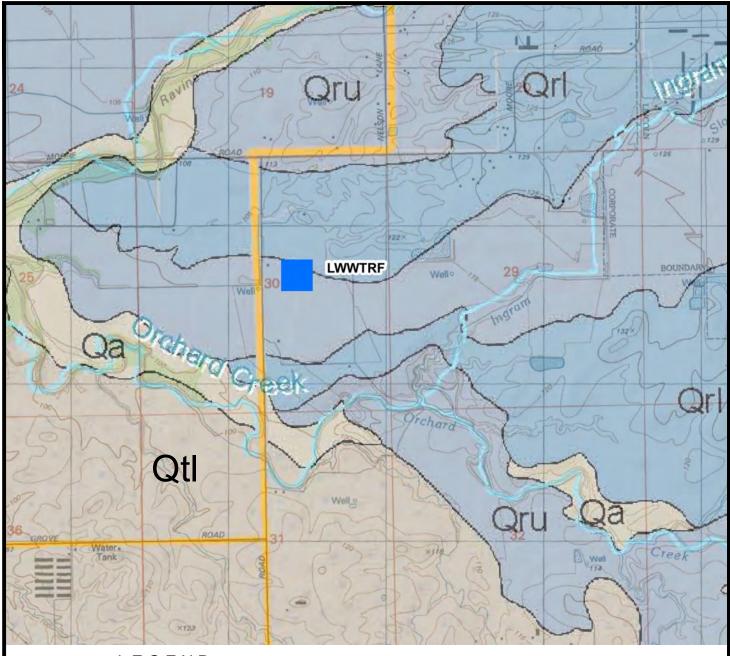

Fax: (530) 886-1495 www.blackburnconsulting.com

Figure 2

Exploration Locations

Approximate Proposed Borrow Area

Approximate Test Pit Location

LEGEND

Qa Holocene alluvium- silt, sand, and gravel

Holocene basin deposits- fine grained silt and clay

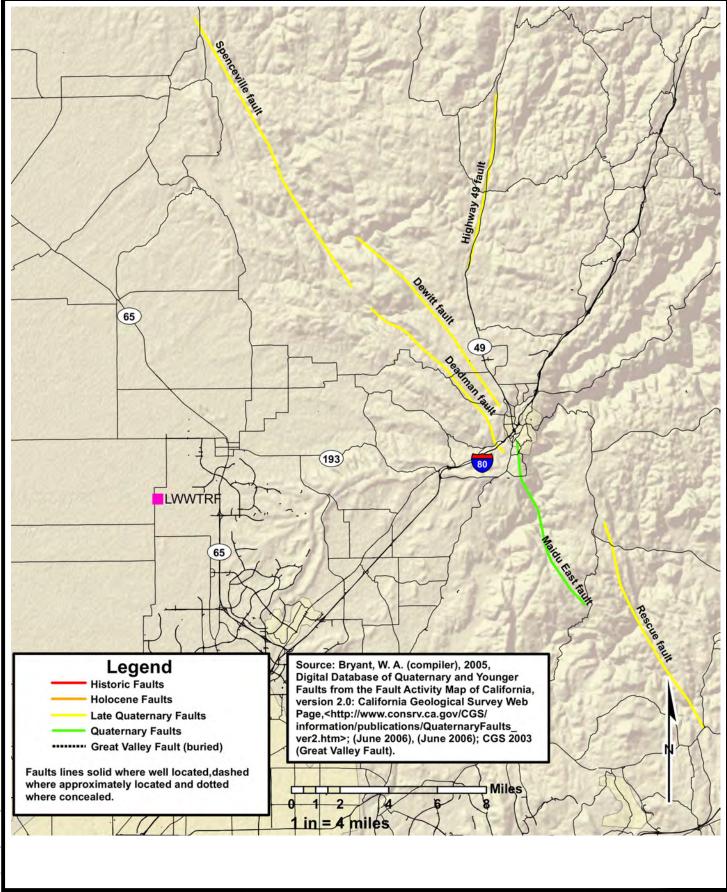
Quaternary Upper Member, Riverbank Formation- unconsolidated silt, sand and gravel

Quaternary Lower Member, Riverbank Formation- semiconsolidated silt, sand, and gravel

Quaternary Turlock Lake Formation- silt, sand, and gravel

Source: MAPTECH Terrain Navigator Pro, v. 8.0, USGS topographic 7.5 minute quadrangle, Lincoln,1992, Pleasant Grove, 1967 (revised 1981),

Geologic Map of the Late Cenozoic Deposits of the Sacramento Valley and Northern Sierran Foothills, California, Helly, J.H., Hardwood, D.S., USGS, MF-1790, 1985, reproduced by State of California Department of Water Resources, 2006.



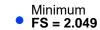
11521 Blocker Drive, Suite 110 Auburn, CA 95603 Phone: (530) 886-1494 Fax: (530) 886-1495 www.blackburnconsulting.com

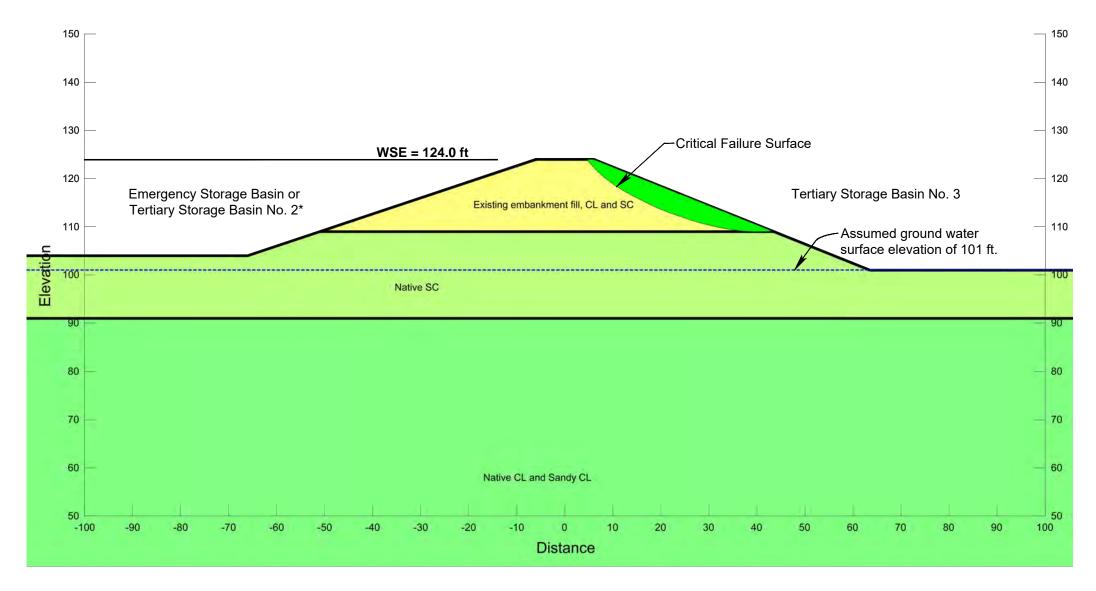
REGIONAL GEOLOGIC MAP Lincoln Wastewater Treatment and

Lincoln Wastewater Treatment and Reclamation Facility Phase 1 Expansion Tertiary Storage Basin No. 3 Placer County, California File No. 3228.x

April 2018

blackburn consulting


11521 Blocker Drive, Suite 110 Auburn, CA 95603 Phone: (530) 886-1494 Fax: (530) 886-1495 www.blackburnconsulting.com


REGIONAL FAULT MAP Lincoln Wastewater Treatment and Reclamation Facility Phase 1 Expansion Tertiary Storage Basin No. 3 Placer County, California

File No. 3228.x

April 2018

ANALYSIS OF AS DESIGNED EMBANKMENT (Emergency Storage Basin/Tertiary Storage Basin No. 2 Full, Tertiary Basin No. 3 Empty)

consulting

Phone: (530) 886-1494 Fax: (530) 886-1495

www.blackburnconsulting.com

North and East Embankment Cross-section											
Soil Description	c', psf	Unit weight, γ, pcf									
Existing embankment fill, sandy lean clay, and clayey sands to elev. 109 ft	32°	50	129								
Native clayey sands, elev. 91 to 109 ft	35°	110	126								
Native sandy clays and lean clays below elev. 91 ft	0°	2000	122								

11521 Blocker Drive, Suite 110 Auburn, CA 95603

NORTH AND EAST EMBANKMENT CROSS-SECTION, INNER SLOPE Lincoln Wastewater Treatment and Reclamation Facility Phase 1 Expansion Tertiary Storage Basin No. 3 Placer County, California

(approximate) File No. 3228.x

SCALE: 1"=20'

April 2018

^{*} The Emergency Storage Basin, Tertiary Storage Basin No. 2, and Tertiary Storage Basin No. 3 are all lined with an HDPE liner.

ANALYSIS OF AS DESIGNED EMBANKMENT (Emergency Storage Basin/Tertiary Storage Basin No. 2 Empty, Tertiary Basin No. 3 Full) • FS = 2.393

North and East Embankment Cross-section											
Soil Description	ф'	c', psf	Unit weight, γ, pcf								
Existing embankment fill, sandy lean clay, and clayey sands to elev. 109 ft	32°	50	129								
Native clayey sands, elev. 91 to 109 ft	35°	110	126								
Native sandy clays and lean clays below elev. 91 ft	0°	2000	122								

* The Emergency Storage Basin, Tertiary Storage Basin No. 2, and Tertiary Storage Basin No. 3 are all lined with an HDPE liner.

SCALE: 1"=20' (approximate)

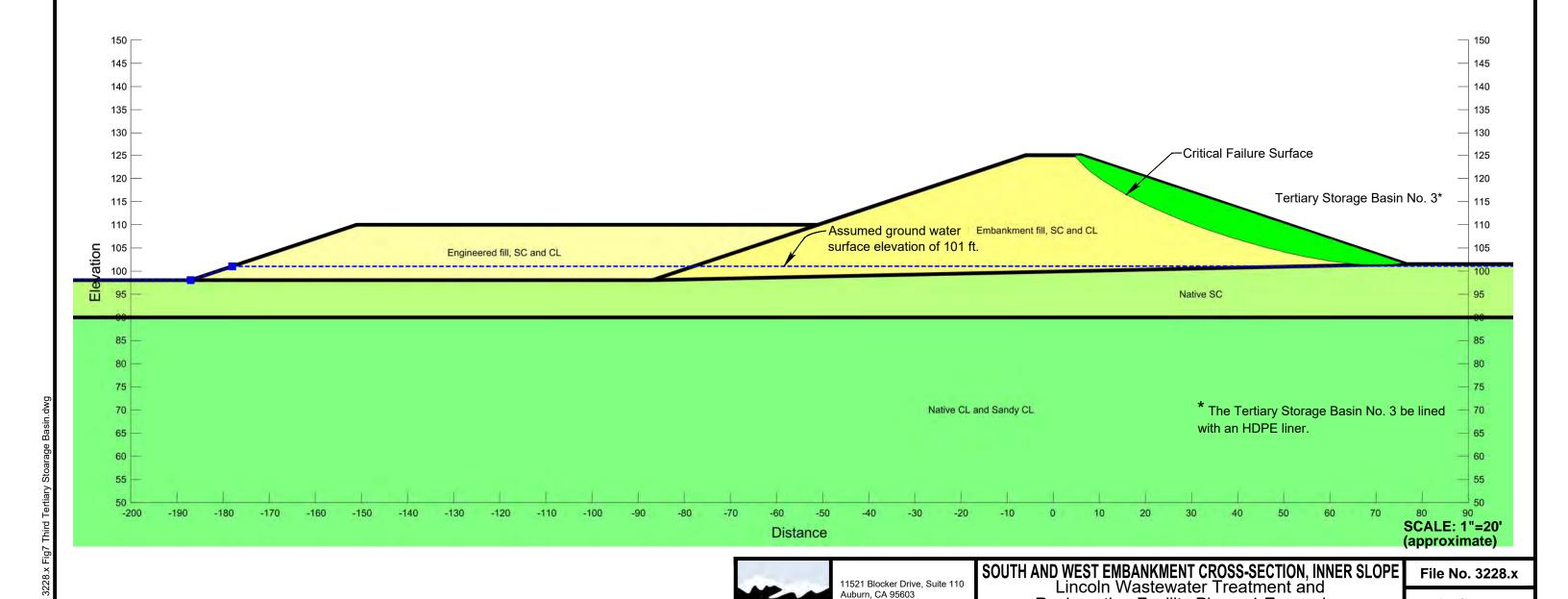
11521 Blocker Drive, Suite 110 Auburn, CA 95603 Phone: (530) 886-1494 Fax: (530) 886-1495 www.blackburnconsulting.com NORTH AND EAST EMBANKMENT CROSS-SECTION, OUTER SLOPE
Lincoln Wastewater Treatment and
Reclamation Facility Phase 1 Expansion
Tertiary Storage Basin No. 3
Placer County, California

File No. 3228.x

April 2018

April 2018

Figure 7


ANALYSIS OF AS DESIGNED EMBANKMENT (South and West Embankment, Tertiary Basin No. 3 Empty)

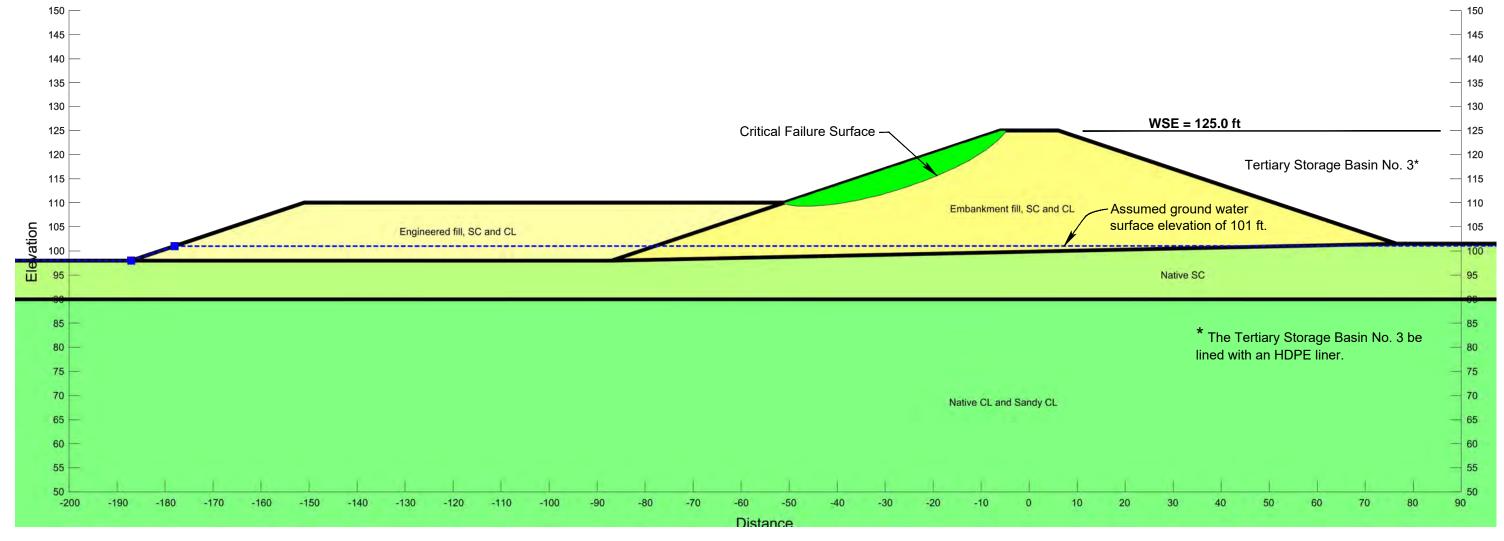
Reclamation Facility Phase 1 Expansion

Tertiary Storage Basin No. 3

Placer County, California

South and West Embankment Cro	ss-sec	tion	
Soil Description	φ'	c', psf	Unit weight, γ, pcf
Embankment fill: sandy lean clay and clayey sands to elev. 98 to 101.5 ft	32°	50	129
Engineered fill: sandy lean clay and clayey sands, elev. 98 to 110 ft	31°	25	129
Native clayey sands, elev. 90 to 101.5 ft	35°	110	126
Native sandy clays and lean clays below elev. 90 ft	0°	2000	122

consulting


Phone: (530) 886-1494 Fax: (530) 886-1495

www.blackburnconsulting.com

ANALYSIS OF AS DESIGNED EMBANKMENT (South and West Embankment, Tertiary Basin No. 3 Full)

Minimum • FS = 2.379

South and West Embankment Cross-section												
Soil Description	ф'	c', psf	Unit weight, γ, pcf									
Embankment fill: sandy lean clay and clayey sands to elev. 98 to 101.5 ft	32°	50	129									
Engineered fill: sandy lean clay and clayey sands, elev. 98 to 110 ft	31°	25	129									
Native clayey sands, elev. 90 to 101.5 ft	35°	110	126									
Native sandy clays and lean clays below elev. 90 ft	0°	2000	122									

SCALE: 1"=20' (approximate)

11521 Blocker Drive, Suite 110 Auburn, CA 95603 Phone: (530) 886-1494 Fax: (530) 886-1495 www.blackburnconsulting.com SOUTH AND WEST EMBANKMENT CROSS-SECTION, OUTER SLOPE
Lincoln Wastewater Treatment and
Reclamation Facility Phase 1 Expansion
Tertiary Storage Basin No. 3
Placer County, California

File No. 3228.x

April 2018

Lincoln Wastewater Treatment and Reclamation Facility

Phase 1 Expansion
Tertiary Storage Basin No. 3
Placer County, CA

APPENDIX A

Boring Logs (B-1 through 6)
Legend to Logs
Test Pit Logs (TP-1 through 8)

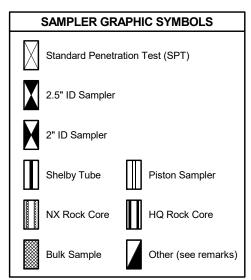
RMS	ED BY	•	BEGIN DA ⁻ 10-6-17		COMPLETIO 10-6-17	N DATE	BOREHOLE LOCA	ATIOI	N (La	t/Long	or No	orth/Ea	st and	l Datui	m)		HOLE B1	ID			
DRILLIN		ONTRA	CTOR				BOREHOLE LOCA	ATIOI	N (Of	fset, S	tation	, Line)	1					CE ELE	VATION		
ORILLIN	NG M	ETHOD					DRILL RIG										BORE	HOLE DI	AMETER	₹	
		YPE(S)	I ger AND SIZE(S) (ID	D)			Diedrich D12 HAMMER TYPE	20									4 in	ER EFFI	CIENCY	, ER	
2.4"			THE AND COMPL	FTION	1		Safety semi-					•		•	NO (D	ATE\	TOTAL	DEDTU	OF DOI		_
			ILL AND COMPL remie Grout		l		GROUNDWATER READINGS		ne	3 DRIL	LING		TER D ne	RILLII	NG (D	AIE)	26.5	DEPTH	OF BOI	RING	j
ELEVATION (ft)	DEPTH (ft)	Material Graphics		DE	SCRIPTION/	/REMARK	(S	Sample Location	Sample Number	Blows per 6 in.	Blows per foot	Moisture Content (%)	Dry Unit Weight (pcf)	5 <200 Sieve	Plasticity Index	Phi Angle (°)	Shear Strength (psf)	Unconfined Compressive Strength (tsf)	Additional Lab Tests	Drilling Method	Casing Depth
ш	- 0-	≥0	SANDY Lean (Fine SAND	CLAY	with GRAVEL	(CL), Hard	d, Light Brown, Dry		S	<u> </u>	<u> </u>	≥0	٥٤	%	<u> </u>	<u> </u>	တမ	<u>⊃0</u> ø	Ľ	ѝ	, 0
106.00	2 3): Medium Den	 nse: Brown	; Moist; Fine SAN	5-	1	7 10 9	19	13	120					PP = >4.5		}	,)
104.00	4 5			, ,			edium Cementation		2	9 26	76/9	19	105		14		UU = 2294.4	PP = 2.3	PI)
02.00	6 7 8							<u> </u>		50/3"								2.0)
98.00	9		CLAYEY SANI Fine SAND	D (SC)); Medium Den	nse; Reddi	sh Brown; Moist;		3	9	27)
96.00	11							×	3	14 13	21)
94.00	13 14																			}	ı k
92.00	15		SAND is Fine t	to Coa	arse; Some GR	RAVEL			4	5 7 15	22	14	119					PP = >4.5		}	,
90.00	17 18		Lean CLAY (C Low Plasticity;	L); Ver	ry Stiff; Brown; s of Fine SANI	; Moist; Me	edium Cementation	- n;												}	,
88.00	20)	5	7 12 14	26							PP = 3.8			,
86.00	22																				,
84.00	24 25								6	5 8	20							PP = 3.6			
82.00	26 - 27 -		Bottom of bore	ehole a	at 26.5 ft bas				_	8 12								0.0		14	_
80.00	28 29		Backfill with Tr No Groundwat Bulk A: 0-5 ft Bulk B: 5-10 ft	remie (ter End	Grout																
	-30-		Blackbur		•			Lin	colı	NAME	VTRI	TS							28.X	HOLE B 1	
bla	ckt	ourr	Auburn,	CA 9	r Drive, Suit 5603 887-1494	te 110		PL PL CLIEI Sta	Α				ROU	JTE				POS D	TMILE		_
		lting	1 110110. (000)	JJ, 17J7					D BY				CKED							

LOGGE RMS		BY		BEGIN DATE 10-6-17	COMPLETION DATE 10-6-17	BOREHOLE LOC	CATIO	N (La	t/Long	or No	orth/Ea	ast and	l Datu	m)		HOLE B2	ID			
DRILLI		CONT	RAC	CTOR		BOREHOLE LOC	OITAC	۷ (Of	fset, S	tation	, Line))				SURF.	ACE ELE	VATION		
DRILLI	NG I					DRILL RIG										BORE	HOLE DI	AMETER	₹	
Solio SAMPL			-	AND SIZE(S) (ID)		Diedrich D1	20									4 in	IER EFFI	CIENCY	, ER	
2.4"	CA	MOI	<u></u>		1011	Safety semi					•		•	NO (D	ATE\					
				LL AND COMPLET remie Grout	ION	GROUNDWATER READINGS		.0 ft		LING		.0 ft			AIE)	26.5	_ DEPTH	OF BOI	RING	j
ELEVATION (ft)	DEPTH (#)	aterial	Graphics		DESCRIPTION/REMA	RKS	Sample Location	Sample Number	Blows per 6 in.	Blows per foot	Moisture Content (%)	Dry Unit Weight (pcf)	<200 Sieve	Plasticity Index	Phi Angle (°)	Shear Strength (psf)	Unconfined Compressive Strength (tsf)	Additional Lab Tests	Drilling Method	Caeing Denth
Ш	_0 <u>-</u>		\overline{A}	Lean CLAY with S SAND; Medium C	SAND (CL); Hard; Light E	Brown; Dry; Fine	Ö	Š	<u> </u>	B	Σŏ	ے ف	%	<u>a</u>	<u>ā</u>	कु छ	500	La	<u> </u>	Č
105.50	2 3			SAND, Medium C	zenientation		×	1	10 17 16	33							PP = >4.5			
103.50 101.50	5						X	2	8 4 17	21	13	119		28			PP = >4.5	PI		
99.50	7			Brown, Strong Ce	ementation				17											
97.50	9 10 11			CLAYEY SAND (SC); Light Brown	o. Doddieb Drown	X	3	6 9 13	22										
95.50	12 13			Moist; Fine to Co	AND (SP); Medium Dens arse SAND	e; Reddish Brown;														
93.50 91.50	14 15 16			CLAYEY SAND v Fine GRAVEL	vith GRAVEL (SC); Dark	Yellowish Brown, W	vet,	4	9 12 16	28			21					PA		
89.50	17 18			Lean CLAY (CL); Cementation	Hard; Light Reddish Bro	wn; Moist; Medium														
87.50	19 20 21			Cementation			X	5	8 11 12	23	25	100					PP = 4.0			
85.50	22 23								12											
83.50 81.50	24 25 26			Light Brown, Trac	es of Fine SAND		M	6	9	21							PP = 4.0			
79.50	27 28			Bottom of boreho	nie Grout				10								<u> </u>		<u> </u>	L
. 0.00	29			Groundwater at 1 Bulk A: 0-5 ft Bulk B: 5-10 ft	5 π															
Ç.		M		Auburn CA	ker Drive, Suite 110	ı		COII NTY A	NAMI n WV		F TS	B No						NO. 28.X TMILE	HOLE B 2	
bla con				1 110110. (00	0) 887-1494 887-1495		Sta PREF	nte PARE	C D BY			CHE	CKED) BY		;	SHEET			_
-1-201			7	· an. (000)			RM	5				JT	Γ				1 of '	ı		

RMS	ED BY		BEGIN DATE 10-6-17	COMPLETION DATE 10-6-17	BOREHOLE LOCA	OITA	N (La	t/Long	or No	rth/Ea	st and	l Datu	m)		HOLE B3	ID			
DRILLIN		ONTRAC	CTOR		BOREHOLE LOCA	OITA	N (Of	fset, S	tation	, Line)						CE ELE	VATION		
DRILLIN	NG ME	ETHOD	204		DRILL RIG Diedrich D12	n										HOLE DI	AMETER	3	
		PE(S)	AND SIZE(S) (ID)		HAMMER TYPE	20										ER EFFI	CIENCY	, ER	i
2.4"			LL AND COMPLET	ION	Safety semi- GROUNDWATER					•	#/ 30' TER D	•	NG (D	ΔTF)	ΤΟΤΔΙ	. DEPTH	OF BOI	SING	
			remie Grout		READINGS		ne	DIVIL			ne		10 (5	, (I L)	26.5		01 001		_
ELEVATION (ft)	DEPTH (ft)	Material Graphics		DESCRIPTION/REMARI	K S	Sample Location	Sample Number	Blows per 6 in.	Blows per foot	Moisture Content (%)	Dry Unit Weight (pcf)	% <200 Sieve	Plasticity Index	Phi Angle (°)	Shear Strength (psf)	Unconfined Compressive Strength (tsf)	Additional Lab Tests	Drilling Method	Casing Depth
	1		CLAYEY SAND (Fine SAND	SC); Medium Dense; Reddi	ish Brown; Moist;	0,	0)		<u> </u>	20		0,			0,0	200	7	Ĭ	
09.00	2 3					X	1	11 9 8	17									 	1
07.00	4 5					V	2	7	28	6	105			39.1	DS =		DS		
05.00	6 7		Poorly Graded SA Strong Brown; Mo	AND with CLAY (SP-SC); Moist; Fine to Coarse SAND	ledium Dense;			14 14							115.8			}	
03.00	9		SANDY Lean CL Coarse SAND	AY (CL); Hard; Reddish Bro	own; Moist; Fine to													$\left.\right \right\}$	J
01.00	10 11 12					X	3	11 14 16	30	11	110					PP = >4.5)
97.00	13		CLAYEY SAND (SC); Medium Dense; Olive	Brown; Fine SAND	5 -													
95.00	15 16					X	4	6 10 9	19							PP = 3.6			
93.00	17 18		Lean CLAY (CL); Medium Plasticity Reddish Brown	Very Stiff to Hard; Light Oli	ve Brown; Moist;														ı
91.00	19 20		reddisii blowii				5	7	22	24	102				UU =	PP =			
39.00	21					X		10 12							2337.4	4.2		$\left.\right \right\}$,
37.00	23		Stiff; Light Olive E	Brown															
35.00	25		Bottom of boreho	lo at 26 5 ft bac		X	6	4 4 5	9							PP = 2.5			
33.00	27 28 29		Backfill with Trem No Groundwater Bulk A: 0-5 ft Bulk B: 5-10 ft	nie Grout															
	-30		Blackburn	•		Lin	colr	NAME 1 WW		TS							28.X	HOLE B3	
ola	ckt	urn	Auburn, CA	cker Drive, Suite 110 A 95603 0) 887-1494		COUN PL/ CLIEN Sta	A				ROL	JTE				POS D	TMILE		_
		ting	1 110110. (00	•				D BY			CHE	CKED) RY			SHEET			_

DRILLING CONTRACTOR Taber DRILLING METHOD Solid-Stem Auger SAMPLER TYPE(S) AND SIZE(S) (ID) 2.4" CAMOD BOREHOLE BACKFILL AND COMPLETION Backfill with Tremie Grout BOREHOLE LOCATION (Offset, Station, Line) DRILL RIG Diedrich D120 HAMMER TYPE Safety semi-automatic drop (140#/ 30") GROUNDWATER DURING DRILLING READINGS 18.0 ft 18.0 ft on12:20		SURFACE ELEVA 99.0 ft	TION					
Solid-Stem Auger SAMPLER TYPE(S) AND SIZE(S) (ID) 2.4" CAMOD BOREHOLE BACKFILL AND COMPLETION		99.0 ft BOREHOLE DIAMETER 4 in						
SAMPLER TYPE(S) AND SIZE(S) (ID) 2.4" CAMOD BOREHOLE BACKFILL AND COMPLETION GROUNDWATER DURING DRILLING AFTER DRILLING								
BOREHOLE BACKFILL AND COMPLETION GROUNDWATER DURING DRILLING AFTER DRILLING		HAMMER EFFICIENCY, ERI						
		TOTAL DEPTH O	F BORING					
Backini With Trefine Grout								
ELEVATION (ft) Material Graphics Material Graphics Sample Location Sample Location Sample Number Blows per 6 in. Blows per 6 in. Blows per foot Moisture Content (%) Dry Unit Weight (pcf) % <200 Sieve	Plasticity Index Phi Angle (°)	Shear Strength (psf) Unconfined Compressive Strength (tsf)	Additional Lab Tests Drilling Method Casing Depth					
CLAYEY SAND (SC); Medium Dense; Brown; Dry; Fine SAND								
97.00 2 1 4 22 12 109		PP = >4.5						
95.00 4 SANDY Lean CLAY (CL); Hard; Reddish Brown; Moist; Fine to Coarse SAND		74.5						
93.00 5 CLAYEY SAND (SC); Very Dense; Olive Brown; Moist; Fine to 2 22 79 41 38 38		PP = >4.5						
91.00 8 Lean CLAY (CL); Hard; Brown; Moist; Traces of Fine SAND; Medium Plasticity								
89.00 10 Very Stiff; Yellowish Brown; Weak Cementation; Low Plasticity 3 7 30 22 107		PP = >4.5						
87.00 12 13								
85.00 14 15 No Cementation 4 6 26 12		PP = 4.2						
17		4.2						
81.00 18								
79.00 20 Stiff; Light Olive Brown; Medium Plasticity 5 3 11 5 6		PP = 1.3						
77.00 22								
73.00 24 Hard 6 7 27 15 15 15 15 15 15 15 15 15 15 15 15 15		PP = 4.5						
Bottom of borehole at 26.5 ft bgs								
Hard 73.00 26 73.00 26 71.00 28 Bottom of borehole at 26.5 ft bgs Backfill with Tremie Grout Groundwater at 18 ft Bulk A: 0-5 ft Bulk B: 5-10 ft Blackburn Consulting 11521 Blocker Drive, Suite 110 Auburn, CA 95603 Phone: (530) 887-1494 CLIENT Stantec PREPARED BY CHECKED B								
Blackburn Consulting PROJECT NAME Lincoln WWTRF TSB No. 3		FILE NO 3228	3.X B4					
11521 Blocker Drive, Suite 110 Auburn, CA 95603 Phone: (530) 887-1494 COUNTY PLA CLIENT Stantec		POSTM D	IILE					
Phone: (530) 887-1494 Stantec PREPARED BY RMS CHECKED BY RMS	BY	SHEET 1 of 1						

LOGGE RMS		(BEGIN DATE 10-6-17	BOREHOLE LOCA	OITA	N (La	t/Long	or No	rth/Ea	st and	l Datu	m)	HOLE ID B5							
DRILLII Tabe		ONTRA	CTOR		BOREHOLE LOCA	OITA	V (Of	fset, S	tation	, Line)					SURFA 108.	CE ELE	VATION			
DRILLII	NG M	IETHO			DRILL RIG										BORE	HOLE DIA	AMETER	2		
Solid-Stem Auger SAMPLER TYPE(S) AND SIZE(S) (ID) 2.4" CAMOD BOREHOLE BACKFILL AND COMPLETION					Diedrich D12	20									4 in	ER EFFI	CIENCY	. ER	Drilling Method & Casing Depth	
					Safety semi-							-						ER X, DR Drilling Method Drilling Method		
			TILL AND COMPLETION Tremie Grout	ON	GROUNDWATER READINGS		RING one	3 DRIL	LING		TER D ne	RILLII	NG (D	ATE)	TOTAL DEPTH OF BORING 26.5 ft			i		
ELEVATION (ft)	DEPTH (ft)	Material Graphics	[DESCRIPTION/REMARK	KS	Sample Location	Sample Number	Blows per 6 in.	Blows per foot	Moisture Content (%)	Dry Unit Weight (pcf)	<200 Sieve	Plasticity Index	Phi Angle (°)	Shear Strength (psf)	Unconfined Compressive Strength (tsf)	Additional Lab Tests	ng Method	ng Depth	
ELE	DEF	Mate Grap				Sam	Sam	Blow	Blow	Mois Cont	Dry (pcf)	%	Plas	Phi /	She (psf)	Unco Com Strei	Addi Lab	Dri	Casi	
	1		SANDY Lean CLA Medium Cementat	Y (CL); Hard; Light Brown; ion	Dry; Fine SAND;													∦		
106.00	2					X	1	14 11 10	21	11	99					PP = >4.5				
104.00	4 5																			
102.00	6		Yellowish Brown; \ Cementation	ery Stiff; Moist; Medium to	Strong	X	2	7 7 6	13	19	98				UU = 2728.4	PP = 3.5				
100.00	8		Lean CLAY (CL); I Cementation	Hard; Light Yellowish Brow	n; Moist; Medium															
98.00	10 11					X	3	12 33 35	68	34	88				UU = 6022.4	PP = >4.5				
96.00	12 13																			
94.00	14 15						4	9	40	40	79					PP =				
92.00	16 17					M		18 22								>4.5				
90.00	18 19																			
88.00	20 21		Light Reddish Bro	wn, Traces of Fine SAND		X	5	5 13 17	30							PP = >4.5				
86.00	22																			
84.00	24 25		Light Brown; Weal	c Cementation		V	6	5	20							PP =				
82.00	26		Bottom of borehole	a at 26.5 ft bas		٨		7 13								>4.5		<u> </u>	L	
80.00	27 28 29		Backfill with Tremi No Groundwater E Bulk A: 0-5 ft Bulk B: 5-10 ft	e Grout																
	-30-		Blackburn C	Consulting				NAME 1 WW		TSI	B No	. 3				FILE 32 2	NO. 28.X			
11521 Blocker Drive, Suite 110 Auburn, CA 95603					(COUI PL CLIEI	NTY A NT				ROL						TMILE		_	
Phone: (530) 887-1494 consulting Fax: (530) 887-1495						Sta PREF	ARE	D BY			CHE	CKED) BY		8	HEET			_	
		-	i ax. (550) C		RM	S				JT	F				1 of 1					


LOGGE RMS			BEGIN DATE 10-6-17	BOREHOLE LOCATION (Lat/Long or North/East and Datum) HOLE ID B6															
DRILLING CONTRACTOR Taber DRILLING METHOD Solid-Stem Auger SAMPLER TYPE(S) AND SIZE(S) (ID)					BOREHOLE LOCA DRILL RIG		N (Off	set, St	ation,	Line)					SURFA 110. BORE	ACE ELE 0 ft HOLE DI			
					Diedrich D12	U									4 in	ER EFFI	CIENCY	, ER	 i
2.4" CAMOD BOREHOLE BACKFILL AND COMPLETION				Safety semi-a							-	10 / 0			·				
			remie Grout	GROUNDWATER READINGS	None None				R DRILLING (DATE)			TOTAL DEPTH OF BORING 26.5 ft			; 				
ELEVATION (ft)	рертн (#)	Material Graphics	Df	ESCRIPTION/REMARK	(S	Sample Location	Sample Number	Blows per 6 in.	Blows per foot	Moisture Content (%)	Dry Unit Weight (pcf)	% <200 Sieve	Plasticity Index	Phi Angle (°)	Shear Strength (psf)	Unconfined Compressive Strength (tsf)	Additional Lab Tests	Drilling Method	Casing Depth
	1		Lean CLAY with SA Fine to Medium SAN	ND (CL); Very Stiff; Redd ND; Low to Medium Plasti	ish Brown; Moist; city														
108.00	2 3					X	1	7 8 10	18							PP = 3.5			
06.00	4		SANDY Lean CLAY	(CI): Hard: Reddish Bro	- — — — — — — — — wn: Moist: Fine to														
04.00	5 6 7		Coarse SAND; Low	(CL); Hard; Reddish Bro Plasticity	,	X	2	9 16 18	34	17	117					PP = >4.5			
02.00	8 9		CLAYEY SAND (SO	;); Medium Dense; Yellow	vish Brown; Moist;														
00.00	10					X	3	5 10 14	24	25	97	37				PP = >4.5	PA		
98.00	12 13		SII T (MI): Hard: Lic	nt Brown; Moist; Weak C				- 14											
96.00	14 15		OILT (WIL), Flatu, Elg	itt blowit, Moist, Weak C	emenation		4	7	31	31	91					PP =			
94.00	16 17					M		15 16								>4.5			
92.00	18 19		Lean CLAY (CL); Ve Cementation: Low F	ery Stiff; Light Brown; Moi lasticity	st; Weak														
90.00	20					X	5	8 17 17	34							PP = 3.75			
88.00	22																		
86.00	24 25		Light Olive Brown			V	6	10 16	36							PP = 3.75			
84.00	26		Bottom of borehole	at 26.5 ft bas				20								3.73		14	Ш
82.00	27 28 29		Backfill with Tremie No Groundwater En Bulk A: 0-5 ft Bulk B: 5-10 ft	Grout															
	-30		Blackburn Co	onsulting er Drive, Suite 110		Lin	COIT	NAME 1 WW		TSI	3 No					32 :	NO. 28.X TMILE	ноці	
bla					C		√T nted									D			
con	SU	ting	Fax: (530) 88	7-1495		REF RM		D BY			CHE JT	CKED F	BY			SHEET 1 of '	1		

	GROUP SYMBO						
Graphic / Symbol	Group Names	Graphic	/ Symbol	·			
GW GP	Well-graded GRAVEL Well-graded GRAVEL with SAND Poorly graded GRAVEL		CL	Lean CLAY Lean CLAY with SAND Lean CLAY with GRAVEL SANDY lean CLAY SANDY lean CLAY GRAVELLY lean CLAY with GRAVEL GRAVELLY lean CLAY with SAND			
	Poorly graded GRAVEL with SAND						
GW-GM	Well-graded GRAVEL with SILT Well-graded GRAVEL with SILT and SAND Well-graded GRAVEL with CLAY (or SILTY CLAY)		CL-ML	SILTY CLAY SILTY CLAY with SAND SILTY CLAY with GRAVEL SANDY SILTY CLAY SANDY SILTY CLAY			
GW-GC	Well-graded GRAVEL with CLAY and SAND (or SILTY CLAY and SAND)			GRAVELLY SILTY CLAY GRAVELLY SILTY CLAY with SAND			
GP-GM	Poorly graded GRAVEL with SILT Poorly graded GRAVEL with SILT and SAND		ML	SILT SILT with SAND SILT with GRAVEL SANDY SILT			
GP-GC	Poorly graded GRAVEL with CLAY (or SiLTY CLAY) Poorly graded GRAVEL with CLAY and SAND (or SiLTY CLAY and SAND)			SANDY SILT with GRAVEL GRAVELLY SILT GRAVELLY SILT with SAND			
GM	SILTY GRAVEL SILTY GRAVEL with SAND		OL	ORGANIC lean CLAY ORGANIC lean CLAY with SAND ORGANIC lean CLAY with GRAVEL SANDY ORGANIC lean CLAY			
GC GC	CLAYEY GRAVEL CLAYEY GRAVEL with SAND			SANDY ORGANIC lean CLAY with GRAVEL GRAVELLY ORGANIC lean CLAY GRAVELLY ORGANIC lean CLAY with SAND			
GC-GM	SILTY, CLAYEY GRAVEL SILTY, CLAYEY GRAVEL with SAND		OL	ORGANIC SILT ORGANIC SILT with SAND ORGANIC SILT with GRAVEL SANDY ORGANIC SILT			
sw	Well-graded SAND Well-graded SAND with GRAVEL			SANDY ORGANIC SILT with GRAVEL GRAVELLY ORGANIC SILT GRAVELLY ORGANIC SILT with SAND			
SP	Poorly graded SAND Poorly graded SAND with GRAVEL		СН	Fat CLAY Fat CLAY with SAND Fat CLAY with GRAVEL SANDY fat CLAY			
sw-sm	Well-graded SAND with SILT Well-graded SAND with SILT and GRAVEL			SANDY fat CLAY with GRAVEL GRAVELLY fat CLAY GRAVELLY fat CLAY with SAND			
sw-sc	Well-graded SAND with CLAY (or SILTY CLAY) Well-graded SAND with CLAY and GRAVEL (or SILTY CLAY and GRAVEL)	-	МН	Elastic SILT Elastic SILT with SAND Elastic SILT with GRAVEL SANDY elastic SILT			
SP-SM	Poorly graded SAND with SILT Poorly graded SAND with SILT and GRAVEL			SANDY elastic SILT with GRAVEL GRAVELLY elastic SILT GRAVELLY elastic SILT with SAND			
SP-SC	Poorly graded SAND with CLAY (or SILTY CLAY) Poorly graded SAND with CLAY and GRAVEL (or SILTY CLAY and GRAVEL)		ОН	ORGANIC fat CLAY ORGANIC fat CLAY with SAND ORGANIC fat CLAY with GRAVEL SANDY ORGANIC fat CLAY			
SM	SILTY SAND SILTY SAND with GRAVEL			SANDY ORGANIC fat CLAY with GRAVEL GRAVELLY ORGANIC fat CLAY GRAVELLY ORGANIC fat CLAY with SAND			
sc	CLAYEY SAND CLAYEY SAND with GRAVEL		ОН	ORGANIC elastic SILT ORGANIC elastic SILT with SAND ORGANIC elastic SILT with GRAVEL SANDY elastic ELASTIC SILT			
SC-SM	SILTY, CLAYEY SAND SILTY, CLAYEY SAND with GRAVEL		ОП	SANDY elastic ELASTIC SILT SANDY ORGANIC elastic SILT with GRAVEL GRAVELLY ORGANIC elastic SILT GRAVELLY ORGANIC elastic SILT with SAND			
25 25 25 25 25 25 25 25 25	PEAT] [] [] []	01/01/	ORGANIC SOIL ORGANIC SOIL with SAND ORGANIC SOIL with GRAVEL SANDY ORGANIC SOIL			
	COBBLES COBBLES and BOULDERS BOULDERS		OL/OH	SANDY ORGANIC SOIL SANDY ORGANIC SOIL with GRAVEL GRAVELLY ORGANIC SOIL GRAVELLY ORGANIC SOIL with SAND			

FIELD AND LABORATORY TESTS С Consolidation (ASTM D 2435-04) CL Collapse Potential (ASTM D 5333-03) CP Compaction Curve (CTM 216 - 06) Corrosion, Sulfates, Chlorides (CTM 643 - 99; CTM 417 - 06; CTM 422 - 06) CU Consolidated Undrained Triaxial (ASTM D 4767-02) DS Direct Shear (ASTM D 3080-04) Expansion Index (ASTM D 4829-03) ΕI Moisture Content (ASTM D 2216-05) Organic Content (ASTM D 2974-07) Permeability (CTM 220 - 05) Particle Size Analysis (ASTM D 422-63 [2002]) Liquid Limit, Plastic Limit, Plasticity Index (AASHTO T 89-02, AASHTO T 90-00) PL Point Load Index (ASTM D 5731-05) PM Pressure Meter Pocket Penetrometer R-Value (CTM 301 - 00) Sand Equivalent (CTM 217 - 99) Specific Gravity (AASHTO T 100-06) Shrinkage Limit (ASTM D 427-04) SW Swell Potential (ASTM D 4546-03) Pocket Torvane Unconfined Compression - Soil (ASTM D 2166-06) Unconfined Compression - Rock (ASTM D 2938-95)

Unconsolidated Undrained Triaxial

(ASTM D 2850-03) UW Unit Weight (ASTM D 4767-04) VS Vane Shear (AASHTO T 223-96 [2004])

DRILLING METHOD SYMBOLS Dynamic Cone Rotary Drilling Diamond Core or Hand Driven

WATER LEVEL SYMBOLS

▼ Static Water Level Reading (short-term)

▼ Static Water Level Reading (long-term)

Auger Drilling

Blackburn Consulting 11521 Blocker Drive, Suite 110 Auburn, CA 95603 Phone: (530) 887-1494

Fax: (530) 887-1495

BORING RECORD LEGEND

PAGE 1

	CONSISTENCY OF COHESIVE SOILS										
Descriptor	Unconfined Compressive Strength (tsf)	Pocket Penetrometer (tsf)	Torvane (tsf)	Field Approximation							
Very Soft	< 0.25	< 0.25	< 0.12	Easily penetrated several inches by fist							
Soft	0.25 - 0.50	0.25 - 0.50	0.12 - 0.25	Easily penetrated several inches by thumb							
Medium Stiff	0.50 - 1.0	0.50 - 1.0	0.25 - 0.50	Can be penetrated several inches by thumb with moderate effort							
Stiff	1.0 - 2.0	1.0 - 2.0	0.50 - 1.0	Readily indented by thumb but penetrated only with great effort							
Very Stiff	2.0 - 4.0	2.0 - 4.0	1.0 - 2.0	Readily indented by thumbnail							
Hard	> 4.0	> 4.0	> 2.0	Indented by thumbnail with difficulty							

APPARENT DEN	APPARENT DENSITY OF COHESIONLESS SOILS							
Descriptor	SPT N ₆₀ - Value (blows / foot)							
Very Loose	0 - 4							
Loose	5 - 10							
Medium Dense	11 - 30							
Dense	31 - 50							
Very Dense	> 50							

	MOISTURE							
Descriptor	Criteria							
Dry	Absence of moisture, dusty, dry to the touch							
Moist	Damp but no visible water							
Wet	Visible free water, usually soil is below water table							

PERCENT OR PROPORTION OF SOILS							
Descriptor	Criteria						
Trace	Particles are present but estimated to be less than 5%						
Few	5 to 10%						
Little	15 to 25%						
Some	30 to 45%						
Mostly	50 to 100%						

SOIL PARTICLE SIZE							
Descriptor		Size					
Boulder		> 12 inches					
Cobble		3 to 12 inches					
Gravel	Coarse	3/4 inch to 3 inches					
Gravei	Fine	No. 4 Sieve to 3/4 inch					
	Coarse	No. 10 Sieve to No. 4 Sieve					
Sand	Medium	No. 40 Sieve to No. 10 Sieve					
	Fine	No. 200 Sieve to No. 40 Sieve					
Silt and Clay		Passing No. 200 Sieve					

PLASTICITY OF FINE-GRAINED SOILS							
Descriptor	Criteria						
Nonplastic	A 1/8-inch thread cannot be rolled at any water content.						
Low	The thread can barely be rolled, and the lump cannot be formed when drier than the plastic limit.						
Medium	The thread is easy to roll, and not much time is required to reach the plastic limit; it cannot be rerolled after reaching the plastic limit. The lump crumbles when drier than the plastic limit.						
High	It takes considerable time rolling and kneading to reach the plastic limit. The thread can be rerolled several times after reaching the plastic limit. The lump can be formed without crumbling when drier than the plastic limit.						

CEMENTATION							
Descriptor	Criteria						
Weak	Crumbles or breaks with handling or little finger pressure.						
Moderate	Crumbles or breaks with considerable finger pressure.						
Strong	Will not crumble or break with finger pressure.						

NOTE: This legend sheet provides descriptors and associated criteria for required soil description components only. Refer to Caltrans Soil and Rock Logging, Classification, and Presentation Manual (2010), Section 2, for tables of additional soil description components and discussion of soil description and identification.

Blackburn Consulting 11521 Blocker Drive, Suite 110 Auburn, CA 95603

Phone: (530) 887-1494 Fax: (530) 887-1495 BORING RECORD LEGEND

PAGE 2

TEST PIT LOG

									Test Pit No:	TP1
		2491 Bo	atman A	ve		Project No.:	3228.X		Sheet 1 of	1
		West Sa	acrament	to 95691		Project Name:	Lincoln	WWTRF	•	
black	burn	Telepho	ne: 916	375 870	16	Project Location:	Lincoln,	CA		
consu	lting	Fax: 91	6 375 87	'09		Logged By:	RMS	Date:	10/31/2017	
Sketch)					Contractor:			Lic. No.	
						Operator:	Rob Ra	sch		
						Backhoe Type:	Bobcat			
						Ground Elevation:	107 ft	Depth:	9 ft	
							(-	Fround Wa	ater Elevation Da	ta
				Sample			Date		ator Elovation Ba	
	Pocket	Blow	Depth	Interval	Graphic	Description	Time		oundwater Encou	ntered
	Pen (tsf)	Counts	in (ft)	& No	Log		Depth			
	, ,		()			SANDY Lean CLAY			rown	
			1				, ,,	, 5 -		
			ı							
			اء							
			2				D			
						Moist; Brown; Mediu	ım Plasti	city		
			3							
			4							
						CLAYEY SAND (SC	; Moist;	Reddish	Brown; Low Plast	icity;
			5			Fine SAND	,,			•
			<u>J</u>							
			6							
			7							
			8							
			9							
						End of Boring at 9 ft	:			
			10			Bulk A: 0-4ft				
			10			Bulk B: 4-9ft				
			ا ر							
			11							
			12							
			13							
			14							
			1-4							
			4.5							
			15							
			16							

TEST PIT LOG

									Test Pit No: TP2	
		2491 Boatman Ave				Project No.:	3228.X		Sheet 1 of 1	
		West Sacramento 95691				Project Name:	Lincoln WWTRF			
blackburn		Telephone: 916 375 8706				Project Location:	Lincoln,	CA		
consulting		Fax: 916 375 8709				Logged By:	RMS	Date:	10/31/2017	
Sketch)					Contractor:			Lic. No.	
		1				Operator:	Rob Ras	sch		
						Backhoe Type:	Bobcat			
						Ground Elevation:	108 ft	Depth:	8 ft	
								•		
								round W	ater Elevation Data	
				Sample			Date		ater Lievation Data	
	Pocket	Blow	Depth	Interval	Graphic	Description	Time		oundwater Encountered	
	Pen (tsf)		in (ft)	& No	Log	Description	Depth		diawater Encountered	
	1 011 (101)	Counto	(11)	Q 110	Log	SANDY Lean CLAY			f; Reddish Brown; Dry;	
						Fine SAND; Low Pla			i, reddisii brown, bry,	
			1			i iilo o/ (ivb, Low i io	actionty			
			2							
						Brown; Moist				
			3							
			4				ry; Light Brown; Medium Cementation			
			4			Dry: Light Brown: M				
			_			Dry, Light Brown, Medidin Cementation				
			5							
			6							
						Brown; Moist				
			7							
			8							
						End of Boring at 8 ft				
					Bulk A: 0-4ft					
			9			Bulk B: 4-8ft				
						2 2 0				
			10							
			11							
			12							
			12							
			4.0							
			13							
			14							
			15							
			16							

									Test Pit No: TP3
		2491 Bo	atman A	ve		Project No.:	3228.X		Sheet 1 of 1
Ó		West Sa	acrament	to 95691		Project Name:	Lincoln '	WWTRF	•
blacki	burn	Telepho	ne: 916	375 870	16	Project Location:	Lincoln,		
consu	lting		6 375 87			Logged By:	RMS	Date:	10/31/2017
Sketch						Contractor:			Lic. No.
		l				Operator:	Rob Ras	sch	
						Backhoe Type:	Bobcat		
						Ground Elevation:	110.5 ft		8.5 ft
								۱۸/ اماد داماد	otor Flourian Data
				Camania				round vva	ater Elevation Data
	Dealast	Divi	Donath	Sample	0	Decemination	Date	No O	dataw Fwaai watawa d
	Pocket	Blow	Depth	Interval	Graphic	Description	Time		oundwater Encountered
	Pen (tsf)	Counts	in (ft)	& No	Log	OUT (MI) Link Do	Depth		ND West Ossessin
							own; Dry	; Fine SA	ND; Weak Cementation;
			1			PI=5 LL=31			
			2						
			0						
			3			 			
						SANDY Lean CLAY	(CL): Br	own: Mois	st: Fine SAND
			4			0,1112 1 20011 02,11	(02), 5.	o 1111, 11101.	51, 1 1110 07 1112
			5						
			6						
			7						
						Reddish Brown			
			8						
			9			F 4 D 10 4 0	tr.		
						End of Boring at 8.5	π		
			10			Bulk A: 0-3ft			
						Bulk B: 3-8.5ft			
			11						
			4.0						
			12						
			13						
			14						
			4.5						
			15						
			16						

									Test Pit N	0:	TP4
		2491 Bc	atman A	ve		Project No.:	3228.X		Sheet 1	of	1
		West Sa	acramen	to 95691		Project Name:	Lincoln \	WWTRF	•		
black	burn	Telepho	ne: 916	375 870	06	Project Location:	Lincoln,	CA			
consu	lting		6 375 87			Logged By:	RMS	Date:	10/31/2017		
Sketch)					Contractor:			Lic. No.		
		ı				Operator:	Rob Ras	sch			
						Backhoe Type:	Bobcat I				
						Ground Elevation:	110.5 ft		8.5 ft		
								round W	ater Elevation	Data	,
				Sample			Date	ilouliu vv	ater Lievation	Date	1
	Pocket	Blow	Depth	Interval	Graphic	Description	Time	No Gro	oundwater End	count	tered
	Pen (tsf)		in (ft)	& No	Log	Bosonphon	Depth		Janawator En	Journ	.0100
	()	000	()	<u> </u>	9		200				
			1								
			1								
			_								
			2								
						Reddish Brown					
			3								
			4								
			5								
			0								
			6								
			7								
			8								
				_							
			9								
						End of Boring at 8.5	ft				
			10			Bulk A: 0-8.5ft					
			10								
			4.4								
			11								
			12								
			13								
			14								
			15								
			10								
			4.0								
			16		1						

									Test Pit	t No:	TP5
		2491 Bc	atman A	ve		Project No.:	3228.X			1 of	1
			acramen			Project Name:	Lincoln \	WWTRF	10001		•
black	burn		ne: 916			Project Location:	Lincoln,				
consu	lting	Fax: 91	6 375 87	7 09		Logged By:	RMS	Date:	10/31/201	17	
Sketch)					Contractor:			Lic. No.		
		!				Operator:	Rob Ras	sch			
						Backhoe Type:	Bobcat E				
						Ground Elevation:	99 ft	Depth:	8.5 ft		
							G	round Wa	ater Elevat	tion Data	3
				Sample			Date				
	Pocket	Blow	Depth	Interval	Graphic	Description	Time	No Gro	oundwater	Encount	tered
	Pen (tsf)	Counts	in (ft)	& No	Log	NA O O	Depth	V (O) (O	(O) 14 : 1	5 181	
						Well Graded SAND	with CLA	Y (SW-S	C); Moist;	Reddish	1
			1			Brown					
			2								
			3			L					
						Lean CLAY (CL); M			own; Low	to Mediu	ım
			4			Plasticity; Traces of	Fine SAN	ND			
						Reddish Brown					
			5								
						CLAYEY SAND (SO	C); Moist;	Light Red	ddish Brow	n; Fine	SAND
			6			,	,	Ū			
			J								
			7								
			,								
			0								
			8								
			9			End of Poring at 0.5	: f t				
						End of Boring at 8.5 Bulk A: 0-3ft) IL				
			10			Bulk B: 3-5ft					
						Bulk C: 5-8.5ft					
			11								
			12								
			13								
			14								
			15								
			. 3								
			16								
			10		<u> </u>						

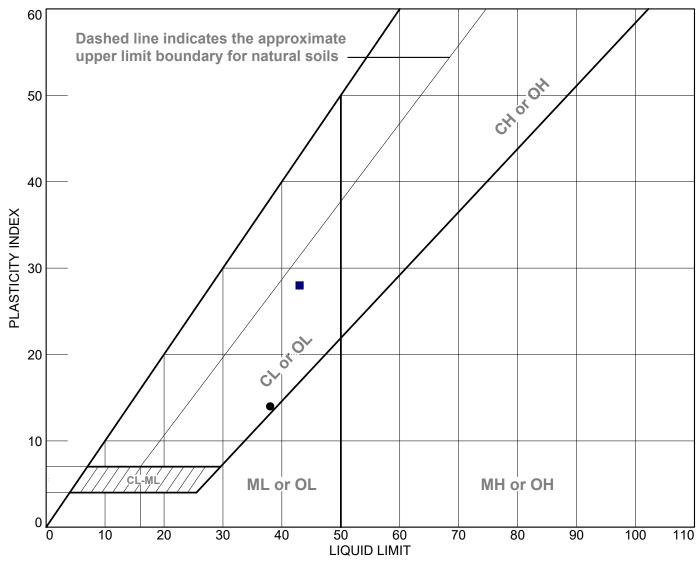
									Test Pit No:	TP6
		2491 Bo	atman A	ve		Project No.:	3228.X		Sheet 1 of	1
		West Sa	acrament	to 95691		Project Name:	Lincoln	WWTRF		
blacki	burn	Telepho	ne: 916	375 870	16	Project Location:	Lincoln,	CA		
consu	lting	Fax: 91	6 375 87	'09		Logged By:	RMS	Date:	10/31/2017	
Sketch)					Contractor:			Lic. No.	
		1				Operator:	Rob Ra	sch		
						Backhoe Type:	Bobcat	E32		
						Ground Elevation:	100 ft	Depth:	6.5 ft	
								·		
								Fround W	ater Elevation Data	a
				Sample			Date		ator Elevation Batt	
	Pocket	Blow	Depth	Interval	Graphic	Description	Time		oundwater Encoun	tered
	Pen (tsf)		in (ft)	& No	Log	2 de di i pilon	Depth		Janawator Enocur	10.04
	()		()			CLAYEY SAND (SC			n: Fine SAND: Me	dium
			1			to Strong Cementati		J 2. 2.	,,	
			I			3 -				
			2							
			3							
						Strongly Cemented	Clumps			
			4							
						Light Beige				
			5							
			6							
			7							
						End of Boring at 6.5	ft			
			8			Backhoe Refusal				
						Bulk A: 0-6.5ft				
			9							
			10							
			10							
			اديد							
			11							
			12							
			13							
			14							
			15							
			13							
			16							

									Test Pit No:	TP7	7
		2491 Bo	atman A	ve		Project No.:	3228.X		Sheet 1 of		1
		West Sa	acrament	to 95691		Project Name:	Lincoln	WWTRF	•		
blacki	burn	Telepho	ne: 916	375 870)6	Project Location:	Lincoln,	CA			
consu	lting	Fax: 91	6 375 87	'09		Logged By:	RMS	Date:	10/31/2017		
Sketch)					Contractor:			Lic. No.		
		1				Operator:	Rob Ra	sch			
						Backhoe Type:	Bobcat				
						Ground Elevation:	109 ft	Depth:	9 ft		
								Fround W	ater Elevation D	ata	
				Sample			Date		ator Elevation B	ata	_
	Pocket	Blow	Depth	Interval	Graphic	Description	Time		oundwater Enco	untered	4
	Pen (tsf)	Counts	in (ft)	& No	Log	Booonphon	Depth		Janawator Enco	arrioroc	1
	1 011 (101)	Counto	(11)	Q 110	Log	CLAYEY SAND (SC			oist		
			4			02,112, 0, 110 (00	,, 0	5. O	0.01		
			1								
			2								
			3								
						CLAYEY SAND (SC	;); Brown	; Moist			
			4								
			5								
			3								
			6								
			7								
						Reddish Brown					
			8								
			9								
						End of Boring at 9 ft	<u> </u>				
			10			Bulk A: 0-3ft					
			10			Bulk B: 3-7ft					
						Bulk C: 7-9ft					
			11								
			12								
			13								
			14								
			1-7								
			4.5								
			15								
			16								

									Test Pit No	o:	TP8
		2491 Bo	atman A	ve		Project No.:	3228.X		Sheet 1	of	1
		West Sa	acrament	to 95691		Project Name:	Lincoln \	WWTRF	•		
blacki	burn	Telepho	ne: 916	375 870)6	Project Location:	Lincoln,	CA			
consu	lting	Fax: 91	6 375 87	'09		Logged By:	RMS	Date:	10/31/2017		
Sketch)					Contractor:			Lic. No.		
		1				Operator:	Rob Ras	sch			
						Backhoe Type:	Bobcat I	E32			
						Ground Elevation:	109.5 ft	Depth:	9 ft		
								•			
							G	round Wa	ater Elevation	Data	1
				Sample			Date	round tro	2.01 2.014.011	Date	-
	Pocket	Blow	Depth	Interval	Graphic	Description	Time	No Gro	oundwater End	count	tered
	Pen (tsf)	Counts	in (ft)	& No	Log		Depth				
	, ,		()			CLAYEY SAND (SC			y; Fine SAND		
			1				,, 5 -	,	, .		
			I								
			اء								
			2								
			3								
						CLAYEY SAND (SC	;); Reddis	sh Brown;	Moist; Traces	s of	
			4			GRAVEL					
			5								
			0								
			6			Well Graded SAND	with CL A	V (CW C			
						Moist	WILLI CLA	AT (SVV-S	C), Reddisii b	orowi	1,
			7			IVIOIS					
			8								
			9								
						End of Boring at 9 ft	•				
			10			Bulk A: 0-3ft					
			10			Bulk B: 3-6ft					
			اديد			Bulk C: 6-9ft					
			11								
			12								
			13								
			14								
			15								
			13								
			16								

GEOTECHNICAL DESIGN REPORT

Lincoln Wastewater Treatment and Reclamation Facility


Phase 1 Expansion
Tertiary Storage Basin No. 3
Placer County, CA

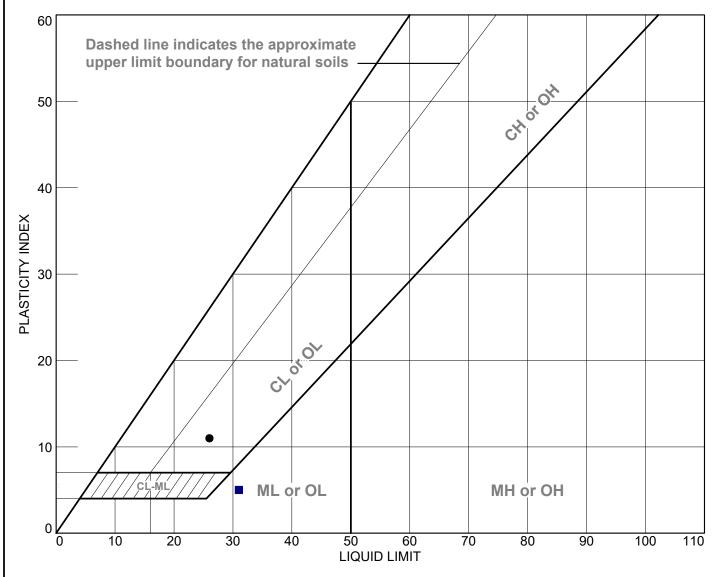
APPENDIX B

Laboratory Summary Laboratory Test Results

	SOIL DATA									
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs		
•	B1	2C	5.75-6.25		24	38	14	CL		
•	В2	2C	6.0-6.5'		15	43	28	CL		

Blackburn Consulting

Client: Stantec - Rocklin


Project: LWWTRF Expansion Phase 1&2

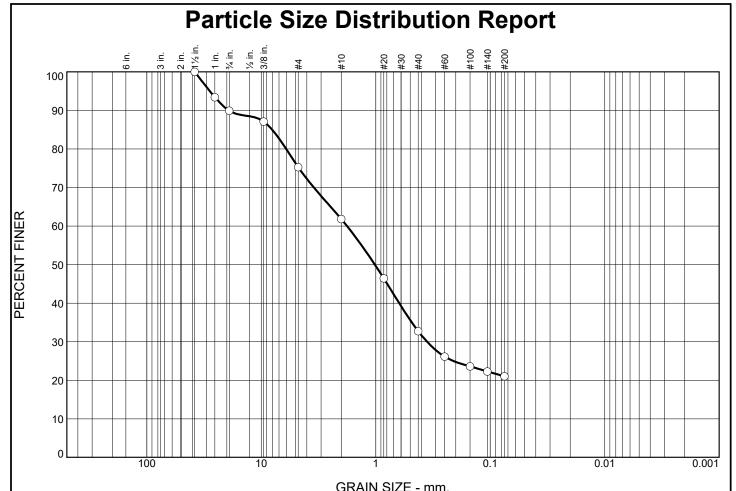
W. Sacramento, CA

Project No.: 3228.X

Figure

	SOIL DATA									
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs		
•	TP1	Bulk A	0.0-4.0'		15	26	11	CL		
•	TP3	Bulk A	0.0-3.0'		26	31	5	ML		

Blackburn Consulting


Client: Stantec - Rocklin

W. Sacramento, CA

Project: LWWTRF Expansion Phase 1&2

Project No.: 3228.X

Figure

					- 1111111.		
% +3"	% G	ravel		% Sand	d	% Fines	
% ₹3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0	10	15	13	29	12	21	
	CENT SPEC			CLAV		al Description GRAVEL strong brown	

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5"	100		
1"	93		
3/4"	90		
3/8"	87		
#4	75		
#10	62		
#20	46		
#40	33		
#60	26		
#100	24		
#140	22		
#200	21		
	\$IZE 1.5" 1" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #140	SIZE FINER 1.5" 100 1" 93 3/4" 90 3/8" 87 #4 75 #10 62 #20 46 #40 33 #60 26 #100 24 #140 22	SIZE FINER PERCENT 1.5" 100 1" 93 3/4" 90 3/8" 87 #4 75 #10 62 #20 46 #40 33 #60 26 #100 24 #140 22

Material Description CLAYEY SAND with GRAVEL, strong brown								
PL=	Atterberg Limits	PI=						
D ₉₀ = 19.2499 D ₅₀ = 1.0184 D ₁₀ =	Coefficients D ₈₅ = 8.0267 D ₃₀ = 0.3560 C _u =	D ₆₀ = 1.7835 D ₁₅ = C _c =						
USCS= SC	Classification AASHT	O=						
Remarks ASTM D6913 mass reqs. not met due to >1" gravel in sample								

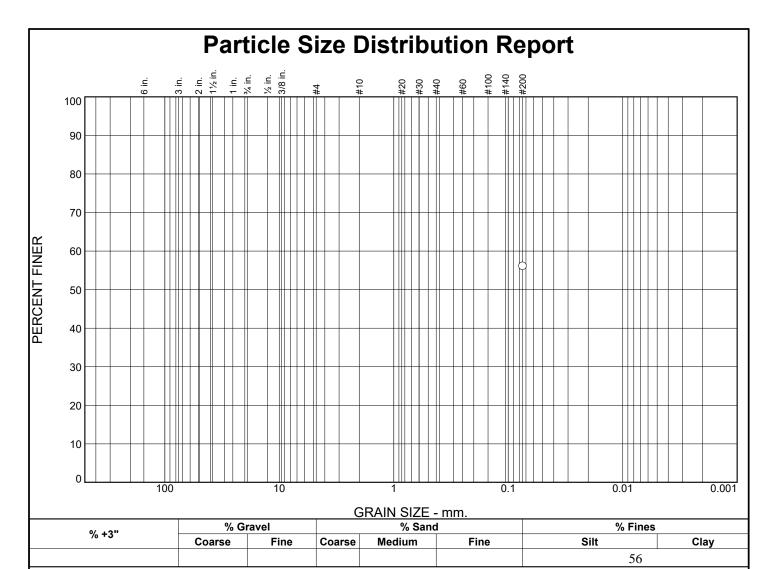
Date: 11/20/17

Figure

(no specification provided)

Source of Sample: B2 **Sample Number:** 4C

Depth: 16.0-16.5'


Blackburn Consulting Client: S

W. Sacramento, CA

Client: Stantec - Rocklin

Project: LWWTRF Expansion Phase 1&2

Project No: 3228.X

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	56		
* (** 0. 0**	 	. 1)	

Material Description SANDY lean CLAY, reddish brown		
PL=	Atterberg Lim	nits PI=
D ₉₀ = D ₅₀ = D ₁₀ =	Coefficients D ₈₅ = D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =
USCS=	Classification AAS	on SHTO=
<u>Remarks</u>		

(no specification provided)

Source of Sample: TP4 Sample Number: Bulk A

Depth: 0.0-8.5'

Blackburn Consulting Client: Stantec - Rocklin


Project: LWWTRF Expansion Phase 1&2

W. Sacramento, CA

Project No: 3228.X

Figure

Date: 10/31/17

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	37		
*			

CLAYEY SAN	Material Descripti D, brown	<u>on</u>
PL=	Atterberg Limits	<u>s</u> PI=
D ₉₀ = D50= D ₁₀ =	Coefficients D ₈₅ = D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =
USCS= SC	Classification AASH	TO=
	<u>Remarks</u>	

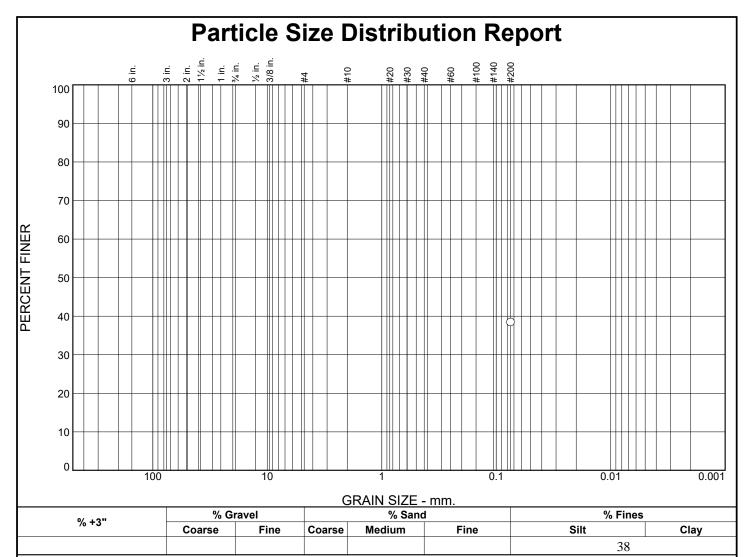
(no specification provided)

Source of Sample: B6 **Sample Number:** 3C

Depth: 11.0-11.5'

Client: Stantec - Rocklin

Blackburn Consulting


Project: LWWTRF Expansion Phase 1&2

W. Sacramento, CA

Project No: 3228.X

Figure

Date: 11/20/17

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	38		
* (** 0. 0.**	 	. 4\	

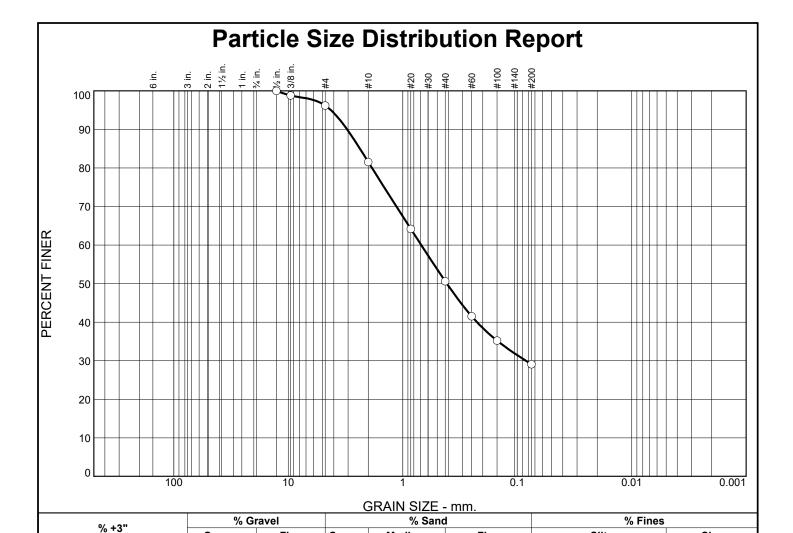
CLAYEY SA	Material Description ND, reddish brown	<u>on</u>
PL=	Atterberg Limits	PI=
D ₉₀ = D ₅₀ = D ₁₀ =	Coefficients D85= D30= Cu=	D ₆₀ = D ₁₅ = C _c =
USCS=	<u>Classification</u> AASHT	O=
	<u>Remarks</u>	

(no specification provided)

Source of Sample: TP7 Sample Number: Bulk A

Depth: 0.0-3.0'

Blackburn Consulting Client: Stantec - Rocklin


Project: LWWTRF Expansion Phase 1&2

W. Sacramento, CA

Project No: 3228.X

Figure

Date: 10/31/17

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1/2"	100		
3/8"	99		
#4	96		
#10	82		
#20	64		
#40	51		
#60	42		
#100	35		
#200	29		
* .	ogification provide		

Coarse

Fine

Coarse

Medium

31

Fine

22

	Material Description O, reddish brown	<u>on</u>
PL=	Atterberg Limits LL=	PI=
D ₉₀ = 3.0623 D ₅₀ = 0.4113 D ₁₀ =	Coefficients D ₈₅ = 2.3670 D ₃₀ = 0.0840 C _u =	D ₆₀ = 0.6894 D ₁₅ = C _c =
USCS= SC	Classification AASHT	O=
	<u>Remarks</u>	

Silt

29

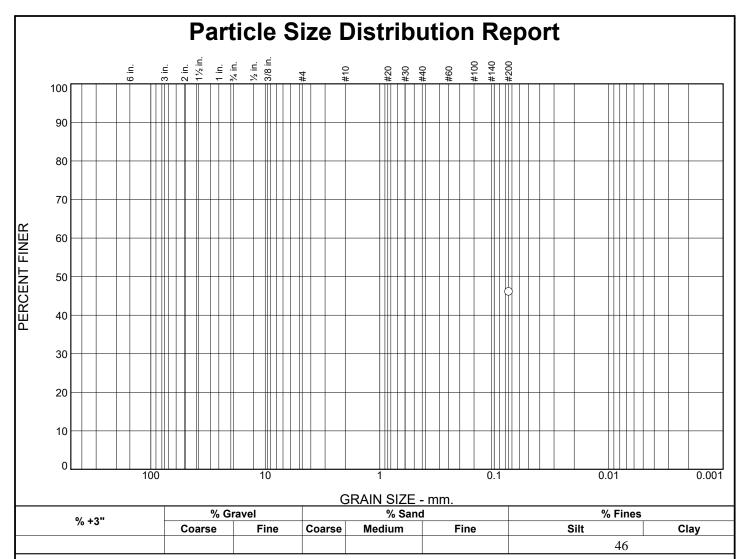
Date: 10/31/17

Clay

(no specification provided)

Source of Sample: TP8 Sample Number: Bulk B

0


Depth: 3.0-6.0'

Blackburn Consulting Client: Stantec - Rocklin

W. Sacramento, CA

Project: LWWTRF Expansion Phase 1&2

Project No: 3228.X **Figure**

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	46		
* /	ecification provide	1)	

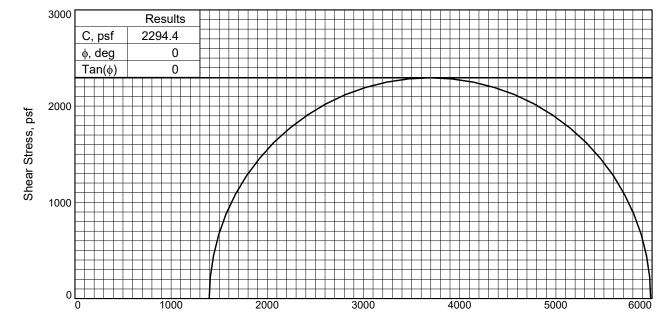
CLAYEY SA	Material Description ND, reddish brown	<u>on</u>
PL=	Atterberg Limits	PI=
D ₉₀ = D ₅₀ = D ₁₀ =	Coefficients D ₈₅ = D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =
USCS=	Classification AASHT	-O=
	<u>Remarks</u>	

Date: 10/31/17

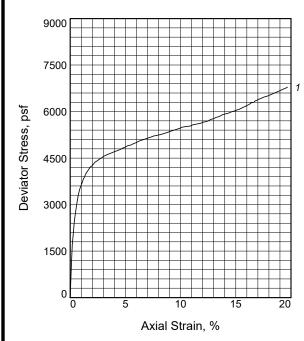
(no specification provided)

Source of Sample: TP8 Sample Number: Bulk A

Depth: 0.0-3.0'


Blackburn Consulting

W. Sacramento, CA


Client: Stantec - Rocklin

Project: LWWTRF Expansion Phase 1&2

Project No: 3228.X **Figure**

Normal Stress, psf

Type of Test:

Unconsolidated Undrained

Sample Type: 2.4" Mod Cal

Description: Lean CLAY, brown

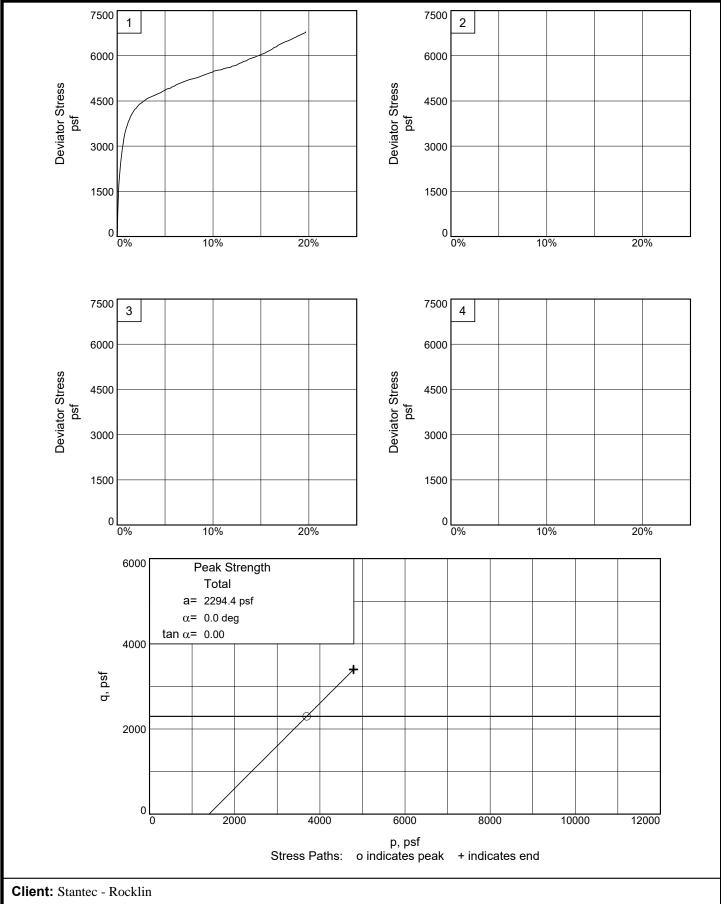
Assumed Specific Gravity= 2.70

Remarks:

;	Sar	mple No.	1	
		Water Content, %	18.7	
		Dry Density, pcf	104.7	
	Initial	Saturation, %	83.0	
	$\overline{\Box}$	Void Ratio	0.6095	
		Diameter, in.	2.400	
L		Height, in.	5.590	
		Water Content, %	22.0	
	7,	Dry Density, pcf	104.7	
	At Test	Saturation, %	97.3	
	₹	Void Ratio	0.6095	
	_	Diameter, in.	2.400	
L		Height, in.	5.590	
;	Stra	ain rate, in./min.	0.056	
	Bad	ck Pressure, psf	0.0	
1	Cel	l Pressure, psf	1396.8	
	Fail. Stress, psf Strain, % Ult. Stress, psf Strain, %		4588.7	
			3.2	
┨	†₁ Failure, psf		5985.5	
L	†3	Failure, psf	1396.8	

Client: Stantec - Rocklin

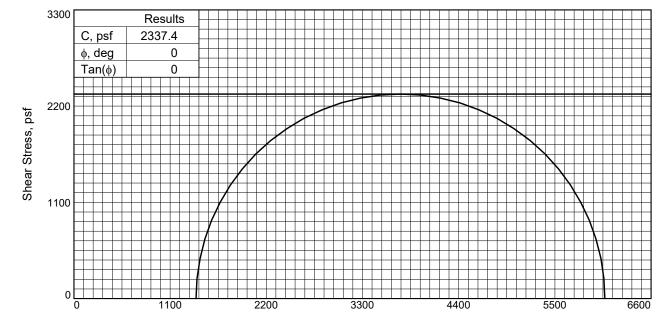
Project: LWWTRF Expansion Phase 1&2

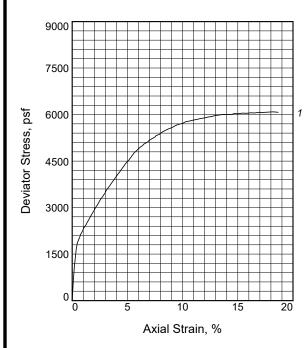

Source of Sample: B1 Depth: 5.75-6.25

Sample Number: 2C

Proj. No.: 3228.X **Date Sampled:** 10/6/17

TRIAXIAL SHEAR TEST REPORT
Blackburn Consulting
W. Sacramento, CA


Figure _____


Project: LWWTRF Expansion Phase 1&2

Source of Sample: B1 Depth: 5.75-6.25 Sample Number: 2C

Project No.: 3228.X Figure ____ Blackburn Consulting

Normal Stress, psf

Type of Test:

Unconsolidated Undrained **Sample Type:** 2.4" Mod Cal

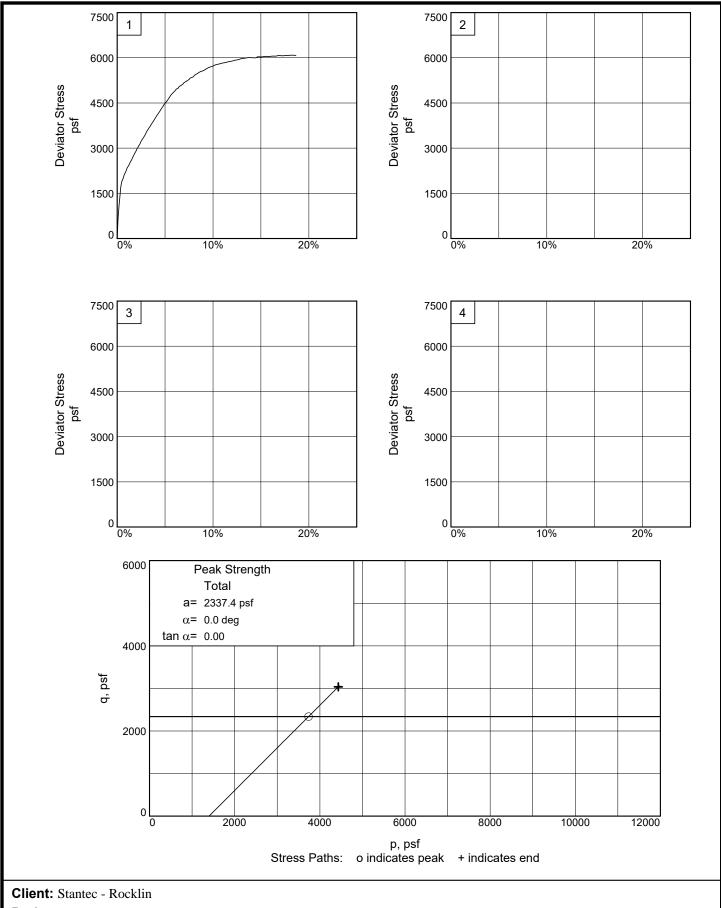
Description: Lean CLAY, reddish brown

Assumed Specific Gravity= 2.70

Remarks:

Saı	mple No.	1	
Initial	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	24.0 102.2 99.9 0.6491 2.390 5.343	
At Test	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	25.3 102.2 105.1 0.6491 2.390 5.343	
Strain rate, in./min.		0.053	
Bad	ck Pressure, psf	0.0	
Cel	l Pressure, psf	1396.8	
Fail. Stress, psf		4674.9	
Strain, %		5.4	
	Stress, psf Strain, %		
†1	Failure, psf	6071.7	
†3	Failure, psf	1396.8	

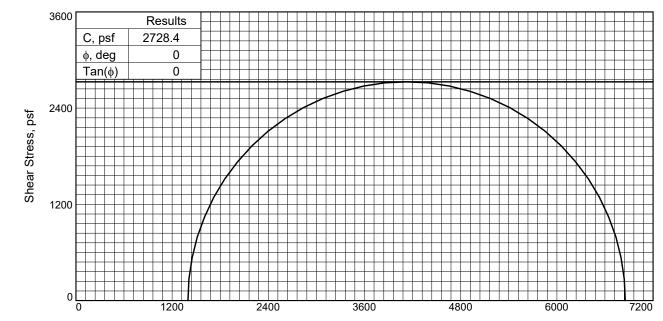
Client: Stantec - Rocklin

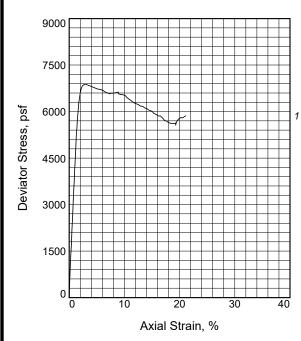

Project: LWWTRF Expansion Phase 1&2

Source of Sample: B3 Depth: 21.0-21.5'

Sample Number: 5C

TRIAXIAL SHEAR TEST REPORT
Blackburn Consulting
W. Sacramento, CA


-iaure	


Project: LWWTRF Expansion Phase 1&2

Source of Sample: B3 Depth: 21.0-21.5' Sample Number: 5C

Project No.: 3228.X Figure _____ Blackburn Consulting

Normal Stress, psf

Tyne	οf	Toet.
IVDE	UΙ	rest.

Unconsolidated Undrained **Sample Type:** 2.4" Mod Cal

Description: SANDY lean CLAY, yellowish brown

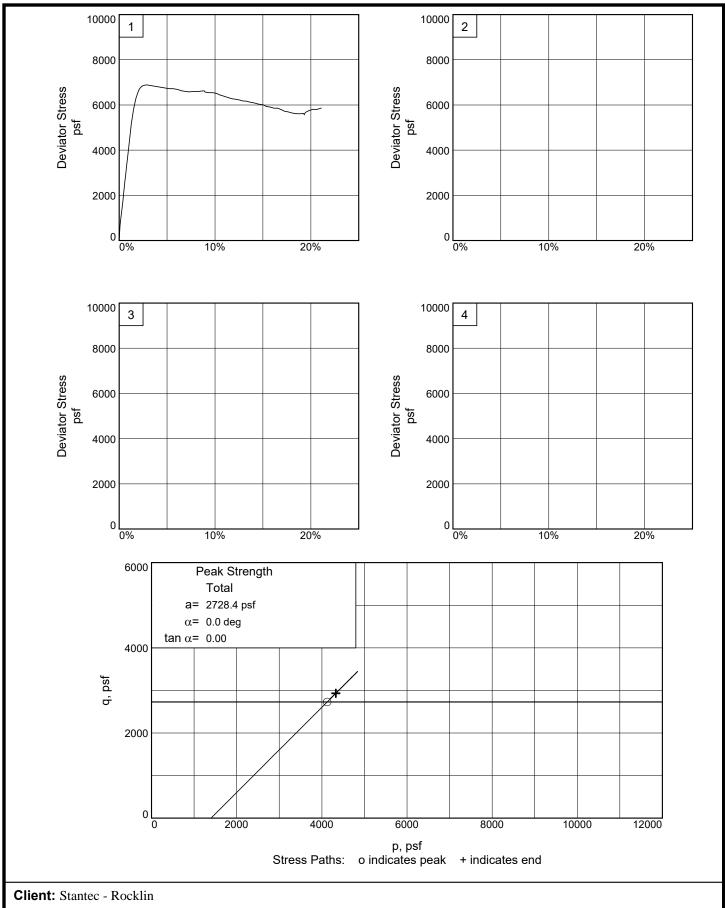
Assumed Specific Gravity= 2.70

Remarks:

	Sample No.		1	
		Water Content, %	18.8	
	_	Dry Density, pcf	97.5	
	nitial	Saturation, %	69.8	
	=	Void Ratio	0.7287	
,		Diameter, in.	2.417	
		Height, in.	5.162	
		Water Content, %	17.3	
	#	Dry Density, pcf	97.5	
	At Test	Saturation, %	63.9	
	<u>+</u>	Void Ratio	0.7287	
	1	Diameter, in.	2.417	
		Height, in.	5.162	
	Stra	ain rate, in./min.	0.052	
	Bad	ck Pressure, psf	0.0	
	Cel	l Pressure, psf	1396.8	
	Fail. Stress, psf		5456.8	
	Strain, %		1.4	
	Ult.	Stress, psf		
	S	Strain, %		
	†1	Failure, psf	6853.6	
	†3	Failure, psf	1396.8	

Client: Stantec - Rocklin

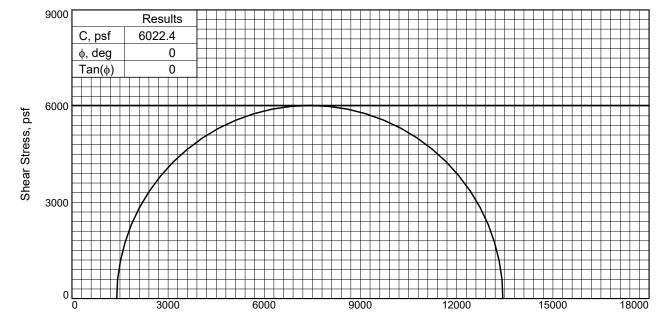
Project: LWWTRF Expansion Phase 1&2

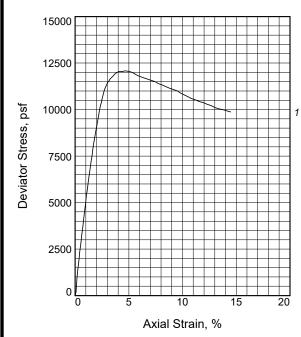

Source of Sample: B5 Depth: 6.0-6.5'

Sample Number: 2C

Proj. No.: 3228.X Date Sampled: 10/6/17

TRIAXIAL SHEAR TEST REPORT
Blackburn Consulting
W. Sacramento, CA


Figure	
_	


Project: LWWTRF Expansion Phase 1&2

Source of Sample: B5 Depth: 6.0-6.5' Sample Number: 2C

Project No.: 3228.X Figure _____ Blackburn Consulting

Normal Stress, psf

Ty	ре	of	Te	st:

Unconsolidated Undrained **Sample Type:** 2.4" Mod Cal

Description: Lean CLAY, light yellowish brown

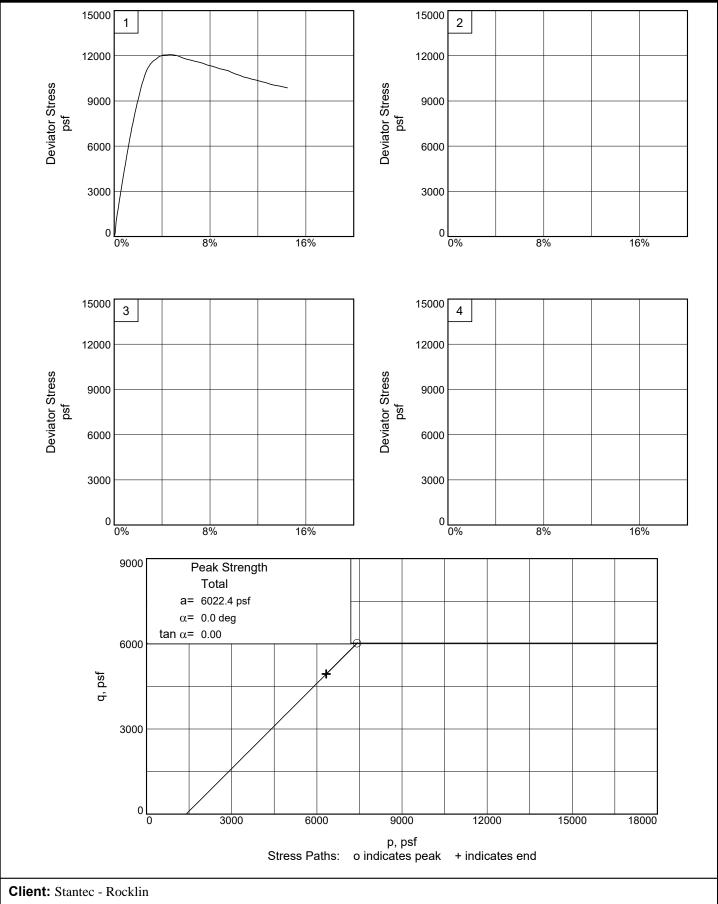
Assumed Specific Gravity= 2.70

Remarks:

	Sample No.		1	
,	Initial	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	34.0 88.1 100.4 0.9137 2.408 5.833	
	At Test	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	33.7 88.1 99.5 0.9137 2.408 5.833	
	Stra	ain rate, in./min.	0.058	
	Bad	ck Pressure, psf	0.0	
	Cel	ll Pressure, psf	1396.8	
	Fail. Stress, psf		12044.8	
	Strain, %		4.1	
		Stress, psf Strain, %		
	†1	Failure, psf	13441.6	
	†3	Failure, psf	1396.8	

Client: Stantec - Rocklin

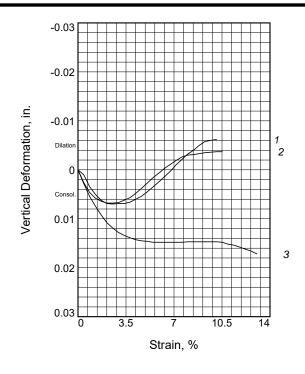
Project: LWWTRF Expansion Phase 1&2

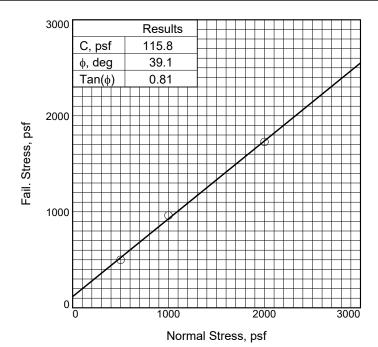

Source of Sample: B5 Depth: 11.0-11.5'

Sample Number: 3C

Proj. No.: 3228.X **Date Sampled:** 10/6/17

TRIAXIAL SHEAR TEST REPORT
Blackburn Consulting
W. Sacramento, CA


Figure _____



Project: LWWTRF Expansion Phase 1&2

Source of Sample: B5 Depth: 11.0-11.5' Sample Number: 3C

Project No.: 3228.X Figure _____ Blackburn Consulting

	3000													
	2500												_	
psf	2000													
Shear Stress, psf	1500													3
She	1000						_						_	2
	500												_	1
	0	0	5	5		1			1	15		2	20	
					St	rai	n, ʻ	%						

Saı	mple No.	1	2	3	
	Water Content, %	5.9	5.9	5.9	
	Dry Density, pcf	102.6	112.5	100.0	
Initial	Saturation, %	24.7	31.9	23.2	
<u>=</u>	Void Ratio	0.6431	0.4983	0.6852	
	Diameter, in.	2.375	2.375	2.375	
	Height, in.	0.950	0.950	0.950	
	Water Content, %	19.3	17.0	19.3	
l	Dry Density, pcf	104.7	115.5	104.9	
At Test	Saturation, %	85.5	100.0	86.0	
¥	Void Ratio	0.6097	0.4596	0.6066	
	Diameter, in.	2.375	2.375	2.375	
	Height, in.	0.931	0.925	0.906	
No	rmal Stress, psf	500.0	1000.0	2000.0	
Fai	I. Stress, psf	498.8	961.9	1727.8	
St	train, %	5.1	6.7	9.7	
Ult.	Stress, psf				
St	train, %				
Str	ain rate, in./min.	0.006	0.006	0.006	

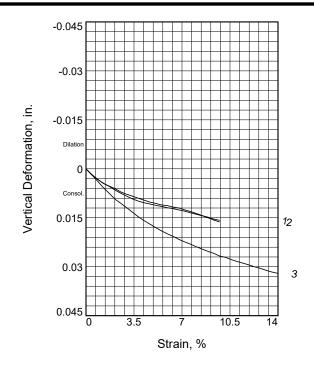
Sample Type: Undisturbed 2.4" Mod Cal Description: Poorly-graded SAND with CLAY, strong brown

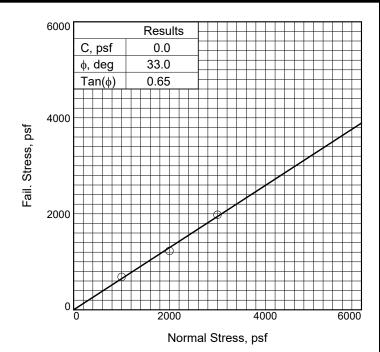
Assumed Specific Gravity= 2.70

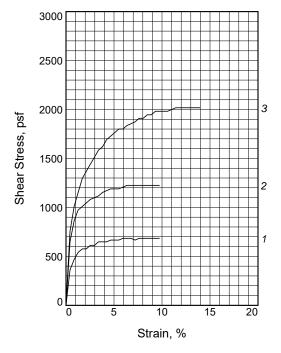
Remarks:

Client: Stantec - Rocklin

Project: LWWTRF Expansion Phase 1&2


Source of Sample: B3 Depth: 6.0-6.5'


Sample Number: 2C


Proj. No.: 3228.X **Date Sampled:** 10/6/2017

DIRECT SHEAR TEST REPORT
Blackburn Consulting
W. Sacramento, CA

Figure _____

Sai	mple No.	1	2	3	
	Water Content, %	14.2	14.2	14.2	
	Dry Density, pcf	111.5	111.5	111.6	
Initial	Saturation, %	75.0	75.2	75.4	
<u>=</u>	Void Ratio	0.5122	0.5111	0.5100	
	Diameter, in.	2.362	2.362	2.362	
	Height, in.	0.945	0.945	0.945	
	Water Content, %	18.2	18.5	18.9	
١	Dry Density, pcf	112.8	112.2	111.6	
Test	Saturation, %	99.7	99.8	99.9	
\	Void Ratio	0.4938	0.5018	0.5100	
	Diameter, in.	2.362	2.362	2.362	
	Height, in.	0.934	0.939	0.945	
No	rmal Stress, psf	1000.0	2000.0	3000.0	
Fai	I. Stress, psf	684.3	1224.6	1981.0	
St	train, %	5.9	6.4	9.3	
Ult	Stress, psf				
St	rain, %				
Str	ain rate, in./min.	0.007	0.007	0.007	

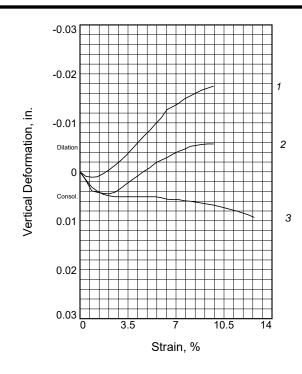
Sample Type: Remold

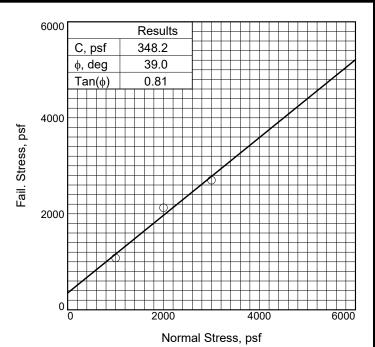
Description: SANDY lean CLAY, reddish brown

Assumed Specific Gravity= 2.70

Remarks:

Client: Stantec - Rocklin


Project: LWWTRF Expansion Phase 1&2


Source of Sample: TP2 Depth: 0.0-8.5'

Sample Number: Bulk A

DIRECT SHEAR TEST REPORT
Blackburn Consulting
W. Sacramento, CA

Figure _____

	3000											
	2500			/								3
psf	2000											2
Shear Stress, psf	1500											
She	1000					-						1
	500											
	0	0	Ę	5		10	0/		15	j	20	
					Str	ain	, %)				

Saı	mple No.	1	2	3	
	Water Content, %	13.7	13.7	13.7	
	Dry Density, pcf	114.3	114.1	114.3	
Initial	Saturation, %	78.1	77.5	78.1	
Ē	Void Ratio	0.4744	0.4776	0.4744	
	Diameter, in.	2.362	2.362	2.362	
	Height, in.	0.945	0.945	0.945	
	Water Content, %	17.4	17.3	16.8	
١	Dry Density, pcf	114.7	114.8	115.9	
At Test	Saturation, %	100.0	99.7	100.0	
¥	Void Ratio	0.4691	0.4679	0.4542	
	Diameter, in.	2.362	2.362	2.362	
	Height, in.	0.942	0.939	0.932	
No	rmal Stress, psf	1000.0	2000.0	3000.0	
Fai	I. Stress, psf	1080.5	2125.1	2701.4	
St	train, %	5.1	5.1	7.6	
Ult.	. Stress, psf				
St	train, %				
Str	ain rate. in./min.	0.007	0.007	0.007	

Sample Type: Remold

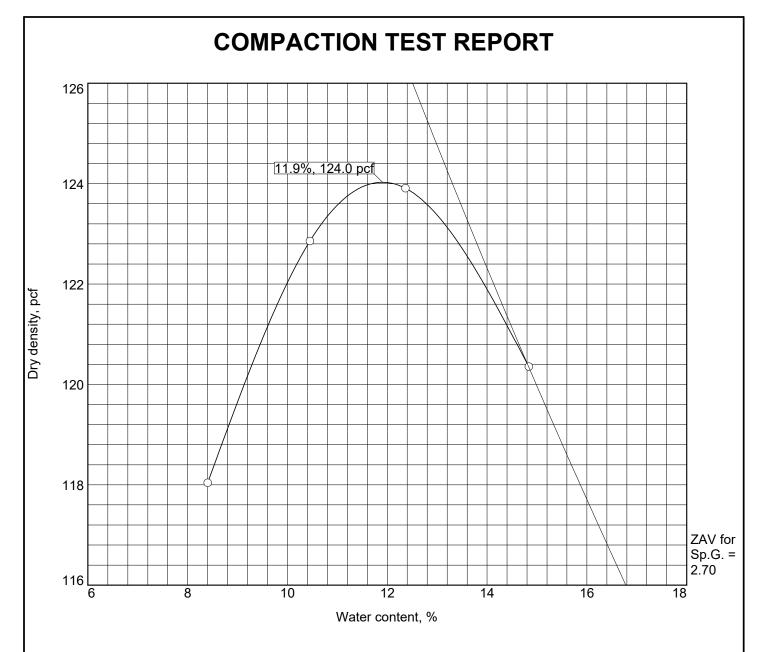
Description: SANDY lean CLAY, reddish brown

Assumed Specific Gravity= 2.70

Remarks:

Client: Stantec - Rocklin

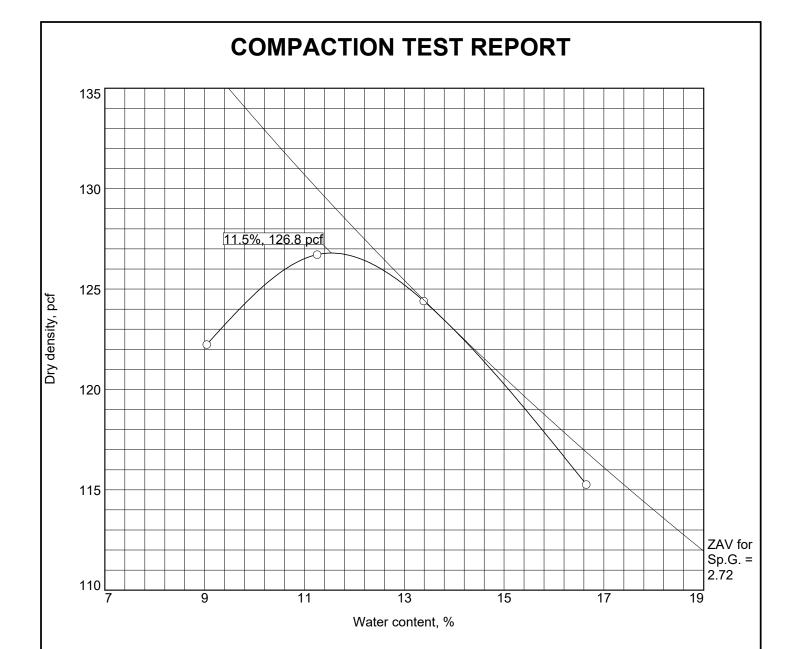
Project: LWWTRF Expansion Phase 1&2


Source of Sample: TP4 Depth: 0.0-8.5'

Sample Number: Bulk A

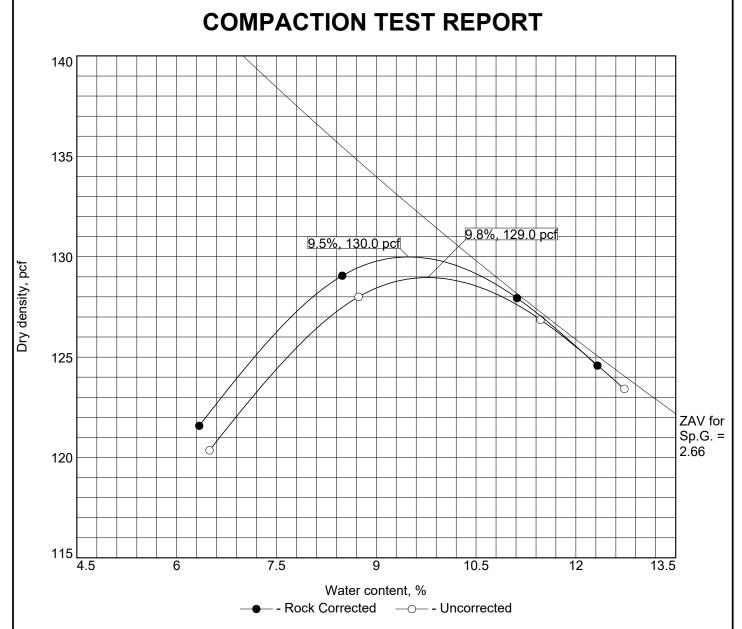
Proj. No.: 3228.X **Date Sampled:** 10/31/17

DIRECT SHEAR TEST REPORT
Blackburn Consulting
W. Sacramento, CA


Figure ____

Test specification: ASTM D 1557-12 Method A Modified, manual rammer, dry prep method

Elev/	Classi	fication	Nat.	Sn G	Sp.G.	1.1	DI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200	
0.0-8.5'				2.70					
0.0-0.5				2.70					


TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 124.0 pcf	SANDY lean CLAY, reddish brown
Optimum moisture = 11.9 %	
Project No. 3228.X Client: Stantec - Rocklin	Remarks:
Project: LWWTRF Expansion Phase 1&2	
○ Source of Sample: TP2 Sample Number: Bulk A	
Blackburn Consulting	
W. Sacramento, CA	Figure

Test specification: ASTM D 1557-12 Method A Modified, manual rammer, dry prep method

Elev/	Classification		Nat.	at.		DI.	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200
0.0-8.5'				2.72			1.0	56
0.0 0.5				2.,2			1.0	30

TEST RESULTS			N	MATERIAL DESCRIPTION					
Maximum dry density = 126.8 pcf			SAN	IDY lean C	LAY, reddis	sh brown			
Optimum moisture = 11.5 %									
Project No. 3228.X Client: Stantec - Rocklin				Remark	Remarks:				
Project: LWWTRF Expansion Phase 1&2									
○ Source	of Sample: TP4	Sample Number: Bulk	A						
Blackburn Consulting									
	W. \$	Sacramento, CA					Figure		

Test specification: ASTM D 1557-12 Method A Modified, manual rammer, dry prep method ASTM D 4718-87 Oversize Corr. Applied to Each Test Point

Elev/	Classification		Nat.	00			% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200
3.0-6.0'	SC			2.66			4	29

ROCK CORRECTED TEST RESULTS	UNCORRECTED	MATERIAL DESCRIPTION
Maximum dry density = 130.0 pcf	129.0 pcf	CLAYEY SAND, reddish brown
Optimum moisture = 9.5 %	9.8 %	
Project No. 3228.X Client: Stantec - Rocklin	Remarks:	
Project: LWWTRF Expansion Phase 1&2		
Source of Complet TD9 Complet Number: Bu		
○ Source of Sample: TP8 Sample Number: Bu		
Blackburn Consulting		

W. Sacramento, CA

Figure

GEOTECHNICAL DESIGN REPORT

Lincoln Wastewater Treatment and Reclamation Facility

Phase 1 Expansion
Tertiary Storage Basin No. 3
Placer County, CA

APPENDIX C

Important Information About This Geotechnical Engineering Report, Geoprofessional Business Association

Important Information about This

Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you – assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, clients can benefit from a lowered exposure to the subsurface problems that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed below, contact your GBA-member geotechnical engineer. **Active involvement in the Geoprofessional Business** Association exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Geotechnical-Engineering Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical-engineering study conducted for a given civil engineer will not likely meet the needs of a civilworks constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared solely for the client. Those who rely on a geotechnical-engineering report prepared for a different client can be seriously misled. No one except authorized client representatives should rely on this geotechnical-engineering report without first conferring with the geotechnical engineer who prepared it. And no one – not even you – should apply this report for any purpose or project except the one originally contemplated.

Read this Report in Full

Costly problems have occurred because those relying on a geotechnical-engineering report did not read it *in its entirety*. Do not rely on an executive summary. Do not read selected elements only. *Read this report in full*.

You Need to Inform Your Geotechnical Engineer about Change

Your geotechnical engineer considered unique, project-specific factors when designing the study behind this report and developing the confirmation-dependent recommendations the report conveys. A few typical factors include:

- the client's goals, objectives, budget, schedule, and risk-management preferences;
- the general nature of the structure involved, its size, configuration, and performance criteria;
- the structure's location and orientation on the site; and
- other planned or existing site improvements, such as retaining walls, access roads, parking lots, and underground utilities.

Typical changes that could erode the reliability of this report include those that affect:

- the site's size or shape;
- the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light-industrial plant to a refrigerated warehouse;
- the elevation, configuration, location, orientation, or weight of the proposed structure;
- the composition of the design team; or
- · project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes – even minor ones – and request an assessment of their impact. The geotechnical engineer who prepared this report cannot accept responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.

This Report May Not Be Reliable

Do not rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it; e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, that it could be unwise to rely on a geotechnical-engineering report whose reliability may have been affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If your geotechnical engineer has not indicated an "apply-by" date on the report, ask what it should be,* and, in general, *if you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying it. A minor amount of additional testing or analysis – if any is required at all – could prevent major problems.

Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface through various sampling and testing procedures. Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing were performed. The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgment to form opinions about subsurface conditions throughout the site. Actual sitewide-subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team from project start to project finish, so the individual can provide informed guidance quickly, whenever needed.

This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, *they are not final*, because the geotechnical engineer who developed them relied heavily on judgment and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* revealed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmation-dependent recommendations if you fail to retain that engineer to perform construction observation*.

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a full-time member of the design team, to:

- · confer with other design-team members,
- help develop specifications,
- review pertinent elements of other design professionals' plans and specifications, and
- be on hand quickly whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform construction observation.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, but be certain to note conspicuously that you've included the material for informational purposes only. To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report, but they may rely on the factual data relative to the specific times, locations, and depths/elevations referenced. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, only from the design drawings and specifications. Remind constructors that they may

perform their own studies if they want to, and *be sure to allow enough time* to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

Read Responsibility Provisions Closely

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnical-engineering report does not usually relate any environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Unanticipated subsurface environmental problems have led to project failures. If you have not yet obtained your own environmental information, ask your geotechnical consultant for risk-management guidance. As a general rule, do not rely on an environmental report prepared for a different client, site, or project, or that is more than six months old.

Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, none of the engineer's services were designed, conducted, or intended to prevent uncontrolled migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, proper implementation of the geotechnical engineer's recommendations will not of itself be sufficient to prevent moisture infiltration. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. Geotechnical engineers are not building-envelope or mold specialists.

Telephone: 301/565-2733 e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2016 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent

GEOTECHNICAL DESIGN REPORT

Lincoln Wastewater Treatment and Reclamation Facility
Phase 1 and Phase 2 Expansion Project
Maturation Pond Pump Station
Placer County, CA

Prepared by:

BLACKBURN CONSULTING

11521 Blocker Drive, Suite 110 Auburn, CA 95603 (530) 887-1494

April 2018

Prepared for:

Stantec

3875 Atherton Road Rocklin, CA 95765

Auburn Office:

11521 Blocker Drive, Suite 110 - Auburn, CA 95603 (530) 887-1494 • Fax (530) 887-1495

Fresno Office: (559) 438-8411 West Sacramento Office: (916) 375-8706

Geotechnical • Geo-Environmental • Construction Services • Forensics

File No. 3228.X April 10, 2018

Mr. Gabe Aronow, P.E. Stantec 3875 Atherton Road Rocklin CA 95765

Subject: **GEOTECHNICAL DESIGN REPORT**

Lincoln Wastewater Treatment and Reclamation Facility

Phase 1 and Phase 2 Expansion Project

Maturation Pump Station Placer County, California

Dear Mr. Aronow:

Blackburn Consulting (BCI) is pleased to submit this Geotechnical Design Report for the Lincoln Wastewater Treatment and Reclamation Facility Phase 1 and Phase 2 Expansion Project, Maturation Pump Station located in Placer County, California. BCI prepared this report in accordance with our November 22, 2017 amendment.

This report presents geotechnical and geologic data, and provides recommendations to design and construct the new facilities.

Please call us if you have questions or require additional information.

ENGINEERING

Sincerely,

BLACKBURN CONSULTING

Rob Pickard, P.G., C.E.G

Project Engineering Geologist

Thomas W. Blackburn, G.E., P.E.

Senior Principal

GEOTECHNICAL DESIGN REPORT

Lincoln Wastewater Treatment and Reclamation Facility
Phase 1 and Phase 2 Expansion Project
Maturation Pond Pump Station
Placer County, CA

TABLE OF CONTENTS

1	INTRO	DUCTION	1
	1.1	Purpose	1
	1.2	Scope of Services	1
	1.3	Site Location and Project Description	2
2	GEOLO	OGIC CONDITIONS	2
	2.1	General Geology	2
	2.2	Faulting	2
3	FIELDV	VORK AND LABORATORY TESTS	3
	3.1	Exploratory Borings	3
	3.2	Laboratory Testing	3
4	SUBSU	RFACE FINDINGS	4
	4.1	Soil Conditions	4
	4.2	Groundwater	4
5	CONCL	USIONS AND RECOMMENDATIONS	5
	5.1	Geologic Hazards	5
	5.1	Seismic Design	5
	5.2	General Grading Recommendations	6
		5.2.1 Excavation Conditions	
		5.2.2 Site Clearing	
		5.2.4 General Fill Placement and Compaction	
	5.3	Dewatering	
	5.4	Temporary Excavations	
	5.5	Foundation Design	
		5.5.1 Below-Grade Foundations	
	5.6	Minor Structures (Valve Vault)	13
	5.7	Soil Corrosivity	13
	5.8	Inlet/Outlet Pipe Installation	14
6	RISK N	IANAGEMENT	15
7	LIMITA	ATIONS	15

GEOTECHNICAL DESIGN REPORT

Lincoln Wastewater Treatment and Reclamation Facility
Phase 1 and Phase 2 Expansion Project
Maturation Pond Pump Station
Placer County, CA

FIGURES

Figure 1: Vicinity Map Figure 2: Site Map

APPENDIX A

Boring Logs (LWWTRF- 7) Legend of Boring Logs

APPENDIX B

Laboratory Test Results

APPENDIX C

Important Information About This Geotechnical Engineering Report, Geoprofessional Business Association

1 INTRODUCTION

1.1 Purpose

Blackburn Consulting (BCI) prepared this Geotechnical Design Report for an expansion to the City of Lincoln Wastewater Treatment and Reclamation Facility (LWWTRF) located in Placer County, California. This report presents geotechnical and geologic data and provides recommendations to design and construct the new maturation pond pump station included in the Phase 1 and Phase 2 Expansion Project.

We are aware of the following geotechnical investigations on this site:

- 8/30/99 "Remote Storage Basins, East of Fiddyment Road, Placer County, California" by Carlton Engineering.
- 3/5/2001 "Geotechnical Investigation Report" by Kleinfelder.
- 1/31/2002 "Updated Geotechnical Investigation Report" by Kleinfelder.
- BCI, April 2013, Geotechnical Design Report, Mid-Western Placer Regional Sewer Project.
- BCI, November 2017, Geotechnical Design Report, Lincoln Wastewater Treatment and Reclamation Facility Phase 1 and 2 Expansion Project, WWTP Improvements.
- BCI, February 2018, Geotechnical Design Report, Lincoln Wastewater Treatment and Reclamation Facility Phase 1 Expansion, Tertiary Storage Basin No. 3 Project.

BCI prepared this report for Stantec to use during design and construction of the proposed improvements. Do not rely upon this report for different locations or improvements without the written consent of BCI.

1.2 Scope of Services

To prepare this report, BCI:

- Discussed the pump station improvements with Stantec
- Reviewed published geologic mapping, geotechnical information previously obtained for the project, and available geotechnical reports for existing facilities
- Performed a field investigation and laboratory analyses
- Performed engineering analysis and calculations

Lincoln Wastewater Treatment and Reclamation Facility Phase 1 and 2 Expansion Project Maturation Pond Pump Station Placer County, California

File No. 3228.X April 10, 2018

1.3 Site Location and Project Description

The LWWTRF project is located in an unincorporated area of Placer County. Figure 1 shows the project location.

As part of the LWWTRF Phase 1 and 2 Expansion Project a pump station, flow meter vault, and associated piping is proposed on the east levee between the existing north (unlined) and south (lined) maturation ponds. The project will also widen the levee crest in the area of the pump station by approximately 6 feet. The levee is approximately 12 feet high with, a crest elevation of approximately 116.5 feet. The new pump station will be constructed south of the existing pump station. We show the existing facilities, site topography, and proposed improvements on Figure 2.

2 GEOLOGIC CONDITIONS

2.1 General Geology

Our site work and published geologic mapping¹ show the site is underlain by Quaternary deposits of the Riverbank Formation. Our borings confirm that the levee fill is underlain by interbedded clays and sands.

The Riverbank Formation is an alluvial deposit typically composed of interbedded medium dense to dense sands, often cemented, and stiff to hard silts and clays. Bedding is typically horizontal, lenticular, and discontinuous. These sediments were deposited in the Late Pleistocene age (deposited over 150,000 years ago).

2.2 Faulting

The Fault Activity Map of California² does not identify Historic or Holocene age faults (displacement within the last 11,700 years) within or adjacent to the project site. The nearest mapped fault is the Cleveland Hill Fault located approximately 40 miles north of the site.

⁻

¹ Helley, E.J. and Harwood, D.S., 1985, Geologic Map of the Late Cenozoic Deposits of the Sacramento Valley and Northern Sierra Foothills: U.S. Geological Survey, Map MF-1790.

² Jennings, Charles W., and Bryant, William A., 2010 Fault Activity Map of California: California Geological Survey, Geologic Data Map No. 6.

3 FIELDWORK AND LABORATORY TESTS

3.1 Exploratory Borings

To characterize the subsurface conditions, BCI drilled, logged, and sampled one boring (B7) on December 8, 2018. The boring was drilled to a depth of 31.5 feet (elevation 85 feet) below the top of the existing levee. Figure 2 shows the approximate boring location. We include the boring log in Appendix A.

We located B-7 using geographic features shown on the project topographic mapping. We did not survey the exploration points.

Our subcontractor, Taber Drilling, drilled the boring using 4-inch solid-stem auger techniques. We obtained soil samples at various intervals using a 3.0-inch O.D. Modified California (MC) sampler (equipped with 2.4-inch diameter brass liners), driven with an automatic hammer, weighing 140-pounds and falling approximately 30 inches.

Ryan Schimdt, logged the borings and retrieved samples for laboratory testing. We used plastic caps to seal and label the 2.4-inch diameter, 6-inch long brass tubes retrieved from MC sampling. We also retrieved bulk soil samples from auger cuttings at varied depths, placed this material in large cloth bags, and labeled them for laboratory identification.

During our field exploration, we performed field strength estimates with a pocket penetrometer on select cohesive and/or cemented soil samples. We note the results of field tests on the boring logs.

3.2 Laboratory Testing

We completed the following laboratory tests on representative soil samples from our exploratory borings:

- Moisture content and unit weight for soil classification and in-place soil characteristics
- Expansion index for soil expansion potential
- Unconsolidated undrained triaxial test for strength characteristics
- Maximum dry density for compaction characteristics
- Soil corrosivity (pH, minimum resistivity, chlorides and sulfates) performed by Sunland Analytical Laboratories for soil corrosion characteristics

We attach a laboratory summary sheet and laboratory test results in Appendix B and show test results on the boring logs.

Lincoln Wastewater Treatment and Reclamation Facility Phase 1 and 2 Expansion Project Maturation Pond Pump Station Placer County, California

File No. 3228.X April 10, 2018

4 SUBSURFACE FINDINGS

4.1 Soil Conditions

We encountered the following soil profile in our boring:

- Stiff to very stiff lean clays, and clayey sands (interpreted to be levee fill) to depths of approximately 6 to 14 feet below ground surface (bgs). Pocket penetrometer tests range from 1.5 to 3.5 tons per square foot (tsf) and unconsolidated undrained triaxial strength of 1433 pounds per square foot (psf).
- Very stiff lean clays at depths of approximately 14 to 23 feet bgs (interpreted to be native soils). Pocket penetrometer tests of 3.5 to 3.75 tsf.
- Very dense and well graded sand at depths of approximately 23 to 28 feet bgs.
- Hard lean clay to the maximum depth explored (31.5 feet bgs). Pocket penetrometer test of 4.5 tsf.

Refer to the boring log (Appendix A) for more specific subsurface conditions.

4.2 Groundwater

We did not encounter groundwater in our boring. Groundwater has previously been recorded at shallower depths than what is shown above. Kleinfelder³ recorded groundwater in their borings at depths ranging from 9.5 to 18 feet bgs (approximate elevations of 94.5 feet to 86 feet) in January 2001. It is not unusual to encounter channel sand lenses which can contain perched groundwater at varied depths within the Riverbank Formation. We also reviewed the Western Placer County Water Supply Appraisal⁴, which shows regional groundwater elevations near 50 ft. Assume the highest groundwater elevation observed in the general area which is at an approximate elevation of 99 feet⁵.

For project design, we assume that our boring reflects normal water levels within the levee. However, we assume higher water levels in the Maturation Ponds will affect water levels at the pump station. Water levels will likely be higher when construction of the future Maturation Pond No. 3 (to be located west of the pump station) is completed. We assume that long term water levels in the levee will match the water levels in the adjacent maturation ponds. Use a design water level based on the anticipated high water level.

³ Kleinfelder, 2002, Updated Geotechnical Investigation Report, Proposed Lincoln Wastewater Treatment Plant, Fiddyment Road, Placer County, California; consultant's report to Del Webb California Corporation

⁴ Boyle Engineering, Western Placer County Water Supply Appraisal, Groundwater Elevations, Spring 1987.

⁵ Kleinfelder, 2002, Updated Geotechnical Investigation Report, Proposed Lincoln Wastewater Treatment Plant, Fiddyment Road, Placer County, California; consultant's report to Del Webb California Corporation

Lincoln Wastewater Treatment and Reclamation Facility Phase 1 and 2 Expansion Project Maturation Pond Pump Station Placer County, California

File No. 3228.X April 10, 2018

5 CONCLUSIONS AND RECOMMENDATIONS

The site will be suitable for the planned facilities when constructed in accordance with the project plans, industry standards, and our geotechnical recommendations. Some of the more significant site limitations include possible shallow groundwater that may require dewatering for some structure installations.

5.1 Geologic Hazards

- Faulting—The potential for surface rupture or creep due to faulting at the site is very low. The Fault Activity Map of California⁶ and the Geologic Map of the Sacramento Quadrangle⁷ does not identify Historic or Holocene age faults (displacement within the last 11,700 years) within or immediately adjacent to the site. The site does not lie within or adjacent to an Alquist—Priolo Earthquake Fault Zone⁸.
- Ground Shaking—The USGS, Earthquake Hazards Program, Seismic Design Maps (https://earthquake.usgs.gov/designmaps/us/application.php) indicate that for the design seismic event, a peak horizontal ground acceleration (PGA) of approximately 0.172g could be expected.
- Liquefaction—Our investigation shows a soil profile that consists of stiff to hard clays and medium dense to dense silty and clayey sands that are not liquefiable. Therefore, the potential for damaging liquefaction at the site is very low.
- Landslides and Slope Stability—Due to the relatively low topographic relief and existing slope gradients we do not expect landslides or natural slope failure.
- Seismically Induced Settlement—During a seismic event, ground shaking can cause densification of granular soil that can result in settlement of the ground surface.
 Considering the cohesive soils and medium dense soils observed in the borings, we consider the potential for significant seismically induced settlement to be very low.

5.1 Seismic Design

The project site is underlain by dense/very stiff to hard soils which is considered as Site Class C in the California Building Code (CBC).⁹

_

⁶ Jennings, Charles W., and Bryant, William A., 2010 Fault Activity Map of California: California Geological Survey, Geologic Data Map No. 6.

⁷ Wagner, D.L., et al, 1981, Geologic map of the Sacramento quadrangle, California, 1: 250,000: California Division of Mines and Geology, Regional Geologic Map 1A, scale 1: 250,000.

⁸ Bryant, W.A., and Hart, E.W., 2007 (Interim Revision), <u>Fault-Rupture Hazard Zones in California</u>: California Department of Conservation, Division of Mines and Geology, Special Publication 42.

⁹ California Building Code, 2016, California Code of Regulations, Title 24, Part 2 (Volume 2); published by International Conference of Building Officials and the California Building Standards Commission.

For seismic design of plant components, use the values in Table 1:

TABLE 1

CBC Seismic Design Parameters ¹⁰ (Site Class C)					
S₅ – Acceleration Parameter	0.516 g				
S ₁ – Acceleration Parameter	0.254g				
F_a — Site Coefficient	1.1954				
F_{ν} – Site Coefficient	1.546				
S _{MS} – MCE* Spectral Response Acceleration, Short Period	0.616 g				
S _{M1} – MCE* Spectral Response Acceleration, 1-Second Period	0.393 g				
S_{DS} – 5% Damped Design Spectral Response Acceleration, Short Period	0.411 g				
S_{D1} – 5% Damped Design Spectral Response Acceleration, 1-Second	0.262 g				
T_L – Long Period Design Period**	12 seconds				
PGA – Peak Ground Acceleration	0.172 g				
PGA _M – Site Modified Peak Ground Acceleration	0.207 g				

^{*} Maximum Considered Earthquake

5.2 General Grading Recommendations

5.2.1 Excavation Conditions

Based on the soil conditions and drilling performance, excavation is possible with conventional equipment (common earthmoving equipment and large backhoe/excavator). The fine-grained and hard soil conditions can create slow excavation conditions.

5.2.2 Site Clearing

Prior to trenching or making any cuts and fills, remove all debris, and brush including the root system and strip surface vegetation to a depth of 4 inches below the surface. Excavations resulting from brush, and debris removal should be deepened and widened to provide access to self-propelled compaction equipment. Remove strippings from the site or use as landscape soil in designated areas.

^{**} Figure 22-12, ASCE 7-10

¹⁰ California Building Code, 2016, California Code of Regulations, Title 24, Part 2 (Volume 2); published by International Conference of Building Officials and the California Building Standards Commission.

5.2.3 Original Ground and Subgrade Preparation

After clearing process and compact the exposed soil in at-grade, cut, and fill areas as follows:

- Scarify the exposed soil to a depth of approximately 8 inches.
- Moisture condition subgrade to within 3% of the optimum moisture content.
- Compact the subgrade soil to a minimum 90% relative compaction based on ASTM D1557

Where fill is placed on sloping ground, blade back slopes horizontally during placement of embankment fill to create a stepped (or benched) fill surface (such that a uniform, sloping fill surface is avoided). Benching must remove loose surficial soils and result in stepped benches, generally one to two feet in height and depth into the existing slope. The lower bench should be sloped a minimum of 2% into the slope. Where benching will interfere with existing structures, utilities, or vegetation, BCI can review modifications on a case-by-case basis.

5.2.4 General Fill Placement and Compaction

General fill may consist of on-site soil. Fill should be free of debris and concentrations of vegetation.

Import fill for use pump station and levee improvements should meet the following criteria:

- 100 % passing the 3-inch sieve
- 90% to 100% passing the 2-inch sieve
- 75% to 100% passing the No. 4 sieve
- 20-60% passing the No. 200 sieve
- Liquid Limit ≤ 45
- Plasticity Index ≥ 8 and ≤ 20
- Shall not contain organics, debris or other deleterious material
- Approval from BCI prior to placement

Place fill in maximum 8-inch thick loose lifts, moisture condition 1% to 2% above optimum, and compact to a minimum of 90% relative compaction based on ASTM D 1557 test procedure. Compact fill using a sheepsfoot or padded drum type roller.

Construct fill slopes no steeper than 2(H):1(V). To achieve adequate compaction on the face of fill slopes, over-build the slopes and then cut back to the design grade. Track-walking is not an adequate method to compact the face of slopes.

5.3 Dewatering

Dewatering may be required for installations greater than approximately 17 feet deep (elevation 99 feet, see Section 4.2). Significant groundwater inflow may occur at the pump station, particularly during winter and spring months.

Dewatering can consist of:

- Deep sumps within the excavation. Considering the presence of fine-grained soils and relatively flat lying bedding, sumps within the excavation are not likely to provide good drawdown.
- Well points. Well points will likely work better to cut off flow into the excavation and drawdown the water level over a larger area.

To facilitate work at the base of the excavation, groundwater should be drawn down at least 5 feet below the planned bottom of excavation. The need for dewatering can be reduced by planning excavations during the lowest anticipated seasonal water levels (expected during the late summer and fall months) and lowering the water level in the unlined maturation pond as much as possible.

5.4 Temporary Excavations

Temporary excavations will require sloping and/or shoring in accordance with Cal OSHA requirements. Based on our subsurface exploration and laboratory testing, preliminary excavation and shoring design may be based on Type B soil to planned excavation depth. For Type A soil conditions, temporary excavations may be sloped at 1(H):1(V).

Where groundwater is present or cohesionless/uncemented granular soils are encountered, Type C soil conditions will apply and a 1.5(H):1(V) slope gradient is required.

The impact of existing structures, traffic vibrations, actual soil conditions exposed in the open trenches, and other factors that may promote trench wall instability must be evaluated at the time of construction and trench sloping/shoring adjusted accordingly. Surcharge loads such as trench spoils, equipment, etc. should not be placed adjacent to an open excavation (within a distance of ½ the height of the trench). *The above is guideline information only.* The contractor is responsible for the safety of all excavations and should provide appropriate excavation sloping and shoring in accordance with current Cal OSHA requirements and observe conditions observed during construction for necessary modification and safety.

5.5 Foundation Design

5.5.1 Below-Grade Foundations

5.5.1.1 Bearing Capacity

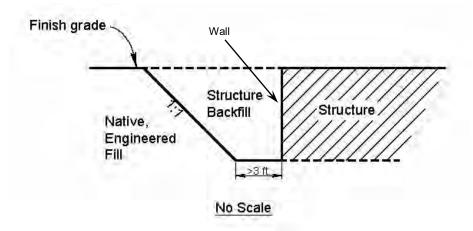
The pump station is a below-grade structure and the net pressure exerted upon the subsurface will be similar to or less than the current load. Excavation for below-grade structures reduces the net pressure by removing soil that acts as a "preload" to the underlying soils, thus "unloading" the bearing materials before "loading" by placement of the structure.

Below grade structures will use mat type foundations for support. For structures at depths greater than 18 feet (approximate elevation 98.5 feet):

- Use a maximum net contact pressure for mat foundation of 2,000 psf.
- We expect settlement of mat foundations is expected to be less than 1 inch with differential settlement less than ½-inch across the pump station structure.
- Clean footing excavations of debris and loose soil prior to placing concrete.
- BCI must observe all footing excavations prior to reinforcement placement to verify competent bearing materials.
- For subgrade uniformity, Caltrans Class 2 aggregate baserock as underlayment (this is not geotechnically necessary provided a firm uniform subgrade is obtained). If an aggregate underlayment is used, place a minimum thickness of 6-inches and compact to a minimum of 95% relative compaction (per ASTM D 1557 test method).
- Crushed rock underlayment may also be used (and can benefit excavation dewatering).
 Underlay the crushed rock with a geotextile filter fabric (ie. Mirafi 140N) and compact the rock with at least 6 passes of a static roller.

If isolated spread footings or piers are required for column support, BCI can provide additional recommendations when the planned design and approximate loading is available.

5.5.1.2 Structure Backfill


Levee fill consists predominately of lean clay and clayey sands. This material may used as backfill around the new pump station.

If imported fill is required use the specifications in Table 2 for structure backfill for all belowgrade structures:

TABLE 2

Structure Backfill Requirements						
Gradat	ion	Test Procedures				
Sieve Size	Percent	ASTM	Caltrans			
	Passing					
3 inch	100	D6913	202			
¾ inch	70-100	D6913	202			
No. 4	50-100	D6913	202			
No. 200	20-60	D6913	202			
	Plast	icity				
Plasticity Index	≥ 8 and ≤ 20	D4318	204			
	Organic	Content				
Less than 3%		D2974				
Expansion Index						
Less than 20		D4829				

As shown below, the zone of placement for structure backfill should extend up from the base of the wall at a slope of 1(H):1(V) and at least 3 feet behind the wall.

- Moisture condition backfill to within 2% of optimum and place in maximum 8-inch thick, horizontal, loose lifts.
- Compact backfill to a minimum 92% relative compaction based on the ASTM D 1557 test method.

To minimize the residual lateral earth pressures on structure walls, restrict compaction equipment behind the walls (by load and distance from wall) so that wall design values are not exceeded. We recommend compaction within a horizontal distance equal to one-half of the wall height (to a maximum distance of 5 feet), be completed with hand-operated equipment (i.e., jumping jack).

To minimize the potential for significant settlement around deep walls, controlled low strength material (CLSM) can be used to backfill to the surface or to a manageable depth (e.g. 10 feet below grade).

5.5.1.3 Lateral Earth Pressures

The below grade structures will act as retaining structures. Walls will retain compacted select native soils and/or imported soils meeting the requirement for structure backfill. For evaluation of lateral earth pressures, use the undrained backfill with level ground conditions equivalent fluid weights (EFW) shown below in Table 3.

Condition

Condition

At-Rest
Active
Passive

Seismic (Active and At-Rest)

LATERAL EARTH PRESSURES

Undrained
Equivalent Fluid
Weight (pcf)

100
86
270 (F.S. = 1)

TABLE 3

The above pressures assume structure backfill placed against the structure wall in accordance with our recommendations, and a saturated unit weight of approximately 133 pounds per cubic foot (pcf). Notify BCI if these assumptions are not valid so that we may assess the situation and provide additional recommendations, if necessary. Backfill with CLSM is an acceptable alternative.

For seismic loading, add the Seismic EFW to the at-rest or active EFW weight and apply the total force as a uniform load on the wall with a resultant located at 0.5H where H is the backfill height. We estimated the EFWs for seismic loading using the Mononobe-Okabe equation and a horizontal seismic acceleration coefficient, k_h , of approximately ½ the expected PGA. This k_h value assumes that the walls displace at least 1-inch during the design seismic event.

Surface loads (footings, storage, vehicle traffic) applied near the wall will increase the lateral pressure on the wall. A uniform surface load of 200 psf to 300 psf is often used to approximate construction traffic loading on walls. In general, if surface loads are closer to the edge of the

retaining wall than three-fourths of the retained height, increase the design wall pressure by 0.5q over the area of the retaining wall. In this expression, q is the surface surcharge load in psf. This is a conservative procedure and lower design pressures may be applicable upon evaluation of individual surface loads and setback distances.

5.5.1.4 Buoyancy Resistance

We did not encounter groundwater in B7, however, as discussed in section 4.2, groundwater may occur at elevations as shallow as 99 feet. In undrained conditions, structures below approximate elevation 99 feet, may be subjected to an uplift load (buoyancy). The uplift force will be resisted by the weight of the structure and the weight of the backfill overlying foundation extensions (if any).

If Stantec designs foundation extensions, calculate the resistance against uplift due to the weight of the soil, use a backfill total unit weight of 120 pcf above groundwater and 57 pcf below groundwater, with a soil wedge extending up from foundation extensions at an angle of 30 degrees from vertical.

Frictional resistance from surrounding soils can be used to resist uplift as well. The frictional resistance will vary with depth but can be assumed as follows (apply a factor of safety of at least 2 to determine the allowable uplift resistance):

For structure backfill against a concrete structure:

- 24 psf per foot of depth where above the design groundwater level
- 13 psf per foot of depth when below the design groundwater level

For a vertical soil interface such as over a foundation extension:

- 38 psf per foot of depth where above the design groundwater level
- 21 psf per foot of depth when below the design groundwater level

5.5.1.5 Lateral Resistance

Lateral resistance for retaining structures can be achieved through friction and passive earth pressures. For design, use a coefficient of friction of 0.40 (below or above groundwater) at the base of the concrete footing and a passive earth pressure of 135 psf per foot of embedment depth. Passive earth pressures may be increased up to 270 psf per foot if lateral movements of up to 2% of the embedment depth can be tolerated. Limit passive earth pressures to a maximum of 2,000 psf (additional passive pressure can be evaluated for specific locations if necessary). Do not include the upper 1-foot of soil in passive resistance calculations. Where passive pressure or friction alone is used against sliding, use a minimum factor of safety of 1.5 for lateral stability (1.1 if seismic loading is included). Where both passive pressure and friction are used to resist sliding, use a minimum factor of safety of 2.0.

5.6 Minor Structures (Valve Vault)

Provided that the recommendations in this report are followed, minor structures (such as valve, vaults, etc.) may be founded on concrete mat or strip footings, or a compacted granular base (minimum of 6 inches of Class 2 baserock) if appropriate.

- Embed the foundations a minimum of 18 inches below the lowest adjacent prepared subgrade into firm native soil or compacted fill/backfill.
- Footings must be a minimum of 12 inches wide and sized not to exceed an allowable bearing capacity of 2,000 psf. The allowable bearing capacity may be increased by one-third if seismic and/or wind loads are included.
- If additional bearing capacity is required for specific minor structures, we can review and provide recommendations on a case-by-case basis.
- To resist lateral movement, use a coefficient of friction of 0.40 at the base of the foundation and a passive earth pressure of 270 psf (undrained condition) per foot of embedment depth up to a maximum of 2,000 psf. Ignore the upper one-foot of footing depth (below the lowest adjacent soil grade) in determination of the passive pressure. Both frictional resistance and passive earth pressure can be combined for lateral resistance; when combined, increase the safety factor against sliding from a minimum of 1.5 to 2.0.

If necessary for evaluation of lateral loading on shallow vaults, use an At-Rest equivalent fluid weight of 60 pcf for the drained condition and 100 pcf for undrained. The drained condition assumes groundwater does not accumulate; the undrained condition would be applied below an assumed groundwater level.

We based these values on foundations bearing on compacted levee soils and soil meeting the embankment fill requirements compacted against vault walls.

5.7 Soil Corrosivity

Our subcontractor, Sunland Analytical, tested a soil sample from our boring for corrosion characteristics (pH, resistivity, chlorides, and sulfates). The test shows:

- pH = 7.31
- Minimum Resistivity = 1,820
- Chloride = 8.0 ppm
- Sulfate = 23.9 ppm

American Concrete Institute (ACI) 318 Table 4.3.1 provides guidance on concrete exposed to sulfate. Results of laboratory testing indicate a negligible sulfate exposure for the representative soil samples.

Caltrans considers a site to be corrosive if one or more of the following conditions exist for the representative soil samples taken at the site:

- Chloride concentrations greater than or equal to 500 parts per million (ppm),
- Sulfate concentration is greater than or equal to 2000 ppm, or
- pH is 5.5 or less.

Based on these test results, the site would be considered non-corrosive. However, the resistivity values and the presence of the fine-grained soils suggest the soil may be corrosive to metals. We recommend that a corrosion engineer review these results and provide corrosion mitigation recommendations.

5.8 Inlet/Outlet Pipe Installation

We expect adequate foundation support for pipes placed in native soil and compacted levee fill and that settlement will be negligible following proper placement and backfill. We expect trench excavations to be relatively stable. For preliminary consideration, use a Type B soil classification (Federal Register, OSHA, 29 CFR Part 1926) for temporary trench sloping and/or shoring design. Excavations may encounter clayey or clean sands, or groundwater, in which case sloping/shoring will need to be modified for a Type C soil classification. Final sloping/shoring based on actual conditions is the responsibility of the contractor.

For pipe beneath the existing embankment, construct in accordance with the following:

- Best option: Use controlled, low strength material (CLSM) to backfill and encapsulate the pipe (which also allows a narrower trench).
- Place the CLSM a minimum of 2 feet above the pipe if embankment fill is to be placed as intermediate trench backfill.

Or:

- Excavate the trench to a depth of approximately 2 feet below the bottom of the pipe and at least 4 feet wider than the pipe to encapsulate the pipe with an "impermeable" zone of engineered fill around the pipe.
- Selectively stockpile material so the contractor can be reuse it as backfill.
- After the contractor excavates the trench, backfill it to the pipe invert elevation.
 Compact the backfill with mechanical compactors to a minimum of 90% percent relative compaction near optimum moisture content.
- Bring backfill up evenly on both sides of the pipe to avoid unequal side loads that could fail or move the pipe. Take special care in the vicinity of any protrusions such as joint collars to achieve proper compaction.

6 RISK MANAGEMENT

Our experience and that of our profession clearly indicates that the risks of costly design, construction, and maintenance problems can be significantly lowered by retaining the geotechnical engineer of record to provide additional services during design and construction.

For this project, we recommend that the project owner retain us to:

- Review and provide comments on the civil plans and specifications prior to construction.
- Monitor construction to check and document our report assumptions. At a minimum, BCI should observe foundation excavations, approve backfill, test backfill compaction, observe and test placement and compaction of fill for structures.
- Update this report if design changes occur, 2 years or more lapses between this report and construction, and/or site conditions have changed.

If we are not retained to perform the above applicable services, we are not responsible for any other party's interpretation of our report, and subsequent addendums, letters, and discussions.

7 LIMITATIONS

BCI performed services in accordance with generally accepted geotechnical engineering principles and practices currently used in this area. Where referenced, we used ASTM and California Test Method standards as a general (not strict) guideline only. Do not use or rely upon this report for different locations or improvements without the written consent of BCI.

We do not warranty our services.

BCI based this report on the current site conditions. We assume our boring and groundwater conditions are representative of the subsurface conditions throughout the site. Conditions at locations other than our exploration could be different.

Appendix A shows logs of our exploration. The lines designating the interface between soil types are approximate. The transition between material types may be abrupt or gradual. We based our recommendations on the final log, which represents our interpretation of the field log and general knowledge of the site and geological conditions. We based our boring log descriptions on our field logging, geologic mapping, and laboratory testing.

The groundwater elevations discussed in this report represent the groundwater elevation during the time of our subsurface exploration, at the specific exploration location, and groundwater observed by others. The groundwater table may be lower or higher in the future.

Lincoln Wastewater Treatment and Reclamation Facility Phase 1 and 2 Expansion Project Maturation Pond Pump Station Placer County, California

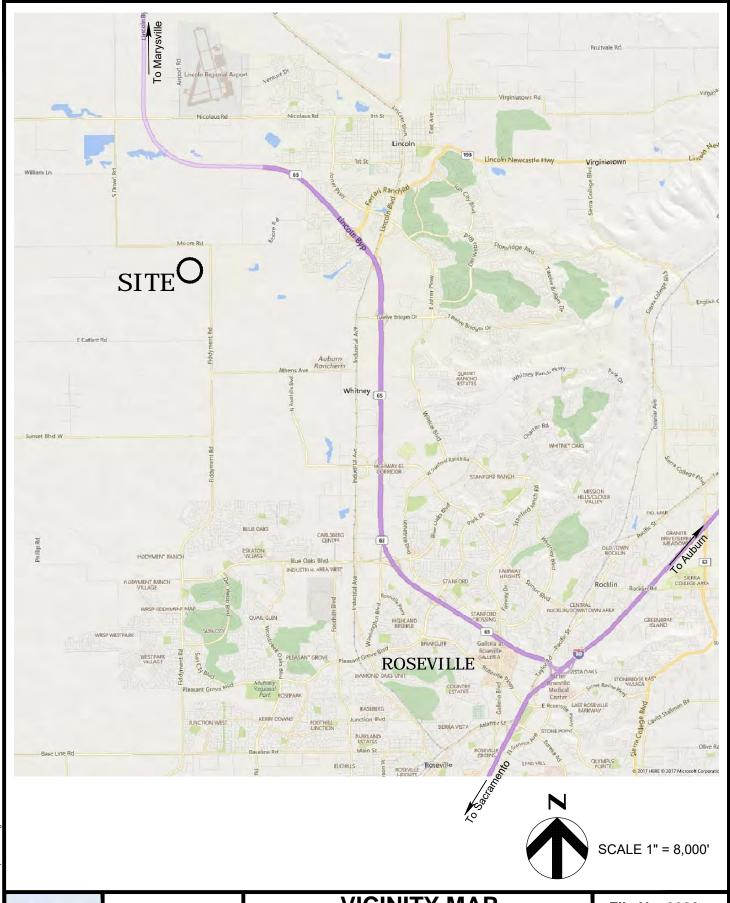
File No. 3228.X April 10, 2018

Modern design and construction are complex, with many regulatory sources/restrictions, involved parties, construction alternatives, etc. It is common to experience changes and delays. The owner should set aside a reasonable contingency fund based on complexities and cost estimates to cover changes and delays.

Appendix C shows GBA guidelines for how to use this report.

Lincoln Wastewater Treatment and Reclamation Facility

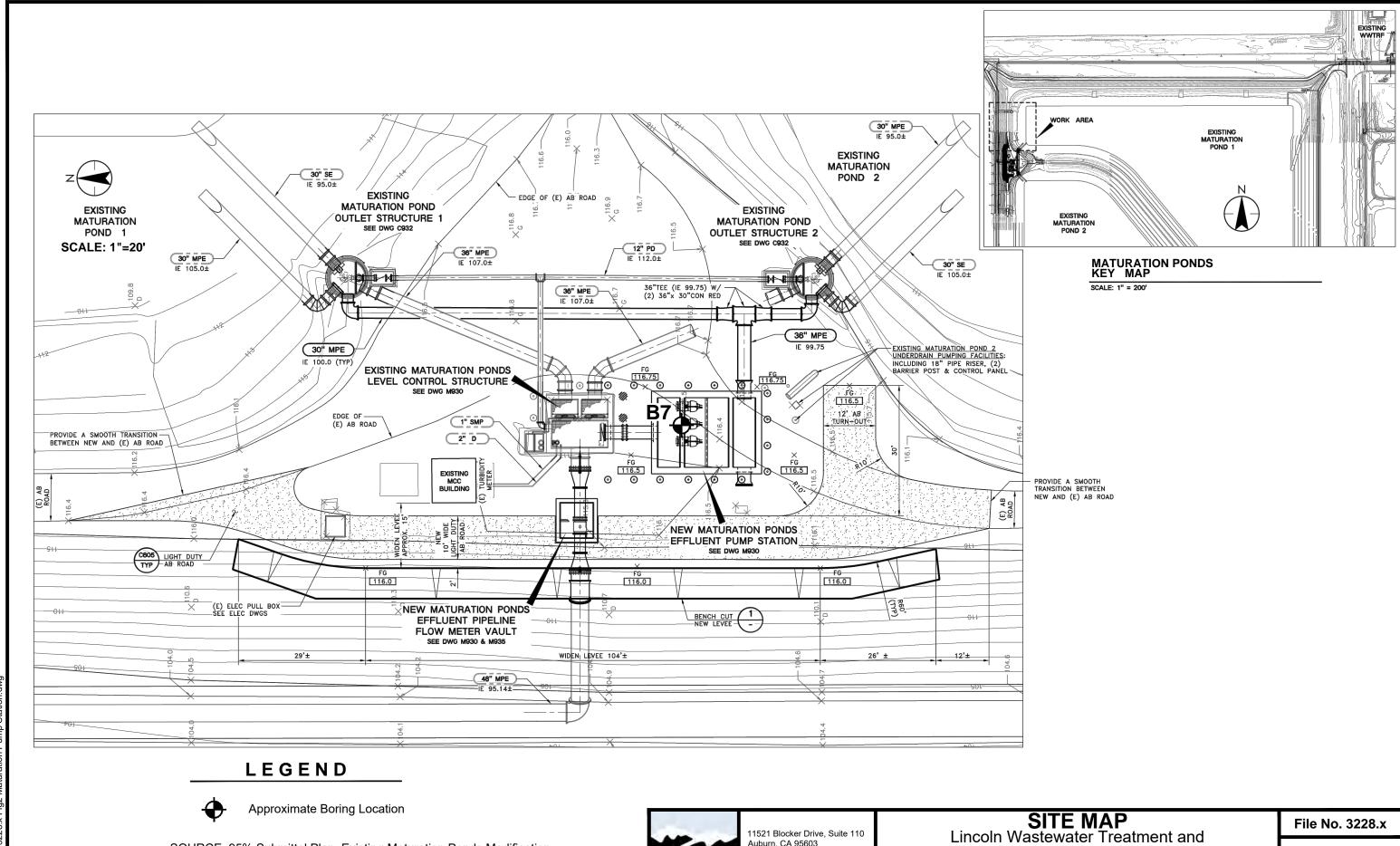
Phase 1 and Phase 2 Expansion Project


Maturation Pond Pump Station

Placer County, CA

FIGURES

Vicinity Map
Site Map


11521 Blocker Drive, Suite 110 Auburn, CA 95603 Phone: (530) 886-1494 Fax: (530) 886-1495 www.blackburnconsulting.com

VICINITY MAP
Lincoln Wastewater Treatment and Reclamation Facility Phase 1 Expansion
Maturation Pump Station
Placer County, California

File No. 3228.x

April 2018

Figure 1

Auburn, CA 95603

Fax: (530) 886-1495 www.blackburnconsulting.com

consulting

Phone: (530) 886-1494

Reclamation Facility Phase 1 Expansion Maturation Pump Station

Placer County, California

April 2018

Figure 2

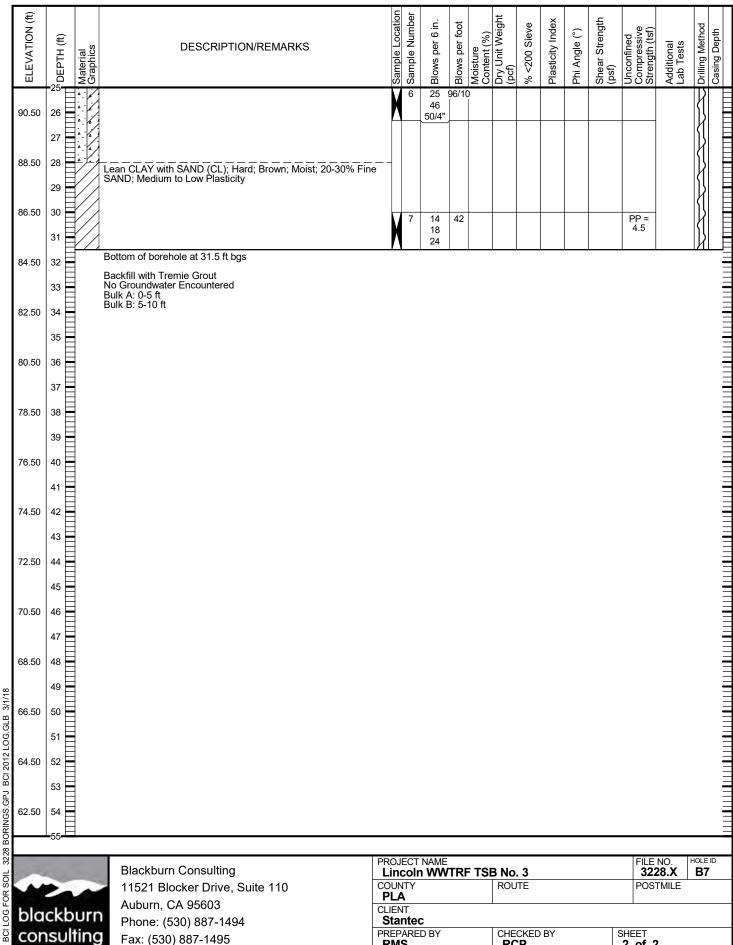
SOURCE: 95% Submittal Plan, Existing Maturation Ponds Modification

Plan, Drawing No. C930 by Stantec. Plot date 12/21/17.

Lincoln Wastewater Treatment and Reclamation Facility

Phase 1 and Phase 2 Expansion Project

Maturation Pond Pump Station


Placer County, CA

APPENDIX A

Boring Logs (LWWTRF- 7) Legend of Boring Logs

LOGGE RMS			BEGIN DATE 12-8-17	COMPLETION DATE 12-8-17	BOREHOLE LOCA 38.859181° /		•	_		orth/Ea	ast and	Datu	m)		HOLE B7	ID			
DRILLING CONTRACTOR Taber DRILLING METHOD Solid-Stem Auger			BOREHOLE LOCA	ATIOI	V (Of	fset, S	tation	, Line))				SURFA 116.	5 ft	VATION				
			DRILL RIG Diedrich D120			BOREHOLE DIAMETER 4 in													
SAMPL 2.4"			AND SIZE(S) (ID)		HAMMER TYPE Safety semi-														
BOREH	OLE E	BACKFI	LL AND COMPLETION	N	GROUNDWATER READINGS	DU				AF	TER D	-	NG (D	ATE)		. DEPTH	OF BO	RING	}
(ft)						dijo	per	ے.	ij		ght	ø	×		th.	0.0		9	
ELEVATION	рертн (ft)	Material Graphics	DI	ESCRIPTION/REMARK	(S	Sample Location	Sample Number	Blows per 6 in.	Blows per foot	Moisture Content (%)	Dry Unit Weight (pcf)	% <200 Sieve	Plasticity Index	Phi Angle (°)	Shear Strength (psf)	Unconfined Compressive Strength (tsf)	Additional Lab Tests	Drilling Method	Casing Depth
	1		Lean CLAY with SA SAND; Medium Pla	ND (CL); Stiff; Dark Brow sticity; Fill	n; Moist; Fine												CP, CR, EI	1	T
114.50	2																		
	3						1	3 4 8	12	20	108					PP = 2.0			
112.50	4																		
	5		20% Well Graded S	SAND			2	7	12						UU =	PP =			
110.50	6					M		5 7							1432.9	3.5			
	7																	}	
108.50	8																		
	9																		
106.50	10		Soft				3	2 4	11							PP = 1.5			
104.50	11		CLAYEY SAND (SC Well Graded SAND	C); Medium Dense; Reddi ; 20-30% CLAY; Fill	sh Brown; Moist;			7	1										
104.50	13																		
102.50	14					_													
	15		Plasticity	ery Stiff; Dark Brown; Moi	st; Medium		4	10	27	17	113					PP =		}	l E
100.50	16					X		12 15	21	''	113					3.75			
	17																		
98.50	18		SANDY Lean CLAY SAND; Medium to L	(CL); Very Stiff; Brown; N															
	19		SAND, Medium to L	LOW Plasticity															▎▐
	20					V	5	8 12	27							PP = 3.5			
	21							15	+										
94.50	22																	}	
92.50	24		Well Graded SAND Brown; Moist; 10%	with CLAY (SW-SC); Ver CLAY; Traces of GRAVE	ry Dense; Reddish L														[
	- ₂₅																	18	
			Blackburn Co	(continued)				NAME				_				FILE	NO.	HOLE	
Œ.		7	Blackburn Co 11521 Blocke	onsuiting er Drive, Suite 110		Lin COUI PL	VTV	n WV	VIR	- 15	ROL						28.X STMILE	B	<u> </u>
blad	ckb	urn	Auburn, CA 9 Phone: (530)		(CLIE		c											
con					ī		PARE	D BY			CHE	CKED P	BY		5	HEET of	2		

PREPARED BY

RMS

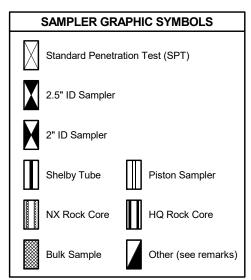
CHECKED BY

RCP

SHEET

2 of 2

BCI LOG FOR SOIL


Fax: (530) 887-1495

GROUP SYMBOLS AND NAMES Graphic / Symbol Group Names Graphic / Symbol Group Names						
Graphic / Symbol	I Group Names		/ Symbol	Group Names		
GW GP	Well-graded GRAVEL Well-graded GRAVEL with SAND Poorly graded GRAVEL		CL	Lean CLAY Lean CLAY with SAND Lean CLAY with GRAVEL SANDY lean CLAY SANDY lean CLAY GRAVELLY lean CLAY		
	Poorly graded GRAVEL with SAND			GRAVELLY lean CLAY with SAND		
GW-GM	Well-graded GRAVEL with SILT Well-graded GRAVEL with SILT and SAND Well-graded GRAVEL with CLAY (or SILTY CLAY)		CL-ML	SILTY CLAY SILTY CLAY with SAND SILTY CLAY with GRAVEL SANDY SILTY CLAY SANDY SILTY CLAY		
GW-GC	Well-graded GRAVEL with CLAY and SAND (or SILTY CLAY and SAND)			GRAVELLY SILTY CLAY GRAVELLY SILTY CLAY with SAND		
GP-GM	Poorly graded GRAVEL with SILT Poorly graded GRAVEL with SILT and SAND		ML	SILT SILT with SAND SILT with GRAVEL SANDY SILT		
GP-GC	Poorly graded GRAVEL with CLAY (or SiLTY CLAY) Poorly graded GRAVEL with CLAY and SAND (or SiLTY CLAY and SAND)			SANDY SILT with GRAVEL GRAVELLY SILT GRAVELLY SILT with SAND		
GM	SILTY GRAVEL SILTY GRAVEL with SAND		OL	ORGANIC lean CLAY ORGANIC lean CLAY with SAND ORGANIC lean CLAY with GRAVEL SANDY ORGANIC lean CLAY		
GC GC	CLAYEY GRAVEL CLAYEY GRAVEL with SAND			SANDY ORGANIC lean CLAY with GRAVEL GRAVELLY ORGANIC lean CLAY GRAVELLY ORGANIC lean CLAY with SAND		
GC-GM	SILTY, CLAYEY GRAVEL SILTY, CLAYEY GRAVEL with SAND		OL	ORGANIC SILT ORGANIC SILT with SAND ORGANIC SILT with GRAVEL SANDY ORGANIC SILT		
sw	Well-graded SAND Well-graded SAND with GRAVEL			SANDY ORGANIC SILT with GRAVEL GRAVELLY ORGANIC SILT GRAVELLY ORGANIC SILT with SAND		
SP	Poorly graded SAND Poorly graded SAND with GRAVEL			Fat CLAY Fat CLAY with SAND Fat CLAY with GRAVEL SANDY fat CLAY		
sw-sm	Well-graded SAND with SILT Well-graded SAND with SILT and GRAVEL			SANDY fat CLAY with GRAVEL GRAVELLY fat CLAY GRAVELLY fat CLAY with SAND		
sw-sc	Well-graded SAND with CLAY (or SILTY CLAY) Well-graded SAND with CLAY and GRAVEL (or SILTY CLAY and GRAVEL)	-	МН	Elastic SILT Elastic SILT with SAND Elastic SILT with GRAVEL SANDY elastic SILT		
SP-SM	Poorly graded SAND with SILT Poorly graded SAND with SILT and GRAVEL			SANDY elastic SILT with GRAVEL GRAVELLY elastic SILT GRAVELLY elastic SILT with SAND		
SP-SC	Poorly graded SAND with CLAY (or SILTY CLAY) Poorly graded SAND with CLAY and GRAVEL (or SILTY CLAY and GRAVEL)		ОН	ORGANIC fat CLAY ORGANIC fat CLAY with SAND ORGANIC fat CLAY with GRAVEL SANDY ORGANIC fat CLAY		
SM	SILTY SAND SILTY SAND with GRAVEL			SANDY ORGANIC fat CLAY with GRAVEL GRAVELLY ORGANIC fat CLAY GRAVELLY ORGANIC fat CLAY with SAND		
sc	CLAYEY SAND CLAYEY SAND with GRAVEL		ОН	ORGANIC elastic SILT ORGANIC elastic SILT with SAND ORGANIC elastic SILT with GRAVEL SANDY elastic ELASTIC SILT		
SC-SM	SILTY, CLAYEY SAND SILTY, CLAYEY SAND with GRAVEL		ОП	SANDY GRISSIC ELASTIC STATE SANDY ORGANIC elastic SILT with GRAVEL GRAVELLY ORGANIC elastic SILT GRAVELLY ORGANIC elastic SILT with SAND		
25 25 25 25 25 25 25 25 25	PEAT] [] [] []	01/01/	ORGANIC SOIL ORGANIC SOIL with SAND ORGANIC SOIL with GRAVEL SANDY ORGANIC SOIL		
	COBBLES COBBLES and BOULDERS BOULDERS		OL/OH	SANDY ORGANIC SOIL SANDY ORGANIC SOIL with GRAVEL GRAVELLY ORGANIC SOIL GRAVELLY ORGANIC SOIL with SAND		

FIELD AND LABORATORY TESTS С Consolidation (ASTM D 2435-04) CL Collapse Potential (ASTM D 5333-03) CP Compaction Curve (CTM 216 - 06) Corrosion, Sulfates, Chlorides (CTM 643 - 99; CTM 417 - 06; CTM 422 - 06) CU Consolidated Undrained Triaxial (ASTM D 4767-02) DS Direct Shear (ASTM D 3080-04) Expansion Index (ASTM D 4829-03) ΕI Moisture Content (ASTM D 2216-05) Organic Content (ASTM D 2974-07) Permeability (CTM 220 - 05) Particle Size Analysis (ASTM D 422-63 [2002]) Liquid Limit, Plastic Limit, Plasticity Index (AASHTO T 89-02, AASHTO T 90-00) PL Point Load Index (ASTM D 5731-05) PM Pressure Meter Pocket Penetrometer R-Value (CTM 301 - 00) Sand Equivalent (CTM 217 - 99) Specific Gravity (AASHTO T 100-06) Shrinkage Limit (ASTM D 427-04) SW Swell Potential (ASTM D 4546-03) Pocket Torvane Unconfined Compression - Soil (ASTM D 2166-06) Unconfined Compression - Rock (ASTM D 2938-95)

Unconsolidated Undrained Triaxial

(ASTM D 2850-03) UW Unit Weight (ASTM D 4767-04) VS Vane Shear (AASHTO T 223-96 [2004])

DRILLING METHOD SYMBOLS Dynamic Cone Rotary Drilling Diamond Core or Hand Driven

WATER LEVEL SYMBOLS

▼ Static Water Level Reading (short-term)

▼ Static Water Level Reading (long-term)

Auger Drilling

Blackburn Consulting 11521 Blocker Drive, Suite 110 Auburn, CA 95603 Phone: (530) 887-1494

Fax: (530) 887-1495

BORING RECORD LEGEND

PAGE 1

CONSISTENCY OF COHESIVE SOILS							
Descriptor	Descriptor Unconfined Compressive Strength (tsf) Pocket Penetrometer (tsf) Torvan		Torvane (tsf)	Field Approximation			
Very Soft	< 0.25	< 0.25	< 0.12	Easily penetrated several inches by fist			
Soft	0.25 - 0.50	0.25 - 0.50	0.12 - 0.25	Easily penetrated several inches by thumb			
Medium Stiff	0.50 - 1.0	0.50 - 1.0	0.25 - 0.50	Can be penetrated several inches by thumb with moderate effort			
Stiff	1.0 - 2.0	1.0 - 2.0	0.50 - 1.0	Readily indented by thumb but penetrated only with great effort			
Very Stiff	2.0 - 4.0	2.0 - 4.0	1.0 - 2.0	Readily indented by thumbnail			
Hard	> 4.0	> 4.0	> 2.0	Indented by thumbnail with difficulty			

APPARENT DENSITY OF COHESIONLESS SOILS					
Descriptor	SPT N ₆₀ - Value (blows / foot)				
Very Loose	0 - 4				
Loose	5 - 10				
Medium Dense	11 - 30				
Dense	31 - 50				
Very Dense	> 50				

	MOISTURE					
Descriptor	Criteria					
Dry Absence of moisture, dusty, dry to the touch						
Moist	Damp but no visible water					
Wet Visible free water, usually soil is below water table						

PERCENT OR PROPORTION OF SOILS					
Descriptor	Criteria				
Trace Particles are present but estimated to be less than 5%					
Few	5 to 10%				
Little	15 to 25%				
Some	30 to 45%				
Mostly	50 to 100%				

SOIL PARTICLE SIZE					
Descriptor		Size			
Boulder		> 12 inches			
Cobble		3 to 12 inches			
Gravel	Coarse	3/4 inch to 3 inches			
Gravei	Fine	No. 4 Sieve to 3/4 inch			
	Coarse	No. 10 Sieve to No. 4 Sieve			
Sand	Medium	No. 40 Sieve to No. 10 Sieve			
Fine		No. 200 Sieve to No. 40 Sieve			
Silt and Clay		Passing No. 200 Sieve			

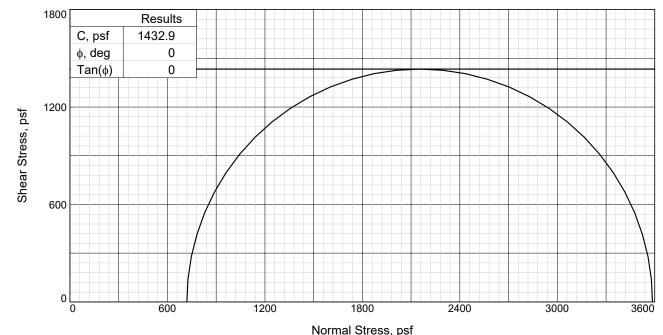
PLASTICITY OF FINE-GRAINED SOILS					
Descriptor	Criteria				
Nonplastic	A 1/8-inch thread cannot be rolled at any water content.				
Low	The thread can barely be rolled, and the lump cannot be formed when drier than the plastic limit.				
Medium	The thread is easy to roll, and not much time is required to reach the plastic limit; it cannot be rerolled after reaching the plastic limit. The lump crumbles when drier than the plastic limit.				
High	It takes considerable time rolling and kneading to reach the plastic limit. The thread can be rerolled several times after reaching the plastic limit. The lump can be formed without crumbling when drier than the plastic limit.				

CEMENTATION				
Descriptor Criteria				
Weak	Crumbles or breaks with handling or little finger pressure.			
Moderate	Crumbles or breaks with considerable finger pressure.			
Strong	Will not crumble or break with finger pressure.			

NOTE: This legend sheet provides descriptors and associated criteria for required soil description components only. Refer to Caltrans Soil and Rock Logging, Classification, and Presentation Manual (2010), Section 2, for tables of additional soil description components and discussion of soil description and identification.

Blackburn Consulting 11521 Blocker Drive, Suite 110 Auburn, CA 95603

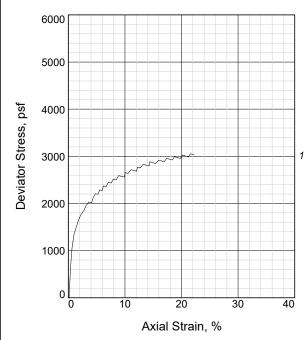
Phone: (530) 887-1494 Fax: (530) 887-1495 BORING RECORD LEGEND


PAGE 2

Lincoln Wastewater Treatment and Reclamation Facility Phase 1 and Phase 2 Expansion Project Maturation Pond Pump Station Placer County, CA

APPENDIX B

Laboratory Test Results



Normal Stress, psf

Water Content, %

Sample No.

		Water Content, 70	10.2				
	_	Dry Density, pcf	106.2				
	Initial	Saturation, %	83.4				
	ī	Void Ratio	0.5877				
		Diameter, in.	2.400				
		Height, in.	4.439				
		Water Content, %	18.2				
1);	Dry Density, pcf	106.2				
	ĕ	Saturation, %	83.4				
	At Test	Void Ratio	0.5877				
	_	Diameter, in.	2.400				
		Height, in.	4.439				
	Stra	ain rate, in./min.	0.044				
	Bad	ck Pressure, psf	0.0				
	Cel	l Pressure, psf	720.0				
	Fai	I. Stress, psf	2865.7				
	S	Strain, %	14.9				
	Ult.	Stress, psf					
	S	Strain, %					
	†1	Failure, psf	3585.7				
	†3	Failure, psf	720.0				
	Client: Stantec - Rocklin						
	1.1						

1 18.2

Type of Test:

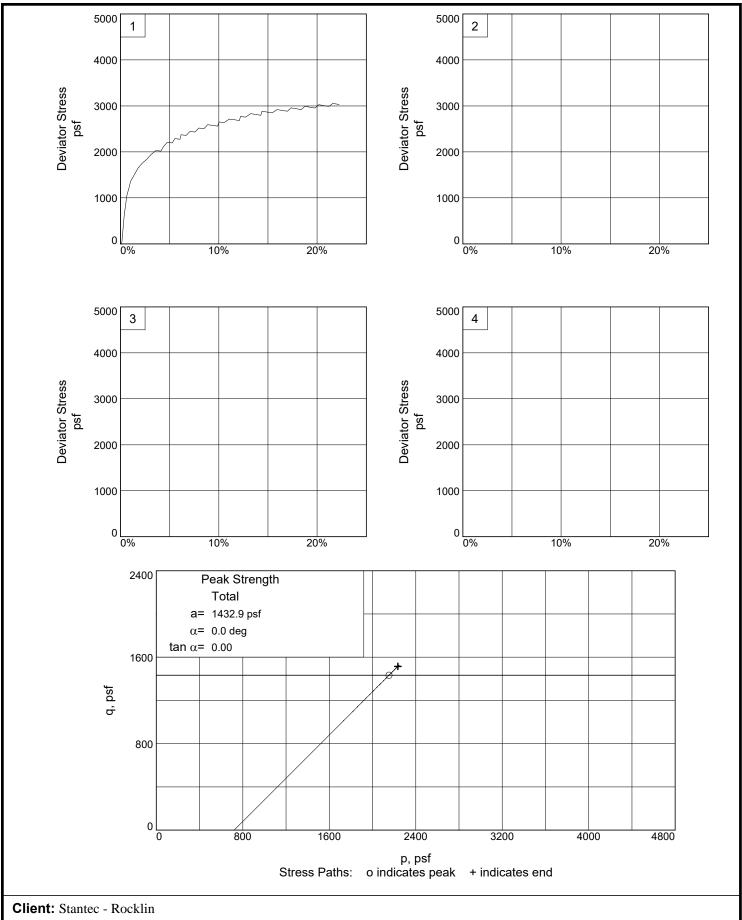
Unconsolidated Undrained Sample Type: 2.4" Mod Cal

Description: SANDY lean CLAY with GRAVEL,

yellowish brown

Assumed Specific Gravity= 2.70

Remarks:


Project: LWWTRF Expansion Phase 1&2

Source of Sample: B7 Sample Number: 2C

Proj. No.: 3228.X **Date Sampled:** 1/12/18

> TRIAXIAL SHEAR TEST REPORT Blackburn Consulting W. Sacramento, CA

F	i	a		r	e				
		ч	u		◡				

Project: LWWTRF Expansion Phase 1&2

Source of Sample: B7 Sample Number: 2C Project No.: 3228.X Figure

Blackburn Consulting

Project Name: LWWTRF

Project No: 3228.X

Sample No: B7 Bulks A&B

Depth 0.0-10.0'

Date: 1/30/2018

Sample Description: CLAYEY SAND, dark yellowish brown

EXPANSION INDEX TEST (ASTM D4829)

Test Data Summary

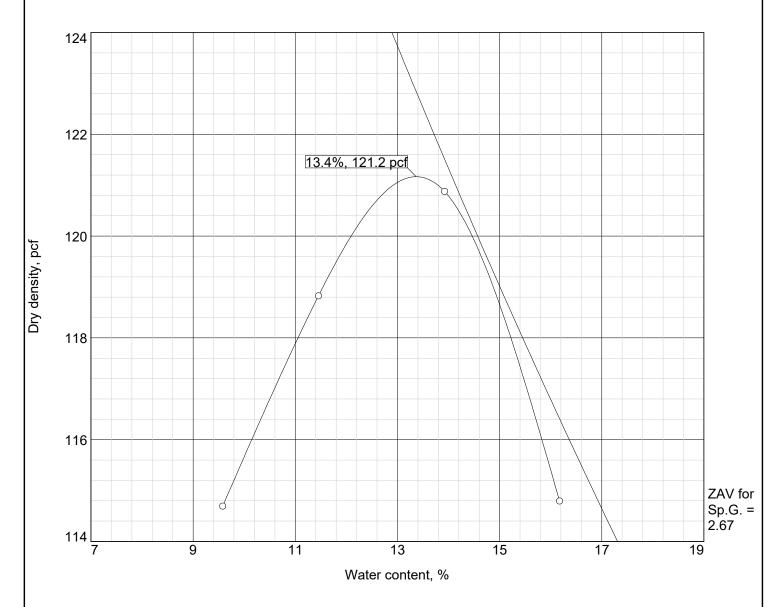

Retained #4 (%)	0.0%
Initial Moisture (%)	12.0
Final Moisture (%)	22.4
Percent Saturation (%)	51.6
Initial Dry Density (pcf)	103.5
Final Dry Density (pcf)	101.1
Expansion Index	13

TABLE 1 Classification of Potential Expansion of Soils Using El

Expansion Index, El	Potential Expansion
0-20	Very Low
21-50	Low
51-90	Medium
91-130	High
>130	Very High

^{*}ASTM D4829-11 pg.2, table 1

Test specification: ASTM D 1557-12 Method A Modified, manual rammer, wet prep method

Elev/	Classi	Nat.	C= C		DI	% >	% <	
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200
0.0-10.0'	SC			2.67			3	

TEST RESULTS	MATERIAL DESCRIPTION				
Maximum dry density = 121.2 pcf	CLAYEY SAND, dark yellowish brown				
Optimum moisture = 13.4 %					
Project No. 3228.X Client: Stantec - Rocklin	Remarks:				
Project: LWWTRF Expansion Phase 1&2					
○ Source of Sample: B7 Sample Number: Bulks A&B					
Blackburn Consulting					
W. Sacramento, CA	Figure				

Sunland Analytical

11419 Sunrise Gold Circle, #10 Rancho Cordova, CA 95742 (916) 852-8557

> Date Reported 02/02/2018 Date Submitted 01/30/2018

To: Rob Pickard Blackburn Consulting (W.SAC) 2491 Boatman Ave W. Sacramento, CA 95691

From: Gene Oliphant, Ph.D. \ Randy Horney General Manager \ Lab Manager

The reported analysis was requested for the following location: Location: 3228.X LWWTRF Site ID: B7@0-10FT. Thank you for your business.

* For future reference to this analysis please use SUN # 76085-158684. _______

EVALUATION FOR SOIL CORROSION

Soil pH

7.31

Minimum Resistivity 1.82 ohm-cm (x1000)

Chloride

8.0 ppm

00.00080 %

Sulfate

23.9 ppm

00.00239 %

METHODS

pH and Min.Resistivity CA DOT Test #643 Sulfate CA DOT Test #417, Chloride CA DOT Test #422

Lincoln Wastewater Treatment and Reclamation Facility

Phase 1 and Phase 2 Expansion Project

Maturation Pond Pump Station

Placer County, CA

APPENDIX C

Important Information About
This Geotechnical Engineering Report,
Geoprofessional Business Association, 2016

Important Information about This

Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you – assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, clients can benefit from a lowered exposure to the subsurface problems that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed below, contact your GBA-member geotechnical engineer. **Active involvement in the Geoprofessional Business** Association exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Geotechnical-Engineering Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical-engineering study conducted for a given civil engineer will not likely meet the needs of a civilworks constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared solely for the client. Those who rely on a geotechnical-engineering report prepared for a different client can be seriously misled. No one except authorized client representatives should rely on this geotechnical-engineering report without first conferring with the geotechnical engineer who prepared it. And no one – not even you – should apply this report for any purpose or project except the one originally contemplated.

Read this Report in Full

Costly problems have occurred because those relying on a geotechnical-engineering report did not read it *in its entirety*. Do not rely on an executive summary. Do not read selected elements only. *Read this report in full*.

You Need to Inform Your Geotechnical Engineer about Change

Your geotechnical engineer considered unique, project-specific factors when designing the study behind this report and developing the confirmation-dependent recommendations the report conveys. A few typical factors include:

- the client's goals, objectives, budget, schedule, and risk-management preferences;
- the general nature of the structure involved, its size, configuration, and performance criteria;
- the structure's location and orientation on the site; and
- other planned or existing site improvements, such as retaining walls, access roads, parking lots, and underground utilities.

Typical changes that could erode the reliability of this report include those that affect:

- the site's size or shape;
- the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light-industrial plant to a refrigerated warehouse;
- the elevation, configuration, location, orientation, or weight of the proposed structure;
- the composition of the design team; or
- · project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes – even minor ones – and request an assessment of their impact. The geotechnical engineer who prepared this report cannot accept responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.

This Report May Not Be Reliable

Do not rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it; e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, that it could be unwise to rely on a geotechnical-engineering report whose reliability may have been affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If your geotechnical engineer has not indicated an "apply-by" date on the report, ask what it should be,* and, in general, *if you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying it. A minor amount of additional testing or analysis – if any is required at all – could prevent major problems.

Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface through various sampling and testing procedures. Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing were performed. The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgment to form opinions about subsurface conditions throughout the site. Actual sitewide-subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team from project start to project finish, so the individual can provide informed guidance quickly, whenever needed.

This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, they are not final, because the geotechnical engineer who developed them relied heavily on judgment and opinion to do so. Your geotechnical engineer can finalize the recommendations only after observing actual subsurface conditions revealed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmation-dependent recommendations if you fail to retain that engineer to perform construction observation.

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a full-time member of the design team, to:

- confer with other design-team members,
- help develop specifications,
- review pertinent elements of other design professionals' plans and specifications, and
- be on hand quickly whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform construction observation.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, but be certain to note conspicuously that you've included the material for informational purposes only. To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report, but they may rely on the factual data relative to the specific times, locations, and depths/elevations referenced. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, only from the design drawings and specifications. Remind constructors that they may

perform their own studies if they want to, and *be sure to allow enough time* to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

Read Responsibility Provisions Closely

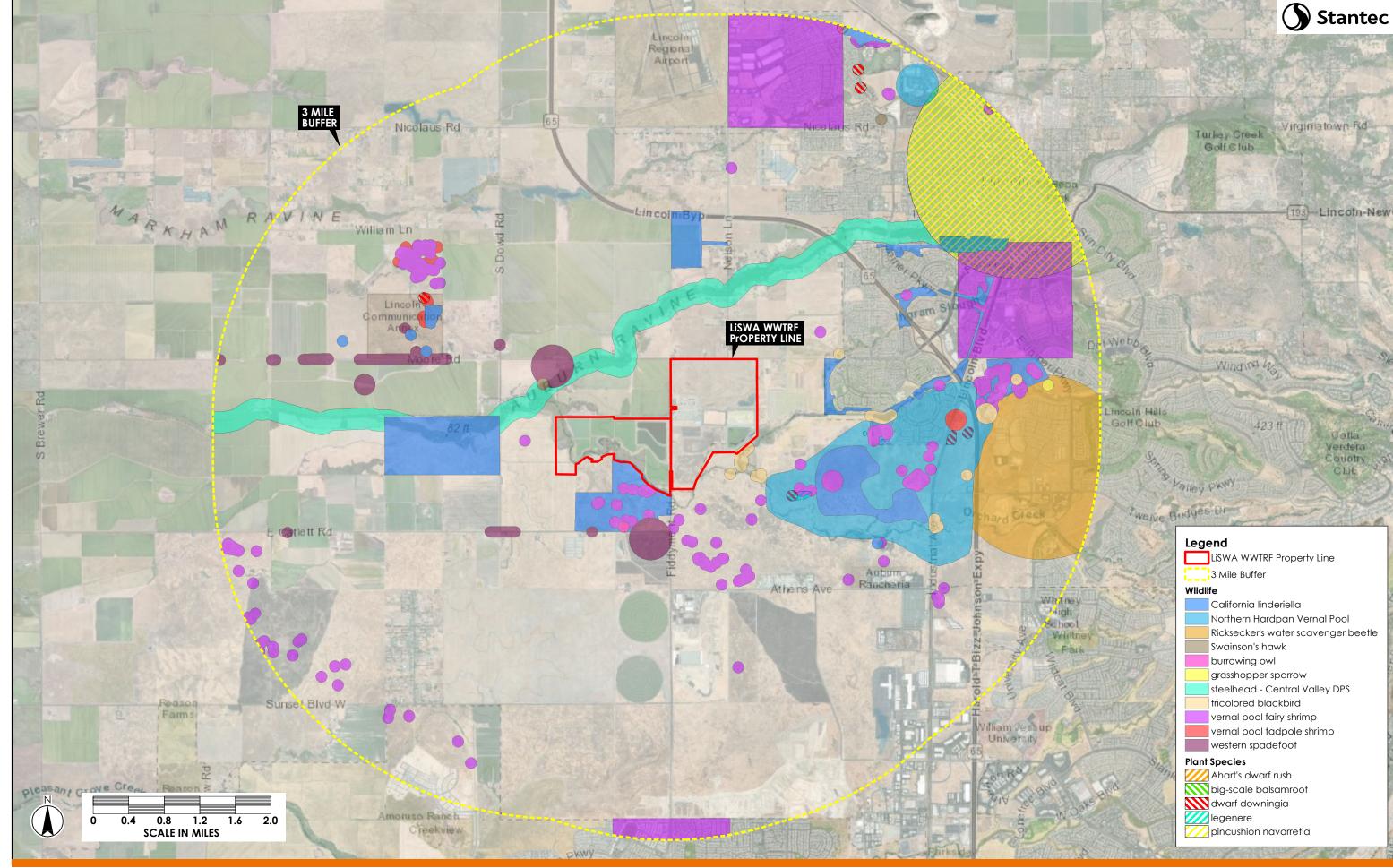
Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnical-engineering report does not usually relate any environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Unanticipated subsurface environmental problems have led to project failures. If you have not yet obtained your own environmental information, ask your geotechnical consultant for risk-management guidance. As a general rule, do not rely on an environmental report prepared for a different client, site, or project, or that is more than six months old.

Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, none of the engineer's services were designed, conducted, or intended to prevent uncontrolled migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, proper implementation of the geotechnical engineer's recommendations will not of itself be sufficient to prevent moisture infiltration. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. Geotechnical engineers are not building-envelope or mold specialists.



Telephone: 301/565-2733 e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2016 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent

Appendix C DATABASE SEARCH RESULTS

CNPS Rare Plant Inventory

Search Results

15 matches found. Click on scientific name for details

 $Search\ Criteria:\ ,\ \underline{9\text{-}Quad}\ include\ [3812162:3812163:3812172:3812172:3812182:3812182:3812164:3812174:3812184]$

▲ SCIENTIFIC NAME	COMMON NAME	FAMILY	LIFEFORM	BLOOMING PERIOD	FED LIST	STATE LIST	GLOBAL RANK	STATE RANK	CA RARE PLANT RANK	CA ENDEMIC	DATE ADDED	РНОТО
Balsamorhiza macrolepis	big-scale balsamroot	Asteraceae	perennial herb	Mar-Jun	None	None	G2	S2	1B.2	Yes	1974- 01-01	©1998 Dean Wn Taylor
Brodiaea rosea ssp. vallicola	valley brodiaea	Themidaceae	perennial bulbiferous herb	Apr- May(Jun)	None	None	G4G5T3	S3	4.2	Yes	2019- 01-07	© 2011 Steven Perry
Calycadenia spicata	spicate calycadenia	Asteraceae	annual herb	May-Sep	None	None	G3?	S3	1B.3		2023- 04-05	© 2023 Christoph Bronny
Chloropyron molle ssp. hispidum	hispid salty bird's-beak	Orobanchaceae	annual herb (hemiparasitic)	Jun-Sep	None	None	G2T1	S1	1B.1	Yes	1974- 01-01	No Pho
<i>Clarkia biloba</i> ssp. <i>brandegeeae</i>	Brandegee's clarkia	Onagraceae	annual herb	(Mar)May- Jul	None	None	G4G5T4	S4	4.2	Yes	2001- 01-01	No Phot
Downingia pusilla	dwarf downingia	Campanulaceae	annual herb	Mar-May	None	None	GU	S2	2B.2		1980- 01-01	© 2013 Aaron Arthur

First Italiana agreesits Etilaceae perennial bubblierous Mar-Jun None None G3 S3 4.2 Yes 1980 First 22010 According to the teresceptial heterosepatial heteros	/25, 5:50 PM				CNPS Rare F	lant Inventory	Search R	esults			
heterosepala hedge- hyssop MarYs Ahart's Juncaceae annual herb Mar-May Mar-May None None GZT1 S1 1B.2 Yes 1984 1901 1901 1902 GarolW Witham Juncus Alaerrus Juncaceae annual herb Mar-Jun Juncaceae Amary Mar-Jun None None GZT2 S2 1B.1 Yes 1974 1901		stinkbells	Liliaceae	bulbiferous	Mar-Jun	None None	G3	S3	4.2	Yes	Aaron
leiospermus var. ahartii Juncus Red Bluff Juncaceae annual herb Mar-Jun None None GZTZ S2 1B.1 Yes 1974- leiospermus var. leiospermus var. leiospermus var. leiospermus Peptosiphon aureus pincushion Polemoniaceae annual herb Apr-Mul None None S2TZ S2 1B.1 Yes 1974- leiospermus Polemoniaceae annual herb Apr-Mul None None S2TZ S2 1B.1 Yes 1974- leiospermus Polemoniaceae annual herb Apr-Jul None None S2TZ S2 1B.1 Yes 1974- leiospermus Polemoniaceae annual herb Apr-Jul None None S2TZ S2 1B.1 Yes 1974- leiospermus Polemoniaceae annual herb Apr-Jul None None S2TZ S2 1B.1 Yes 1994- leiosiphon aureus Polemoniaceae annual herb Apr-Mul None None S2TZ S2 1B.1 Yes 1994- leiosiphon aureus Polemoniaceae annual herb Apr-Mul None None S2TZ S2 1B.1 Yes 1994- leiosiphon aureus Polemoniaceae annual herb Apr-Mul None None S2TZ S2 1B.1 Yes 1994- leiosiphon aureus Polemoniaceae annual herb Apr-Mul None None S2TZ S2 1B.1 Yes 1994- leiosiphon aureus Polemoniaceae annual herb Apr-Mul None None S2TZ S2 1B.1 Yes 1994- leiosiphon aureus Polemoniaceae annual herb Apr-Mul None None S2TZ S2 1B.1 Yes 1994- leiosiphon anavarretia pincushion Polemoniaceae annual herb Apr-Mul None None S2TZ S2 1B.1 Yes 1994- leiosiphon anavarretia pincushion Polemoniaceae annual herb Apr-Mul None None S2TZ S2 1B.1 Yes 1994- leiosiphon anavarretia pincushion Polemoniaceae annual herb Apr-Mul None None S2TZ S2 1B.1 Yes 1994- leiosiphon anavarretia pincushion Polemoniaceae annual herb Apr-Mul None None None S2TZ S2 1B.1 Yes 1994- leiosiphon anavarretia pincushion Polemoniaceae annual herb Apr-Mul None None None S2TZ S2 1B.1 Yes 1994- leiosiphon and Polemoniaceae Apr-Mul None None None S2TZ S2 1B.1 Yes 1994- leiosiphon and Polemoniaceae Apr-Mul None None None S2TZ S2 1B.1 Yes 1994- leiosiphon and Polemoniaceae Apr-Mul None None None S2TZ S2 1B.1 Yes 1994- leiosiphon and Polemoniaceae Apr-Mul None None None S2TZ S2 1B.1 Yes 1994- leiosiphon and Polemoniaceae Apr-Mul None None None S2TZ S2 1B.1 Yes 1994- leiosiphon and Polemoniaceae Apr-Mul None None None S2TZ S2 1B.1		hedge-	Plantaginaceae	annual herb	Apr-Aug	None CE	G2	S2	1B.2		Carol W
leiospermus var. leiospermus var. leiospermus Legenere limosa Leptosiphon aureus Polemoniaceae annual herb Apr-Jul None None G2 S2 1B.1 Yes 1994- Bettosiphon leptosiphon aureus Polemoniaceae annual herb Apr-Jul None None G4? S4? 4.2 Yes 1994- Blumin Navarretia myersii ssp. mavarretia myersii ssp. mye	leiospermus		Juncaceae	annual herb	Mar-May	None None	G2T1	S1	1B.2	Yes	Carol W
limosa Leptosiphon bristly leptosiphon leptosiphon aureus Navarretia myersii Polemoniaceae annual herb Apr-Jul None None G4? S4? 4.2 Yes 1994- 01-01 © 2007 Leghor Reptosiphon leptosiphon leptosiphon leptosiphon leptosiphon navarretia myersii ssp. myersii	<i>leiospermus</i> var.		Juncaceae	annual herb	Mar-Jun	None None	G2T2	S2	1B.1	Yes	Dylan
aureus leptosiphon 01-01 © 2007 L Blumin Navarretia pincushion Polemoniaceae annual herb Apr-May None None G2T2 S2 1B.1 Yes 1994- myersii ssp. navarretia myersii E 2020 Leigh	_	legenere	Campanulaceae	annual herb	Apr-Jun	None None	G2	S2	1B.1	Yes	
myersii ssp. navarretia 01-01 © 2020 myersii Leigh				annual herb	Apr-Jul	None None	G4?	S4?	4.2	Yes	
	<i>myersii</i> ssp.	· ·	Polemoniaceae	annual herb	Apr-May	None None	G2T2	S2	1B.1	Yes	Leigh

5/5/25, 5:50 PM			CNPS Rare Plant Inventory Search Results									
Orcuttia viscida	Sacramento Orcutt grass	Poaceae	annual herb	Apr- Jul(Sep)	FE	CE	G1	S1	1B.1	Yes	1974- 01-01	© Rick York and CNPS
Sagittaria sanfordii	Sanford's arrowhead	Alismataceae	perennial rhizomatous herb (emergent)	May- Oct(Nov)	None	None	G3	S 3	1B.2	Yes	1984- 01-01	©2013 Debra L. Cook

Showing 1 to 15 of 15 entries

Go to top

Suggested Citation:

California Native Plant Society, Rare Plant Program. 2025. Rare Plant Inventory (online edition, v9.5.1). Website https://www.rareplants.cnps.org [accessed 6 May 2025].

}

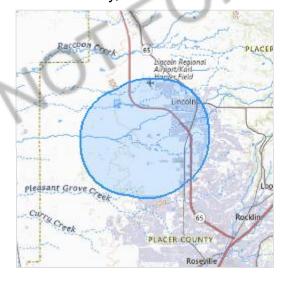
IPaC

U.S. Fish & Wildlife Service

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.


Project information

NAME

LiSWA CEQA Addendum Lincoln-SMD1 WWTRF Phase I Improvements Project

LOCATION

Placer County, California

DESCRIPTION

None

OT FOR CONSULTATIO

Local office

Sacramento Fish And Wildlife Office

\((916) 414-6600

(916) 414-6713

Federal Building 2800 Cottage Way, Room W-2605 Sacramento, CA 95825-1846

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Log in to IPaC.
- 2. Go to your My Projects list.
- 3. Click PROJECT HOME for this project.
- 4. Click REQUEST SPECIES LIST.

Listed species¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact NOAA Fisheries for species under their jurisdiction.

- 1. Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information. IPaC only shows species that are regulated by USFWS (see FAQ).
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

The following species are potentially affected by activities in this location:

Reptiles

NAME STATUS

Giant Garter Snake Thamnophis gigas

Threatened

Wherever found

No critical habitat has been designated for this species.

https://ecos.fws.gov/ecp/species/4482

Northwestern Pond Turtle Actinemys marmorata

Proposed Threatened

Wherever found

No critical habitat has been designated for this species.

https://ecos.fws.gov/ecp/species/1111

Insects

NAME STATUS

Monarch Butterfly Danaus plexippus

Proposed Threatened

Wherever found

There is **proposed** critical habitat for this species. Your location does not overlap the critical habitat.

https://ecos.fws.gov/ecp/species/9743

Valley Elderberry Longhorn Beetle Desmocerus californicus dimorphus

Wherever found

There is **final** critical habitat for this species. Your location does not overlap the critical habitat.

https://ecos.fws.gov/ecp/species/7850

Threatened

Crustaceans

NAME STATUS

Conservancy Fairy Shrimp Branchinecta conservatio

Wherever found

There is **final** critical habitat for this species. Your location does not overlap the critical habitat.

https://ecos.fws.gov/ecp/species/8246

Endangered

Vernal Pool Fairy Shrimp Branchinecta lynchi

Wherever found

There is **final** critical habitat for this species. Your location overlaps the critical habitat.

https://ecos.fws.gov/ecp/species/498

Threatened

Vernal Pool Tadpole Shrimp Lepidurus packardi

Endangered

Wherever found

There is **final** critical habitat for this species. Your location does not overlap the critical habitat.

https://ecos.fws.gov/ecp/species/2246

Critical habitats

Potential effects to critical habitat(s) in this location must be analyzed along with the endangered species themselves.

This location overlaps the critical habitat for the following species:

NAME TYPE

Vernal Pool Fairy Shrimp Branchinecta lynchi

https://ecos.fws.gov/ecp/species/498#crithab

SUL

Bald & Golden Eagles

Bald and Golden Eagles are protected under the Bald and Golden Eagle Protection Act ² and the Migratory Bird Treaty Act (MBTA) ¹. Any person or organization who plans or conducts activities that may result in impacts to Bald or Golden Eagles, or their nests, should follow appropriate regulations and implement required avoidance and minimization measures, as described in the various links on this page.

The <u>data</u> in this location indicates that no eagles have been observed in this area. This does not mean eagles are not present in your project area, especially if the area is difficult to survey. Please review the 'Steps to Take When No Results Are Returned' section of the <u>Supplemental Information on Migratory Birds and Eagles document</u> to determine if your project is in a poorly surveyed area. If it is, you may need to rely on other resources to determine if eagles may be present (e.g. your local FWS field office, state surveys, your own surveys).

Additional information can be found using the following links:

- Eagle Management https://www.fws.gov/program/eagle-management
- Measures for avoiding and minimizing impacts to birds
 https://www.fws.gov/library/collections/avoiding-and-minimizing-incidental-take-migratory-birds
- Nationwide avoidance and minimization measures for birds
 https://www.fws.gov/sites/default/files/documents/nationwide-standard-conservation-measures.pdf

Supplemental Information for Migratory Birds and Eagles in IPaC
 https://www.fws.gov/media/supplemental-information-migratory-birds-and-bald-and-golden-eagles-may-occur-project-action

Bald and Golden Eagle information is not available at this time

Bald & Golden Eagles FAQs

What does IPaC use to generate the potential presence of bald and golden eagles in my specified location?

The potential for eagle presence is derived from data provided by the <u>Avian Knowledge Network (AKN)</u>. The AKN data is based on a growing collection of <u>survey, banding, and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are an eagle (<u>Bald and Golden Eagle Protection Act</u> requirements may apply).

Proper interpretation and use of your eagle report

On the graphs provided, please look carefully at the survey effort (indicated by the black vertical line) and for the existence of the "no data" indicator (a red horizontal line). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort line or no data line (red horizontal) means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list and associated information help you know what to look for to confirm presence and helps guide you in knowing when to implement avoidance and minimization measures to eliminate or reduce potential impacts from your project activities or get the appropriate permits should presence be confirmed.

How do I know if eagles are breeding, wintering, or migrating in my area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating, or resident), you may query your location using the RAIL Tool and view the range maps provided for birds in your area at the bottom of the profiles provided for each bird in your results. If an eagle on your IPaC migratory bird species list has a breeding season associated with it (indicated by yellow vertical bars on the phenology graph in your "IPaC PROBABILITY OF PRESENCE SUMMARY" at the top of your results list), there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

Interpreting the Probability of Presence Graphs

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. A taller bar indicates a higher probability of species presence. The survey effort can be used to establish a level of confidence in the presence score.

How is the probability of presence score calculated? The calculation is done in three steps:

The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the

Spotted Towhee in week 12 is 0.25.

To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.

The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

Breeding Season ()

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort ()

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps.

No Data ()

A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

Migratory birds

The Migratory Bird Treaty Act (MBTA) ¹ prohibits the take (including killing, capturing, selling, trading, and transport) of protected migratory bird species without prior <u>authorization</u> by the Department of Interior U.S. Fish and Wildlife Service (FWS). The incidental take of migratory birds is the injury or death of birds that results from, but is not the purpose, of an activity. The FWS interprets the MBTA to prohibit incidental take.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Eagle Management https://www.fws.gov/program/eagle-management
- Measures for avoiding and minimizing impacts to birds
 https://www.fws.gov/library/collections/avoiding-and-minimizing-incidental-take-migratory-birds
- Nationwide avoidance and minimization measures for birds
- Supplemental Information for Migratory Birds and Eagles in IPaC
 <u>https://www.fws.gov/media/supplemental-information-migratory-birds-and-bald-and-golden-eagles-may-occur-project-action</u>

Migratory bird information is not available at this time

Migratory Bird FAQs

Tell me more about avoidance and minimization measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Avoidance & Minimization Measures for Birds describes measures that can help avoid and minimize impacts to all birds at any location year-round. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is one of the most effective ways to minimize impacts. To see when birds are most likely to occur and breed in your project area, view the Probability of Presence Summary. Additional measures or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the list of migratory birds that potentially occur in my specified location?

The Migratory Bird Resource List is comprised of <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location, such as those listed under the Endangered Species Act or the <u>Bald and Golden Eagle Protection Act</u> and those species marked as "Vulnerable". See the FAQ "What are the levels of concern for migratory birds?" for more information on the levels of concern covered in the IPaC migratory bird species list.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network (AKN)</u>. The AKN data is based on a growing collection of <u>survey, banding, and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) with which your project intersects. These species have been identified as warranting special attention because they are BCC species in that area, an eagle (<u>Bald and Golden Eagle Protection Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, and to verify survey effort when no results present, please visit the <u>Rapid Avian Information Locator (RAIL) Tool</u>.

Why are subspecies showing up on my list?

Subspecies profiles are included on the list of species present in your project area because observations in the AKN for **the species** are being detected. If the species are present, that means that the subspecies may also be present. If a subspecies shows up on your list, you may need to rely on other resources to determine if that subspecies may be present (e.g. your local FWS field office, state surveys, your own surveys).

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey, banding, and citizen</u> science datasets.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go to the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, or migrating in my area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating, or resident), you may query your location using the RAIL Tool and view the range maps provided for birds in your area at the bottom of the profiles provided for each bird in your results. If a bird on your IPaC migratory bird species list has a breeding season associated with it (indicated by yellow vertical bars on the phenology graph in your "IPaC PROBABILITY OF PRESENCE SUMMARY" at the top of your results list), there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Bald and Golden Eagle Protection Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially BCC species. For more information on avoidance and minimization measures you can implement to help avoid and minimize migratory bird impacts, please see the FAQ "Tell me more about avoidance and minimization measures I can implement to avoid or minimize impacts to migratory birds".

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <u>Northeast Ocean Data Portal</u>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the <u>NOAA NCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf project webpage.</u>

Proper interpretation and use of your migratory bird report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please look carefully at the survey effort (indicated by the black vertical line) and for the existence of the "no data" indicator (a red horizontal line). A high survey effort is the key component. If the survey effort is high, then

the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list does not represent all birds present in your project area. It is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list and associated information help you know what to look for to confirm presence and helps guide implementation of avoidance and minimization measures to eliminate or reduce potential impacts from your project activities, should presence be confirmed. To learn more about avoidance and minimization measures, visit the FAQ "Tell me about avoidance and minimization measures I can implement to avoid or minimize impacts to migratory birds".

Interpreting the Probability of Presence Graphs

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. A taller bar indicates a higher probability of species presence. The survey effort can be used to establish a level of confidence in the presence score.

How is the probability of presence score calculated? The calculation is done in three steps:

The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.

To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.

The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

Breeding Season ()

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort ()

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps.

No Data ()

A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

Facilities

National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

There are no refuge lands at this location.

Fish hatcheries

There are no fish hatcheries at this location.

Wetlands in the National Wetlands Inventory (NWI)

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers District</u>.

Wetland information is not available at this time

This can happen when the National Wetlands Inventory (NWI) map service is unavailable, or for very large projects that intersect many wetland areas. Try again, or visit the NWI map to view wetlands at this location.

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate Federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

TFOR

Appendix D CULTURAL RESOURCES RECORDS SEARCH RESULTS AND TECHNICAL MEMO

This technical memo contains confidential information regarding the location of archaeological resources. Such resources are nonrenewable, and their scientific, cultural, and aesthetic values can be significantly impaired by disturbance. To deter vandalism, artifact hunting, and other activities that can damage such resources, this study is not included in Appendix D. The legal authority to restrict cultural resources information is in Section 304 of the National Historic Preservation Act of 1966, as amended. Furthermore, California Government Section Code 6254.10 exempts archaeological sites from the California Public Records Act, which requires that public records be open to public inspection.

