PROPOSED

MITIGATED NEGATIVE DECLARATION AND INITIAL STUDY

FOR THE

FULLERTON RANCH PLANNED DEVELOPMENT PROJECT

AUGUST 2017

Prepared for:

City of Lincoln Community Development Department 600 Sixth Street Lincoln, CA 95648

Prepared by:

De Novo Planning Group 1020 Suncast Lane, Suite 106 El Dorado Hills, CA 95762 (916) 580-9818

PROPOSED

MITIGATED NEGATIVE DECLARATION AND INITIAL STUDY

FOR THE

FULLERTON RANCH PLANNED DEVELOPMENT PROJECT

AUGUST 2017

Prepared for:

City of Lincoln Community Development Department 600 Sixth Street Lincoln, CA 95648

Prepared by:

De Novo Planning Group 1020 Suncast Lane, Suite 106 El Dorado Hills, CA 95762 (916) 580-9818

Proposed Mitigated Negative Declaration for the Fullerton Ranch Planned Development Project

Lead Agency: City of Lincoln 600 Sixth Street Lincoln, CA 95648

Project Title: Fullerton Ranch Planned Development

Project Location: The project site is located west of Joiner Parkway and south of Nicolaus Road in a predominately residential area of Lincoln, California. The project site totals approximately 19.7 acres and is currently undeveloped. The Assessor's Parcel Numbers (APNs) for the project site are 021-310-094, -095, and -096.

Project Description: The project includes a Rezone and a Vesting Tentative Subdivision Map that would facilitate the development of 81 single family residential units on approximately 19.7 acres located southwest of the Nicolaus Road and Joiner Parkway intersection. The project applicant has submitted a vesting tentative subdivision map which contains a lot layout plan, preliminary utility layout plan, preliminary grading and drainage plan, existing easements plan, and a preliminary tree removal plan. The proposed project would require a rezone from RE to Planned Development-Low Density Residential (PD-LDR).

The proposed project contemplates lot sizes that range from 6,000 square feet (sf) to over 24,000 sf with an average lot size exceeding 8,000 sf. The overall site density is 4.11 dwelling units per acre. Lots would be served by interior streets conforming to the City's 50-foot and 44-foot public right-of-way standards. Roadway connections would be made to existing streets at Nicolaus Road (north), Abbeyhill Road (west), Savannah Drive (east), and Milan Way (south). At the southern access point, Sydney Terrace, a right-of-way extension would link the proposed Amelia Way/Amelia Court roadway to the existing Milan Way/Montaro Court roadway to the south of the project site. Unimpeded emergency vehicle access would be provided along this southern connection. The right-of-way extension from Sydney Terrace would include a raised rolled curb on both sides of the road, signage and striping to indicate 'No Parking', stamped and colored concrete, and landscaping on both sides, totaling 47 feet in right-of-way width.

As part of the PD zoning designation, development standards, setbacks, plotting, parking, and other project characteristics have been developed for the project.

The proposed project would connect to existing City infrastructure to provide water, sewer, and storm drainage utilities. A water quality basin would be located in the northeastern portion of the project site. Police protection service would be provided by the Lincoln Police Department. The Lincoln Fire Department would provide fire protection service. School services would be provided by the Western Placer Unified School District. Gas and electricity will be provided by Pacific Gas & Electric.

Findings:

In accordance with the California Environmental Quality Act, the City of Lincoln has prepared an Initial Study to determine whether the proposed Project may have a significant adverse effect on the environment. The Initial Study and Proposed Mitigated Negative Declaration reflect the independent judgment of City of Lincoln staff. On the basis of the Initial Study, the City of Lincoln hereby finds:

Although the proposed project could have a significant adverse effect on the environment, there will not be a significant adverse effect in this case because the project has incorporated specific provisions to reduce impacts to a less than significant level and/or the mitigation measures described herein have been added to the project. A Mitigated Negative Declaration has thus been prepared.

The Initial Study, which provides the basis and reasons for this determination, is attached and/or referenced herei	in
and is hereby made a part of this document.	

Signature	Date

Proposed Mitigation Measures:

The following Mitigation Measures are extracted from the Initial Study. These measures are designed to avoid or minimize potentially significant impacts, and thereby reduce them to an insignificant level. A Mitigation Monitoring and Reporting Program (MMRP) is an integral part of project implementation to ensure that mitigation is properly implemented by the City of Lincoln and the implementing agencies. The MMRP will describe actions required to implement the appropriate mitigation for each CEQA category including identifying the responsible agency, program timing, and program monitoring requirements. Based on the analysis and conclusions of the Initial Study, the impacts of proposed project would be mitigated to less-than-significant levels with the implementation of the mitigation measures presented below.

Mitigation Measure Air-1: Prior to approval of grading or improvement plans for the project, the applicant shall submit a Construction Emission/Dust Control Plan to PCAPCD. Construction contractors shall not break ground prior to receiving PCAPCD approval of the Construction Emission/Dust Control Plan, and delivering that approval to the City.

Mitigation Measure Air-2: To reduce criteria pollutant emissions and energy consumption, the project applicant shall institute measures to reduce wasteful, inefficient, and unnecessary consumption of energy during construction, operation, and maintenance/landscaping. The measures to reduce wasteful, inefficient, and unnecessary consumption of energy during construction, operation, and maintenance/landscaping include the following:

- Ensure that the pedestrian/bicycle network within the project area connects to offsite pedestrian networks.
- Provide traffic calming measures on proposed street segments within the project site, where feasible. Traffic calming features may include: marked crosswalks, textured pavement, curb extensions, median islands, or onstreet parking.
- Exceed Title 24 energy efficiency requirements from the 2013 California Building Energy Efficiency Standards by 15 percent.
- Install high efficiency lighting and appliance within all buildings (i.e., EnergyStar qualified appliances).
- Install low-flow faucets, toilets, and showers as applicable.
- Use water-efficient irrigation systems throughout the project area.
- *Prohibit wood burning fireplaces.*

Mitigation Measure Bio-1: If project construction activities, including vegetation clearing, are to occur during the nesting season for birds protected under the California Fish and Game Code and/or Migratory Bird Treaty Act (approximately March 1-August 31), the project applicant shall retain a qualified biologist to perform preconstruction surveys for protected birds, including nesting raptors, on the project site and in the immediate vicinity. At least two surveys shall be conducted no more than 15 days prior to the initiation of construction activities, including vegetation clearing. In the event that protected birds, including nesting raptors, are found on the project site, offsite improvement corridors, or the immediate vicinity, the project applicant shall:

- Locate and map the location of the nest site. Within 2 working days of the surveys prepare a report and submit to the City and CDFW;
- A no-disturbance buffer of 250 feet shall be established;
- On-going weekly surveys shall be conducted to ensure that the no disturbance buffer is maintained. Construction can resume when a qualified biologist has confirmed that the birds have fledged.

In the event of destruction of a nest with eggs, or if a juvenile or adult raptor should become stranded from the nest, injured or killed, the qualified biologist shall immediately notify the CDFW. The qualified biologist shall coordinate with the CDFW to have the injured raptor either transferred to a raptor recovery center or, in the case of mortality, transfer it to the CDFW within 48 hours of notification. If directed/authorized by the CDFW during the notification, the qualified biologist may transfer the injured raptors to a raptor recovery center.

Mitigation Measure Bio-2: Prior to any construction activities that would disturb protected wetlands and/or jurisdictional areas on the project site, the appropriate state and federal authorizations (Streambed Alteration Agreement, Section 404 permit, Section 401 water quality certification) shall be obtained. All requirements of these authorizations shall be adhered to throughout the construction phase.

Mitigation Measure Bio-3: The project proponent shall compensate for any authorized disturbance to protected wetlands and/or jurisdictional areas to ensure no net loss of habitat functions and values. Compensation ratios shall be based on site-specific information and determined through coordination with state, federal, and local agencies as part of the permitting process for the project. Unless determined otherwise by the regulatory/permitting agency, the compensation shall be at a minimum ratio of 1 acre restored, created, and/or preserved for every 1 acre of protected wetlands and/or jurisdictional areas disturbed. Compensation may comprise onsite restoration/creation, off-site restoration, preservation, or mitigation credits (or a combination of these elements).

Mitigation Measure Bio-4: Prior to removal of any trees, the project applicant shall obtain a tree removal permit from the City of Lincoln in accordance with the City's Oak Tree Preservation Ordinance (Chapter 18.69). For native oak trees that must be removed, the applicant shall implement the following:

- Replacement of oak tree(s) removed or irrevocably harmed by planting replacement specimen trees of no less than 15 gallons in size, having a total combined diameter at the time of planting equal to the diameter of the removed tree(s). In order to ensure survival of the replacement tree(s), the project applicant shall be responsible for inspection of the replacement tree(s) during the early plant establishment period for sprouting success and survival for three years. Sprouting success may be documented using monitoring data. Monitoring data may include plant density (average number of individuals/unit area), cover of the area covered by a given species, and species composition. Success criteria will be based on the survival rates. Percent survival for years one, two and three are 90, 80 and 70, respectively. Species not meeting the success criteria shall be replanted, providing the mortality causes can be identified and corrected prior to replanting. If the causes cannot be identified, another native species with high survival rates shall be used for replacement. Photographs shall be taken in the same month each year to assist in evaluation of mitigation success.
- If the project site is not capable of supporting all the required replacement trees, a fee shall be paid to the City equal to the retail costs at the time of the replacement trees.
- To reduce the loss of protected native oak trees (those not requiring removal), the applicant shall comply with all conditions of project approval and any City guidelines for protected native oak trees. This includes implementation of the Tree Management Recommendations and Protection Measures as outlined in the Arborist Report (2016) for pre-construction, during construction, and post-construction.

Mitigation Measure Cul-1: If cultural resources (i.e., prehistoric sites, historic sites, isolated artifacts/features, and paleontological sites) are discovered, work shall be halted immediately within 50 meters (165 feet) of the discovery, the City of Lincoln and tribal representatives from the United Auburn Indian Community (UAIC) of the Auburn Rancheria and the Shingle Springs Band of Miwok Indians shall be notified, and a qualified archaeologist that meets the Secretary of the Interior's Professional Qualifications Standards in prehistoric or historical archaeology (or a qualified paleontologist in the event paleontological resources are found) shall be retained to determine the significance of the discovery. The City of Lincoln shall consider recommendations presented by the professional for any unanticipated discoveries and shall carry out the measures deemed feasible and appropriate. Such measures may include avoidance, preservation in place, excavation, documentation, curation, data recovery, or other appropriate measures. Specific measures are developed based on the significance of the find.

Mitigation Measure Cul-2: If any human remains are found during grading and construction activities, all work shall be halted immediately within 50 meters (165 feet) of the discovery and the County Coroner must be notified, according to Section 5097.98 of the State Public Resources Code and Section 7050.5 of California's Health and Safety Code. If the remains are determined to be Native American, the coroner shall notify the Native American Heritage Commission, and the procedures outlined in CEQA Section 15064.5(d) and (e) shall be followed. Additionally, if the Native American resources are identified, a Native American monitor, following the Guidelines for Monitors/Consultants of Native American Cultural, Religious, and Burial Sites established by the Native American Heritage Commission, may also be required and, if required, shall be retained at the applicant's expense.

Mitigation Measure Geo-1: Prior to the development of the Project site, further subsurface geotechnical investigation shall be performed to identify onsite soil conditions and identify any site-specific engineering measures to be implemented during the construction of building foundations, surface improvements, and subsurface improvements. The results of the subsurface geotechnical investigation shall be reflected on the Improvements Plans, subject to review and approval by the City's Building Division.

Mitigation Measure Geo-2: Expansive materials and potentially weak and compressible fills at the site shall be evaluated by a Geotechnical Engineer during the grading plan stage of development. If highly expansive or compressible materials are encountered, special foundation designs and reinforcement, removal and replacement with soil with low to non-expansive characteristics, compaction strategies, or soil treatment options to lower the expansion potential shall be incorporated through requirements imposed by the City's Building Division. Additionally, the recommendations of the Preliminary Geotechnical Engineering Report (Wallace-Kuhl & Associates, 2004) shall be reflected on the Improvements Plans, subject to review and approval by the City's Building Division.

Mitigation Measure Geo-3: The project applicant shall submit a Notice of Intent (NOI) and Storm Water Pollution Prevention Plan (SWPPP) to the RWQCB in accordance with the NPDES General Construction Permit requirements. The SWPPP shall be designed to control pollutant discharges utilizing Best Management Practices (BMPs) and technology to reduce erosion and sediments. BMPs may consist of a wide variety of measures taken to reduce pollutants in stormwater runoff from the project site. Measures shall include temporary erosion control measures (such as silt fences, staked straw bales/wattles, silt/sediment basins and traps, check dams, geofabric, sandbag dikes, and temporary revegetation or other ground cover) that will be employed to control erosion from disturbed areas. Final selection of BMPs will be subject to approval by the City of Lincoln and the RWQCB. The SWPPP will be kept on site during construction activity and will be made available upon request to representatives of the RWQCB.

Mitigation Measure Haz-1: An overflight notification shall be recorded for residential land uses within Compatibility Zone C2 and an airport proximity disclosure shall be provided for residential land uses within Compatibility Zone D.

Mitigation Measure Haz-2: Ensure that the proposed on-site detention uses are implemented in a manner consistent with ALUCP Policy 3.5.3 (a)(6) and Federal Aviation Administration regulation (FAA Advisory Circular 150.5200-33B, "Hazardous Wildlife Attractants On or Near Airports"). This requirement shall be noted on the project improvement plans.

Mitigation Measure Hydro-1: The storm drainage plan shall be designed and engineered to ensure that post-project runoff is equal to or less than pre-project runoff in accordance with the West Placer Storm Water Quality Design Manual. The applicant shall provide the City Engineer with all stormwater runoff calculations with the improvement plan submittal.

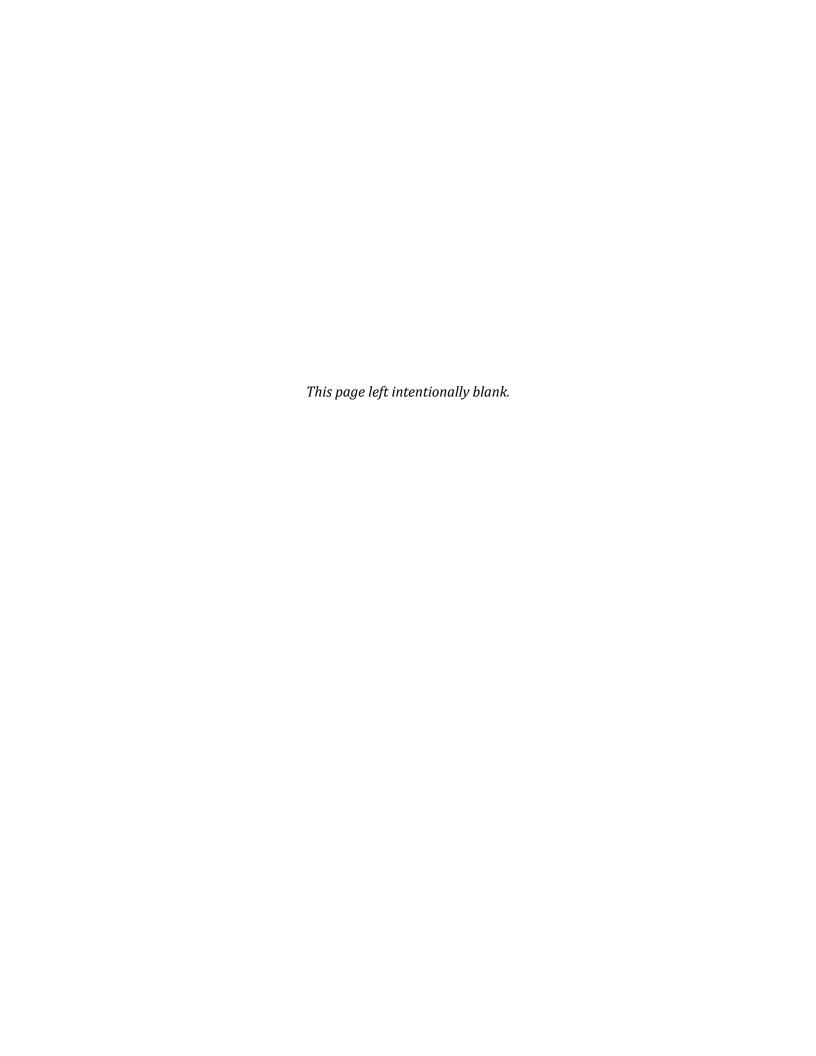
Mitigation Measure Noise-1: A 6-foot tall sound wall shall be constructed along Nicolaus Road, in accordance with the Noise Barrier Location Map (JC Brennan 2017). The sound wall shall be reflected on the Improvements Plans, subject to review and approval by the City's Building Division.

Mitigation Measure Noise-2: All project construction activities shall comply with the following:

- Construction hours shall be limited to 7 a.m. to 7 p.m., Monday through Friday (unless extended by a special permit).
- All heavy construction equipment and all stationary noise sources (such as diesel generators) shall have manufacturer-installed mufflers.
- Equipment warm up areas, water tanks, and equipment storage areas shall be located in an area as far away from existing residences as is feasible.

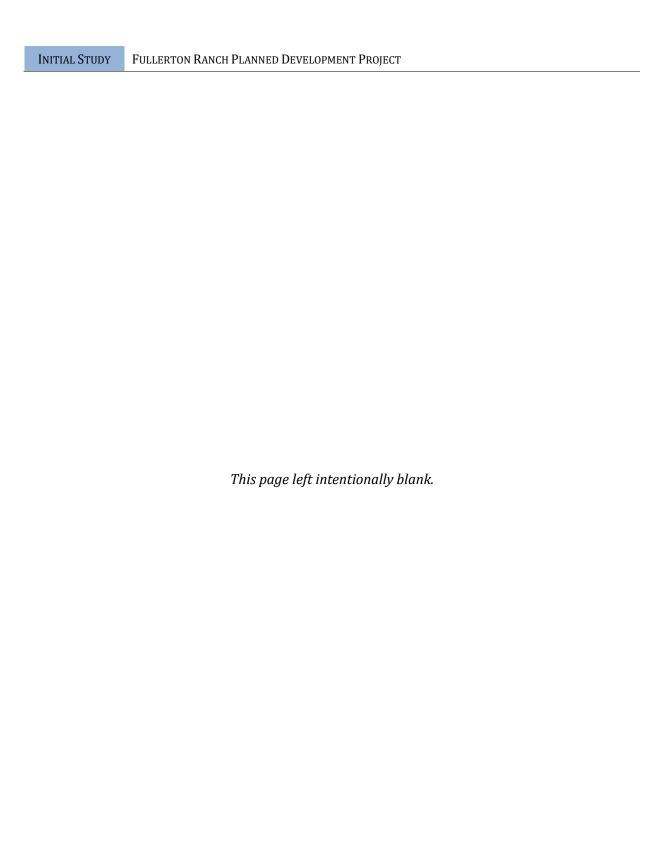
The above requirements shall be reflected on the Improvements Plans, subject to review and approval by the City's Building Division.

Mitigation Measure Public-1: The applicant shall pay applicable park in-lieu fees or dedicate 1.455 acres of parkland in accordance with the City of Lincoln Municipal Code standards outlined in Chapter 17.32. Proof of payment of the inlieu fees shall be submitted to the City Engineer.


Mitigation Measure Trans-1: Prior to approval of improvements plans, the improvement plans shall reflect the following bicycle facility improvements on and adjacent to the project site:

• Construct the segment of the Class II bike lane along the project frontage on the south side of Nicolaus Road. Alternatively, the project shall dedicate the right-of-way and pay the project's fair share towards the Class II bike lane on the south side of Nicolaus Road between Waverly Drive and Joiner Parkway.

• Construct the Class III bike lane connecting Nicolaus Road, through the Glenmoor Subdivision via Abbeyhill Road, through the project site, to Savannah Drive.


Mitigation Measure Tribal-1: If cultural resources are discovered during project-related construction activities, all ground disturbances within a minimum of 50 feet of the find shall be halted until a qualified professional archaeologist can evaluate the discovery, and tribal representatives from the United Auburn Indian Community (UAIC) of the Auburn Rancheria and the Shingle Springs Band of Miwok Indians shall be contacted. The archaeologist, in coordination with the UAIC and Shingle Springs Band of Miwok Indians representatives, shall examine the resources, assess their significance, and recommend appropriate procedures to the lead agency to either further investigate or mitigate adverse impacts. If the find is determined by the lead agency in consultation with the Native American tribe traditionally and culturally affiliated with the geographic area of the project site to be a tribal cultural resource and the discovered archaeological resource cannot be avoided, then applicable mitigation measures for the resource shall be discussed with the geographically affiliated tribe. Applicable mitigation measures that also take into account the cultural values and meaning of the discovered tribal cultural resource, including confidentiality if requested by the tribe, shall be completed (e.g., preservation in place, data recovery program pursuant to PRC §21083.2[i]). During evaluation or mitigative treatment, ground disturbance and construction work could continue on other parts of the project site.

Mitigation Measure Utilities-1: Prior to the issuance of a building or grading permit, the project applicant shall submit a drainage plan to the City of Lincoln for review and approval. The plan shall include an engineered storm drainage plan that demonstrates attainment of pre-project runoff requirements in accordance with the West Placer Storm Water Quality Design Manual prior to release and describes the volume reduction measures and treatment controls used to reach attainment consistent with the Lincoln Stormwater Post-Construction Ordinance.

TABLE OF CONTENTS

Initial	l Study Checklist	1
Pro	ject Title	1
Lea	d Agency Name and Address	1
Con	tact Person and Phone Number	1
Proj	ject Sponsor's Name and Address	1
Proj	ject Location and Setting	1
Gen	eral Plan and Zoning	1
Proj	ject Description	1
Envir	onmental Factors Potentially Affected	17
Deter	mination	17
Evalu	ation Instructions	18
Envir	onmental Checklist	20
I.	AESTHETICS	20
II.	AGRICULTURE AND FOREST RESOURCES	23
III.	AIR QUALITY	27
IV.	BIOLOGICAL RESOURCES	34
V.	CULTURAL RESOURCES	49
VI.	GEOLOGY AND SOILS	52
VII.	GREENHOUSE GAS EMISSIONS	63
VIII.	HAZARDS AND HAZARDOUS MATERIALS	73
IX.	HYDROLOGY AND WATER QUALITY	77
Х.	LAND USE AND PLANNING	85
XI.	MINERAL RESOURCES	87
XII.	NOISE	88
XIII.	POPULATION AND HOUSING	105
XIV.	PUBLIC SERVICES	106
XV.	RECREATION	111
XVI.	TRANSPORTATION AND TRAFFIC	112
XVII.	TRIBAL CULTURAL RESOURCES	
XVIII.	UTILITIES AND SERVICE SYSTEMS	
XVIX.	MANDATORY FINDINGS OF SIGNIFICANCE	
Refer	ences	135

INITIAL STUDY CHECKLIST

PROJECT TITLE

Fullerton Ranch Planned Development Project

LEAD AGENCY NAME AND ADDRESS

City of Lincoln 600 6th Street Lincoln. CA 95648

CONTACT PERSON AND PHONE NUMBER

Robert Poetsch, Associate Planner Community Development Department City of Lincoln 600 Sixth Street Lincoln, CA 95648 Robert.poetsch@lincolnca.gov (916) 434-2470

PROJECT SPONSOR'S NAME AND ADDRESS

Mr. Chris Tyler Terravest Capital Partners, LP 3208 Wycliffe Drive Modesto, California 95355

PROJECT LOCATION AND SETTING

The project site is located west of Joiner Parkway and south of Nicolaus Road in a predominately residential area of Lincoln, California (Figure 1 and 2). The project site totals approximately 19.7 acres and is currently undeveloped. The Assessor's Parcel Numbers (APNs) for the project site are 021-310-094, -095, and -096. The site is nearly level at an elevation of approximately 133 to 135 feet above mean sea level (MSL). The project site contains 189 individual trees scattered throughout the project site, including 99 blue oaks, 85 valley oaks, and 6 interior live oaks (Figure 3). At the southwestern corner of the project site, the property abuts the City's former Wastewater Treatment Plant, which is a proposed master-planned residential community development by Lewis Communities that would include low- and medium-density residential land uses, open space, and public facilities to serve the development.

GENERAL PLAN AND ZONING

The project site has a Low Density Residential (LDR) General Plan Land Use Designation (Figure 4) and Residential Estate (R-E) Zoning Designation (Figure 5).

PROJECT DESCRIPTION

The proposed project includes a Rezone and a Vesting Tentative Subdivision Map that would facilitate the development of 81 single family residential units on approximately 19.7 acres located southwest of the Nicolaus Road and Joiner Parkway intersection (Figure 6). The project

applicant has submitted a vesting tentative subdivision map which contains a lot layout plan, preliminary utility layout plan, preliminary grading and drainage plan, existing easements plan, and a preliminary tree removal plan. These detailed preliminary plans are contained in Appendix A. The proposed project would require a rezone from RE to Planned Development-Low Density Residential (PD-LDR).

The proposed project contemplates lot sizes that range from 6,000 square feet (sf) to over 24,000 sf with an average lot size exceeding 8,000 sf. The overall site density is 4.11 dwelling units per acre.

Lots would be served by interior streets conforming to the City's 50-foot and 44-foot public right-of-way standards. Roadway connections would be made to existing streets at Nicolaus Road (north), Abbeyhill Road (west), Savannah Drive (east), and Milan Way (south). At the southern access point, Sydney Terrace, a right-of-way extension would link the proposed Amelia Way/Amelia Court roadway to the existing Milan Way/Montaro Court roadway to the south of the project site. Unimpeded emergency vehicle access would be provided along this southern connection. The right-of-way extension from Sydney Terrace would include a raised rolled curb on both sides of the road, signage and striping to indicate 'No Parking', stamped and colored concrete, and landscaping on both sides, totaling 47 feet in right-of-way width.

As part of the PD zoning designation, development standards, setbacks, plotting, parking, and other project characteristics have been developed for the project. Table 1 shows the proposed development standard. The standards and regulations set forth in Table 1 are proposed to supersede those of the Lincoln Municipal Code, unless otherwise stated. In instances of conflicting regulations or standards, the regulations and standards contained in Table 1 are proposed to take precedence over the Municipal Code. If Table 1 is silent on an issue, then the standards in the Municipal Code or other applicable City, state, or federal codes will apply, as appropriate.

Table 1: Development Standards

Lot Size and Building Intensity	Proposed PD Zoning Standard	Existing R-E Zoning Standard		
Lot Configuration (Minimums)				
Lot Area	6,000 sf	108,900 sf		
Width, Interior Lot	60'	100'		
Width, Corner Lot	65'	100'		
Width, Knuckle or Cul-De-Sac (at street right-of-way)	35	N/A		
Depth	80'	200'		
Lot Configuration (Maximums)				
Lot Coverage	60%	30%		
Lot Depth to Width Ratio	5:1	N/A		

Table 2 shows the proposed setbacks. When not specified, setbacks will conform with Chapter 18.12, R-1 Zone, of Title 18 of the City Municipal Code.

A minimum of two parking spaces will be provided per unit in an enclosed garage. Three car front facing garages are allowed on houses that are a minimum of 45-feet wide and must be configured in one of the following ways: side-by-side with the third space offset from the remaining two spaces a minimum of two feet or separated by living space; the third space in a tandem configuration; a combination of side entry and front entry spaces. For houses that are less than 45-feet wide, a third car garage is permitted in tandem configuration only.

Table 2: Setbacks

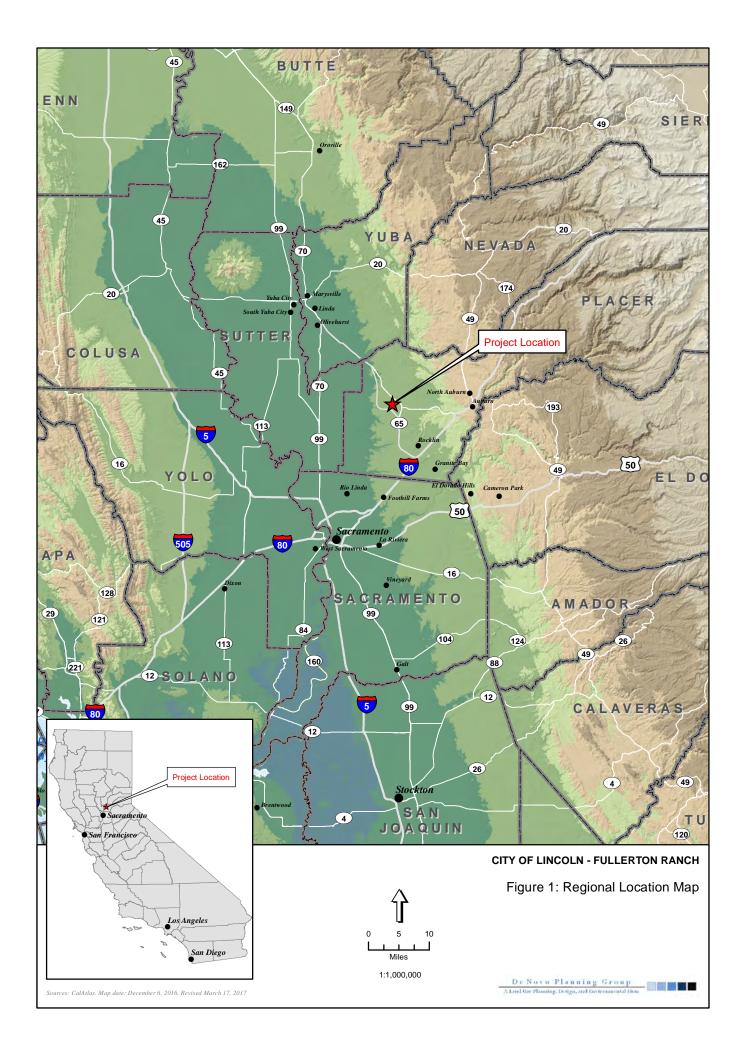
Setbacks	Proposed PD Zoning Standard	Existing R-E Zoning Standard		
Front Setbacks (Minimums)				
Living Space	15'	25'		
Porch, Balcony, Deck	10'	N/A		
Front Facing Garage	18'	N/A		
Side Entry Garage	12'	N/A		
Rear Setbacks (Minimums)				
Balcony, Deck, Living Space	10'	20'		
2nd Story Living Space Adjacent to Nicolaus Road	15'	N/A		
Patio Cover	5'	N/A		
Side Setbacks (Minimums)				
Living Space – Interior Side	5'	10'		
Living Space - Street Side	10'	10'		
Porches – Street Side	10'	N/A		
Building Height (Maximum)				
Height – Residence and Accessory Structures	Residence: 35' Accessory: 16'	Residence: 35' Accessory: 16'		

A variety of building forms, materials, colors, and roof forms and materials would be provided.

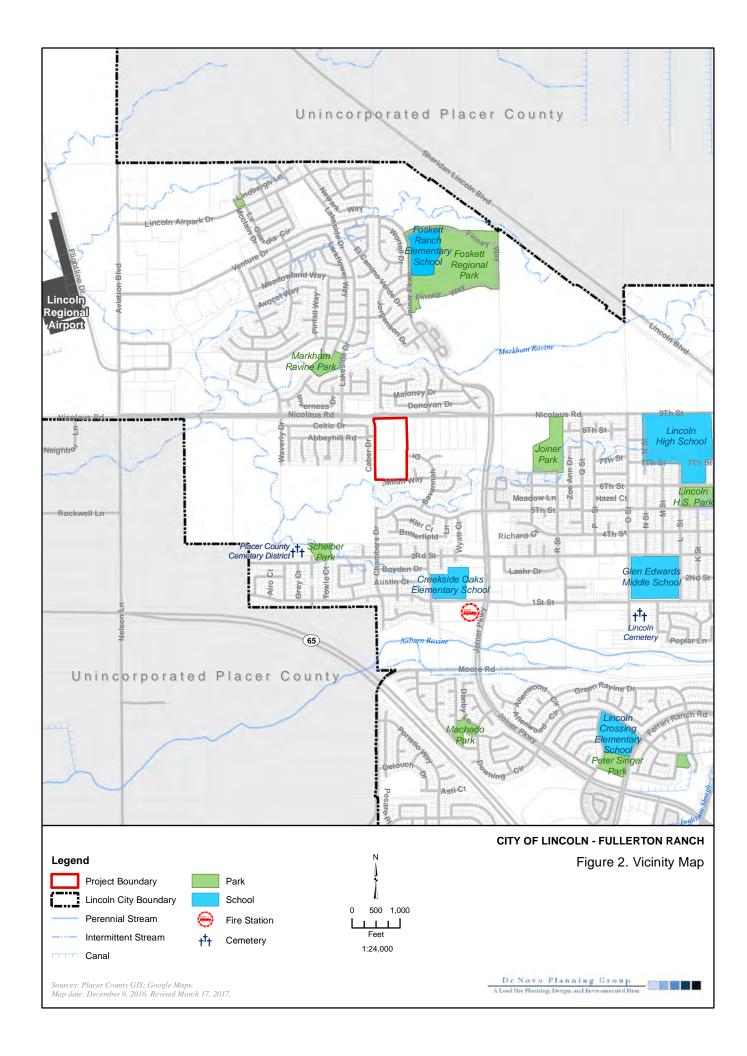
The proposed project would connect to existing City infrastructure to provide water, sewer, and storm drainage utilities. A water quality basin would be located in the northeastern portion of the project site. Police protection service would be provided by the Lincoln Police Department. The Lincoln Fire Department would provide fire protection service. School services would be provided by the Western Placer Unified School District. Gas and electricity will be provided by Pacific Gas & Electric.

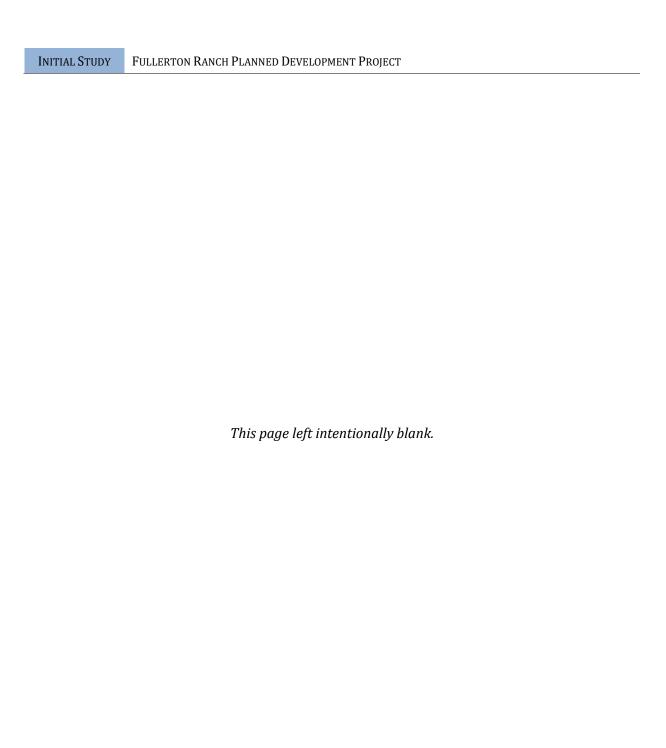
REQUESTED ENTITLEMENTS AND OTHER APPROVALS

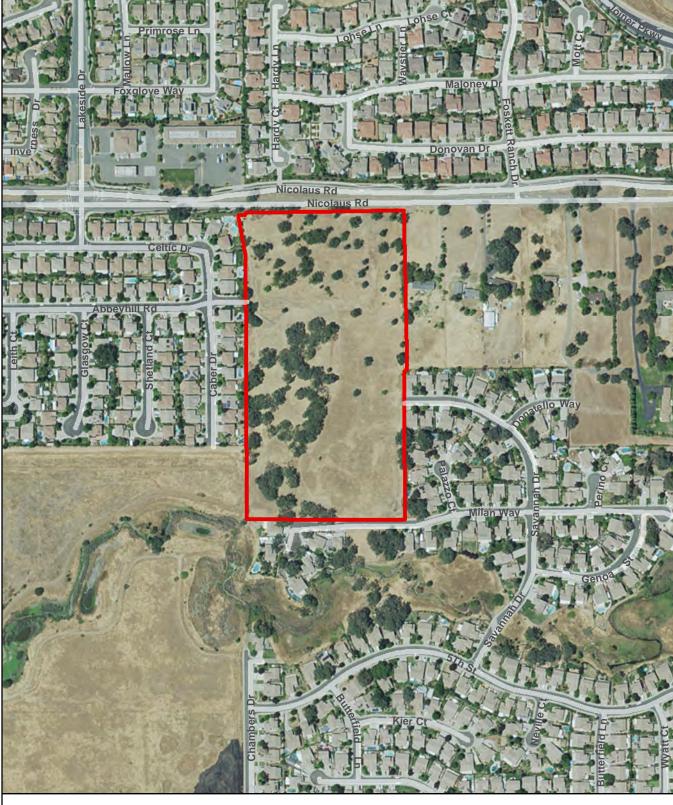
The City of Lincoln is the Lead Agency for the proposed project, pursuant to the State Guidelines for Implementation of CEQA, Section 15050.

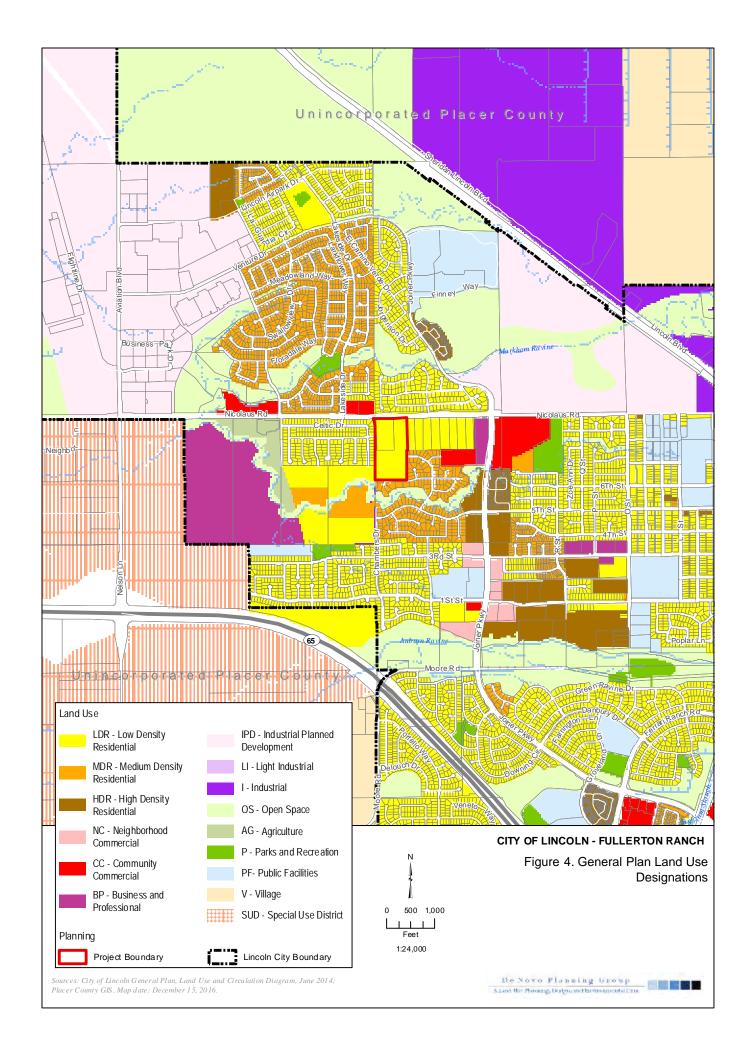

This document will be used by the City of Lincoln to take the following actions:

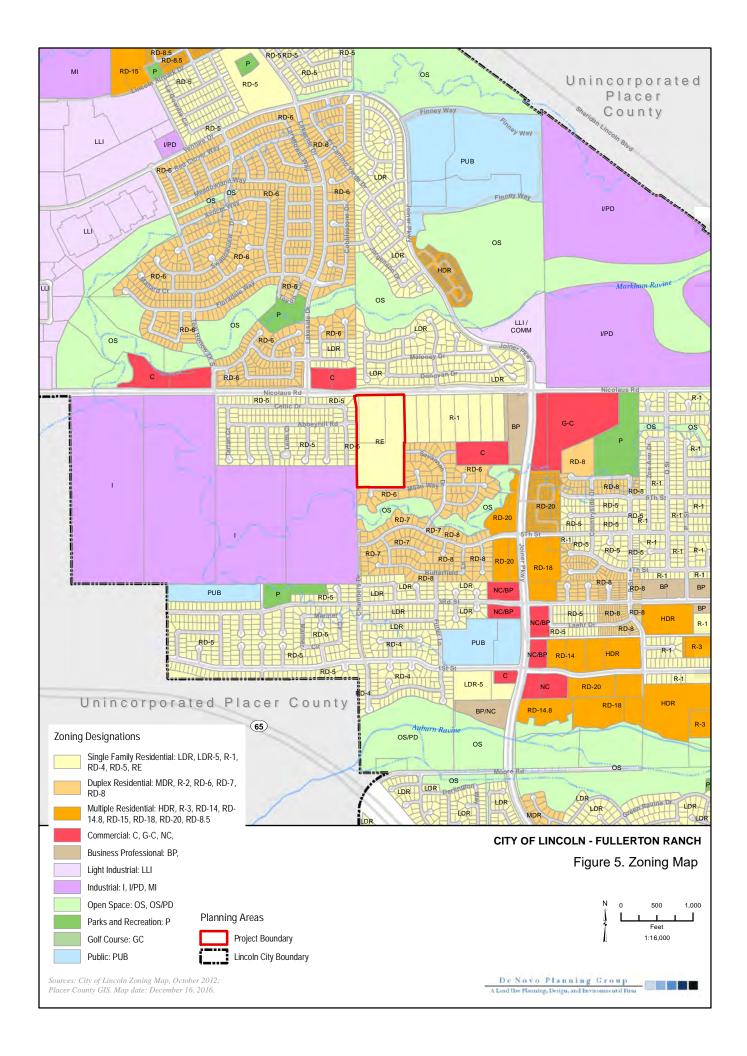
- Adoption of the MND;
- Adoption of the Mitigation Monitoring and Reporting Program (MMRP);
- Approval of a rezone from R-E to PD-LDR;
- Vesting Tentative Subdivision Map Approval; and
- Approval of the Fullerton Ranch General Development Plan.


The following agencies may be required to issue permits or approve certain aspects of the proposed project:


- California Department of Fish and Wildlife (CDFW) Streambed Alteration Agreement pursuant to Section 1602 of the California Fish and Game Code;
- Placer County Airport Land Use Commission Review of the proposed rezoning for consistency with the Placer County Airport Land Use Plan (ALUP).


- Regional Water Quality Control Board (RWQCB) Construction activities would be required to be covered under the National Pollution Discharge Elimination System (NPDES);
- Regional Water Quality Control Board (RWQCB) Water quality certification pursuant to Section 401 of the Clean Water Act;
- Regional Water Quality Control Board (RWQCB) Permitting of State jurisdictional areas, including isolated wetlands pursuant to the Porter-Cologne Water Quality Act;
- Regional Water Quality Control Board (RWQCB) Storm Water Pollution Prevention Plan (SWPPP) approval prior to construction activities pursuant to the Clean Water Act; and
- United States Army Corps Of Engineers (USACE) Permitting of federal jurisdictional areas pursuant to Section 404 of the Clean Water Act.


Legend


Project Boundary

0 150 300 Feet 1:4,800

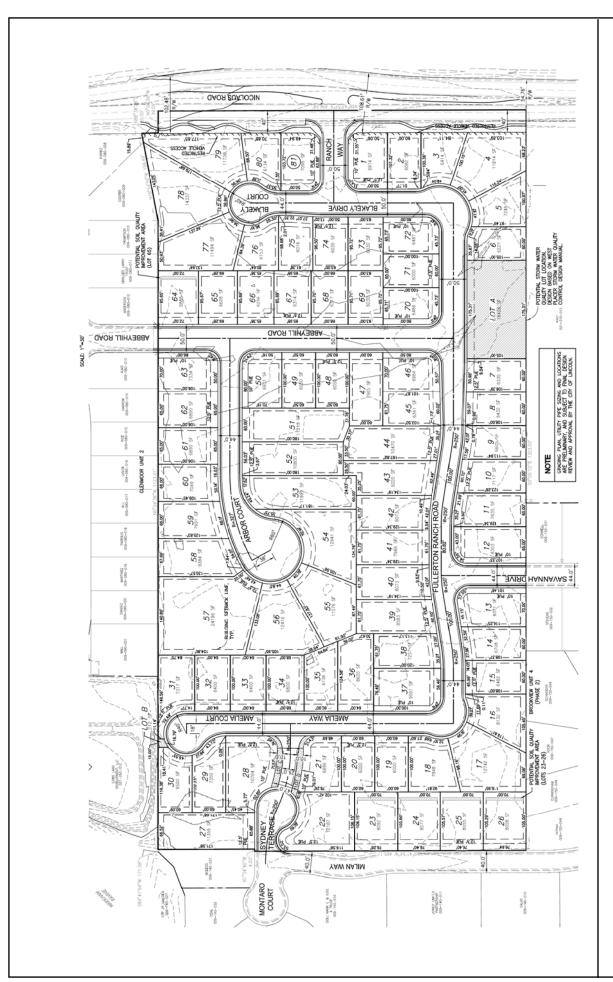

CITY OF LINCOLN - FULLERTON RANCH

Figure 3. Aerial View of Project Site

This page left intentionally blank.

city of Lincoln - Fullerton ranch Figure 6. Site Plan

120

ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED

None of the environmental factors listed below would be significantly impacted by implementation of this project and the associated recommended mitigation measures, as described on the following pages.

Aesthetics	Agriculture and Forest Resources	Air Quality
Biological Resources	Cultural Resources	Geology and Soils
Greenhouse Gasses	Hazards and Hazardous Materials	Hydrology and Water Quality
Land Use and Planning	Mineral Resources	Noise
Population and Housing	Public Services	Recreation
Transportation and Traffic	Tribal Cultural Resources	Utilities and Service Systems
Mandatory Findings of Significance		

DETERMINATION

Signature

On the basis of this initial evaluation:

	I find that the proposed project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.
X	I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared.
	I find that the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.
	I find that the proposed project MAY have a "potentially significant impact" or "potentially significant unless mitigated" impact on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.
	I find that although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed project, nothing further is required.

PAGE 17

Date

EVALUATION INSTRUCTIONS

- A brief explanation is required for all answers except "No Impact" answers that are adequately supported by the information sources a lead agency cites in the parentheses following each question. A "No Impact" answer is adequately supported if the referenced information sources show that the impact simply does not apply to projects like the one involved (e.g., the project falls outside a fault rupture zone). A "No Impact" answer should be explained where it is based on project-specific factors as well as general standards (e.g., the project will not expose sensitive receptors to pollutants, based on a project-specific screening analysis).
- 2) All answers must take account of the whole action involved, including off-site as well as on-site, cumulative as well as project-level, indirect as well as direct, and construction as well as operational impacts.
- Once the lead agency has determined that a particular physical impact may occur, then the checklist answers must indicate whether the impact is potentially significant, less than significant with mitigation, or less than significant. "Potentially Significant Impact" is appropriate if there is substantial evidence that an effect may be significant. If there are one or more "Potentially Significant Impact" entries when the determination is made, an EIR is required.
- "Negative Declaration: Less Than Significant With Mitigation Incorporated" applies where the incorporation of mitigation measures has reduced an effect from "Potentially Significant Impact" to a "Less Than Significant Impact." The lead agency must describe the mitigation measures, and briefly explain how they reduce the effect to a less than significant level (mitigation measures from Section XVII, "Earlier Analyses," may be cross-referenced).
- Earlier analyses may be used where, pursuant to the tiering, program EIR, or other CEQA process, an effect has been adequately analyzed in an earlier EIR or negative declaration. Section 15063(c)(3)(D). In this case, a brief discussion should identify the following:
 - a) Earlier Analysis Used. Identify and state where they are available for review.
 - b) Impacts Adequately Addressed. Identify which effects from the above checklist were within the scope of and adequately analyzed in an earlier document pursuant to applicable legal standards, and state whether such effects were addressed by mitigation measures based on the earlier analysis.
 - c) Mitigation Measures. For effects that are "Less than Significant with Mitigation Measures Incorporated," describe the mitigation measures which were incorporated or refined from the earlier document and the extent to which they address site-specific conditions for the project.
- 6) Lead agencies are encouraged to incorporate into the checklist references to information sources for potential impacts (e.g., general plans, zoning ordinances).

- Reference to a previously prepared or outside document should, where appropriate, include a reference to the page or pages where the statement is substantiated.
- 7) Supporting Information Sources: A source list should be attached, and other sources used or individuals contacted should be cited in the discussion.
- 8) This is only a suggested form, and lead agencies are free to use different formats; however, lead agencies should normally address the questions from this checklist that are relevant to a project's environmental effects in whatever format is selected.
- 9) The explanation of each issue should identify:
 - a) The significance criteria or threshold, if any, used to evaluate each question; and
 - b) The mitigation measure identified, if any, to reduce the impact to less than significant.

EVALUATION OF ENVIRONMENTAL IMPACTS

In each area of potential impact listed in this section, there are one or more questions which assess the degree of potential environmental effect. A response is provided to each question using one of the four impact evaluation criteria described below. A discussion of the response is also included.

- Potentially Significant Impact. This response is appropriate when there is substantial evidence that an effect is significant. If there are one or more "Potentially Significant Impact" entries, upon completion of the Initial Study, an EIR is required.
- Less than Significant With Mitigation Incorporated. This response applies when the incorporation of mitigation measures has reduced an effect from "Potentially Significant Impact" to a "Less Than Significant Impact". The Lead Agency must describe the mitigation measures and briefly explain how they reduce the effect to a less than significant level.
- Less than Significant Impact. A less than significant impact is one which is deemed to have little or no adverse effect on the environment. Mitigation measures are, therefore, not necessary, although they may be recommended to further reduce a minor impact.
- No Impact. These issues were either identified as having no impact on the environment, or they are not relevant to the Project.

ENVIRONMENTAL CHECKLIST

This section of the Initial Study incorporates the most current Appendix "G" Environmental Checklist Form, contained in the CEQA Guidelines. Impact questions and responses are included in both tabular and narrative formats for each of the 18 environmental topic areas.

I. AESTHETICS

Would the project:	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact
a) Have a substantial adverse effect on a scenic vista?			X	
b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?				X
c) Substantially degrade the existing visual character or quality of the site and its surroundings?			X	
d) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?			X	

Responses to Checklist Questions

Responses a, c): The General Plan does not contain any policies that specifically address scenic vistas, nor does it define or identify any scenic vistas. In general, a scenic vista would include areas with views of scenic resources, scenic water resources, and other scenic resources from, or to a project site.

For analysis purposes, a scenic vista can be discussed in terms of a foreground, middleground, and background viewshed. The middleground and background viewshed is often referred to as the broad viewshed. Examples of scenic vistas can include mountain ranges, valleys, ridgelines, or water bodies from a focal point of the forefront of the broad viewshed, such as visually important trees, rocks, or historic buildings. An impact would generally occur if a project would change the view to the middle ground or background elements of the broad viewshed, or remove the visually important trees, rocks, or historic buildings in the foreground.

The proposed project will not significantly disrupt middleground or background views from public viewpoints. The proposed project would result in changes to the foreground views from the public viewpoint by adding residential homes to a site that is undeveloped.

Upon build-out, the project would be of similar visual character to adjacent developments. For motorists travelling along nearby roadways, such as Nicolaus Road, the project would appear to be a continuation of adjacent land uses and would not present unexpected or otherwise unpleasant aesthetic values within the general project vicinity. A sound wall currently exists along the Glenmoor Subdivision frontage on Nicolaus Road, west of the project site. As noted in Section XII, Noise, a 6-foot tall sound wall would be constructed along Nicolaus Road as

required by Mitigation Measure Noise-1. The design and height of this required sound wall would be consistent with the existing sound walls currently located along Nicolaus Road.

The greatest visual change would apply to neighbors that abut the project site with a direct view of the area. Generally though, views of the project site are not visible from many nearby residences due to the existing fencing, mature trees, and vegetation that obscure views. The change in character of the project site, once developed, is anticipated by the General Plan and would be visually compatible with surrounding existing residential neighborhoods to the north, south, east, and west. Therefore, the project would not substantially degrade the existing visual character or quality of the site and its surroundings and this impact would be *less than significant*.

Response b): The project site is not located within view of a state scenic highway. The nearest highway subject to this program is State Route 49, an Eligible Designated State Scenic Highways, located approximately 13 miles east of the project site. Although the project would require removal of 95 of the 189 existing trees on the project site, because the site is not visible from a state scenic highway, the proposed project would not substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway. Implementation of the proposed project would have *no impact* relative to this topic. Physical impacts associated with tree removal are discussed in the Biological Resources section.

Response d): There is a potential for the proposed project to create new sources of light and glare. Examples would include construction lighting, street lighting, security lighting along sidewalks, exterior building lighting, interior building lighting, automobile lighting, and reflective building materials. Residential development and streets to the north, south, east, and west currently produce a moderate amount of nighttime lighting from street lighting, residential interiors, and exterior building lighting. Because light sources from the project would be consistent with the type and intensity of existing lighting sources, the existing, ambient condition would not substantially change. The project site is currently undeveloped and does not contain existing lighting. With development of the project, sources of nighttime lighting would be added and would increase nighttime lighting in the area with a type and intensity of lighting consistent with residential neighborhoods located north, south, east, and west of the project site. When viewed from more distant areas, the lighting associated with the residential development could appear to increase skyglow in the area because the existing project site is currently dark.

City of Lincoln General Plan Policy LU-11.3 requires that all outdoor light fixtures, including street lighting, externally illuminated signs, advertising displays, and billboards, use low-energy, shielded light fixtures that direct light downward (i.e., lighting shall not emit higher than a horizontal level). Additionally, where public safety would not be compromised, the City shall encourage the use of low intensity lighting for all outdoor light fixtures. Outdoor lighting would be installed in conformance with City codes and ordinances, applicable safety and illumination requirements, and California Title 24 requirements. Lighting would be installed at pedestrian crossings, as appropriate for public safety, and where lighting is needed for public safety. Limited safety and security lighting and indirect shielded lighting would also be provided. Further, proposed lighting would also be placed to ensure it illuminates only the intended areas and does not penetrate into residential communities. These lighting plans would be consistent with General Plan Policy LU-11.3 as described above.

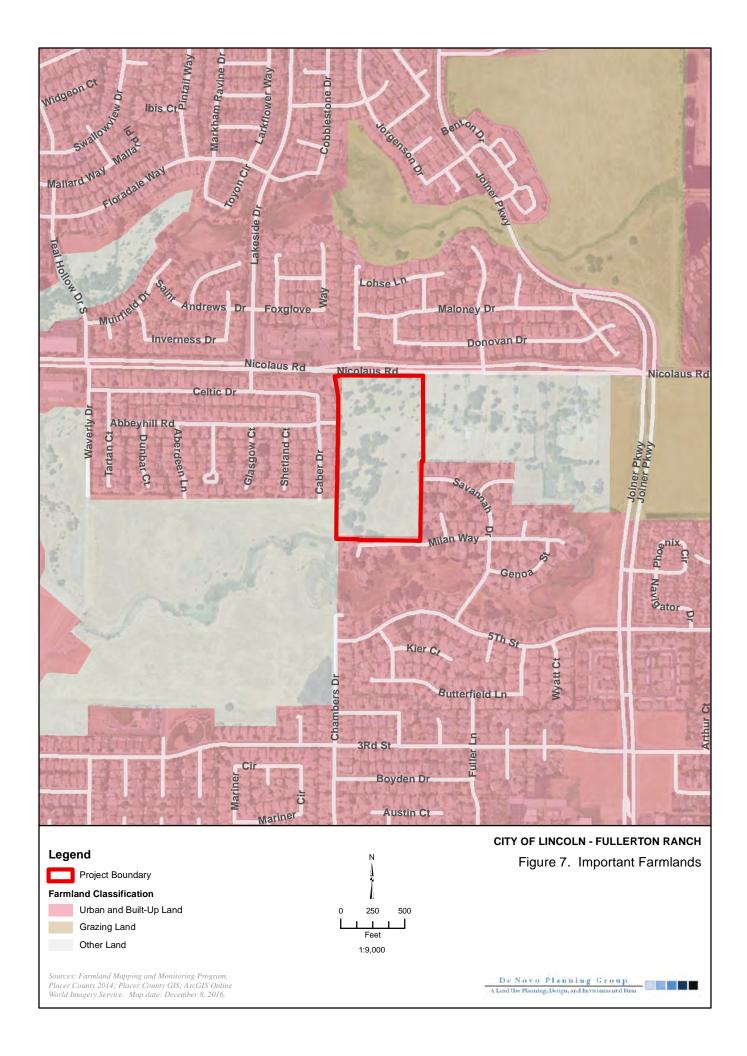
Development on the project site could also increase daytime glare because of an increase in the number of windows and use of certain types of building materials. However, use of non-reflective building materials is proposed as part of the project and the project would be required to undergo design review with the City to confirm it complies with the City's design requirements. Therefore, impacts associated with the creation of light or glare, such that it adversely affects daytime or nighttime views in the area, would be *less than significant*.

II. AGRICULTURE AND FOREST RESOURCES

Would the project:	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact
a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?				Х
b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?				X
c) Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 1222(g)) or timberland (as defined in Public Resources Code section 4526)?				Х
d) Result in the loss of forest land or conversion of forest land to non-forest use?				X
e) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to nonagricultural use or conversion of forest land to nonforest use?				Х

Responses to Checklist Questions

Response a): As shown in Figure 7, the project site does not contain prime farmland, unique farmland, or farmland of statewide importance as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency. The proposed project would not result in the conversion of agricultural land to non-agricultural use. Implementation of the proposed project would have **no impact** relative to this issue.


Response b): The project site is not zoned for agricultural use nor is it under a Williamson Act contract. The proposed project would not conflict with existing zoning for agricultural use, or a Williamson Act contract. Implementation of the proposed project would have **no impact** relative to this issue.

Response c): The Project site is not forest land (as defined in Public Resources Code section 1222(g)) or timberland (as defined in Public Resources Code section 4526). The proposed project would not conflict with existing zoning for, or cause rezoning of, forest land or timberland. Implementation of the proposed project would have *no impact* relative to this issue.

Response d): The project site is not forest land. The proposed project would not result in the loss of forest land or conversion of forest land to non-forest use. Implementation of the proposed project would have *no impact* relative to this issue.

Response e): The project site does not contain agricultural land or forest land. The proposed project does not involve changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use, or conversion of forest land to non-forest use. Implementation of the proposed project would have *no impact* relative to this issue.

This page left intentionally blank.

III. AIR QUALITY

Would the project:	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact
a) Conflict with or obstruct implementation of the applicable air quality plan?		X		
b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?		Х		
c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)?		X		
d) Expose sensitive receptors to substantial pollutant concentrations?			X	
e) Create objectionable odors affecting a substantial number of people?			X	

Existing Setting

The project site is located within the boundaries of the Placer County Air Pollution Control District (PCAPCD). This agency is responsible for monitoring air pollution levels and ensuring compliance with federal and state air quality regulations within the Sacramento Valley Air Basin (SVAB) and has jurisdiction over most air quality matters within its borders.

Responses to Checklist Questions

Responses a-c): Air quality emissions would be generated during construction of the proposed project and during operation of the proposed project. Construction-related air quality impacts and operational air quality impacts are addressed separately below.

Construction-Related Emissions

Construction Activities/Schedule: Construction activities will consist of multiple phases over several months. These construction activities can be described as site improvements (grading, underground infrastructure, and topside improvements) and vertical construction (building construction and architectural coatings). For purposes of this analysis, it is assumed that the entire project is built-out from May 2018 to May 2020. Actual construction emissions will likely be spread out over an extended period of time, so this construction schedule is considered worst case. The assumptions made for the air quality and greenhouse gas emissions analysis are included as Appendix B.

<u>Site Improvements</u>: The exact construction schedule of the entire project is largely dependent on market demands. For purposes of this analysis it is assumed that site improvements are installed in one phase. This approach will present a more conservative and worst-case scenario.

The site improvement phase of construction will begin with site preparation. The site preparation step will include the use of dozers, backhoes, and loaders to strip (clear and grub)

all organic materials and the upper half-inch to inch of soil from the project site. This task will generally take approximately four days to complete and will include vehicle trips from construction workers. This step will likely be less than the assumed four days.

After the site is stripped of organic materials grading will begin. This activity will involve the use of excavators, graders, dozers, scrappers, loaders, and backhoes to move soil around the project site to create specific engineered grade elevations and soil compaction levels. After grading and compaction all underground infrastructure would be installed. This includes the excavation of trenches to install storm water, wastewater, potable water, and dry utilities, and then backfilling and compacting the soil over the infrastructure. Grading and infrastructure for the project site would take approximately sixty days and will include vehicle trips from construction workers. (Note: It would be possible to grade the site under a more compacted schedule with extra equipment operating or under a longer timeframe with less equipment.).

The last task is to install the topside improvements, which includes pouring concrete curbs, gutters, sidewalks, and access aprons and then paving of all streets and parking lots. This task will involve the use of pavers, paving equipment, and rollers and will take approximately 10 days and will include vehicle trips from construction workers. (Note: It would be possible to install the topside improvements under a more compacted schedule with extra equipment operating or under a longer timeframe with less equipment).

<u>Building Construction/Architectural Coatings:</u> Building construction involves the vertical construction of structures and landscaping around the structures. This task will involve the use of forklifts, generator sets, and small tractors/loaders/backhoes. The exact construction schedule of the entire project is largely dependent on market demands. For purposes of this analysis it is assumed that the entire project is constructed in approximately fourteen months. The actual building construction phase may vary based on market conditions. Architectural coatings involve the interior and exterior painting associated with the structures. This task will generally begin two months after construction begins on the structure and will generally be completed with the completion of the individual buildings.

Construction Emissions: A quantification of the emissions of ROG, NO_X, and PM₁₀ that will be emitted by project construction has been performed. CalEEModTM (v.2016.3.1) was used to estimate construction emissions for the proposed project. Below is a list of model assumptions used in the construction screens of CalEEMod. Table 3 presents the estimated construction phase schedule, which shows the duration of each construction phase. Table 4 shows the offroad construction equipment used during construction for each phase. Following these tables are a list of default factors that were used in the model.

Model Assumptions (Construction)

Table 3: Construction Phase

Tuble bi contain wellon i muse						
Phase #	Phase Name	Start Date	End Date	# Days/Week	# Days	
1	Site Preparation	5/1/2018	5/4/2018	5	4	
2	Grading	5/4/2018	7/26/2018	5	60	
3	Building Construction	8/8/2018	3/6/2020	5	413	
4	Paving	7/26/2018	8/8/2018	5	10	
5	Architectural Coating	10/12/2018	5/12/2020	5	413	

SOURCE: CALEEMOD (v.2016.3.1)

Table 4: Off-Road Equipment

Equipment Type	Unit Amount	Hours/Day	Horsepower	Load Factor			
SITE PREPARATION							
Rubber Tired Dozers	1	8.00	255	0.40			
Tractors/Loaders/Backhoes	2	8.00	97	0.37			
	GRA	DING					
Excavators	2	8.00	162	0.38			
Graders	1	8.00	174	0.41			
Rubber Tired Dozers	1	8.00	255	0.40			
Scrapers	1	8.00	361	0.48			
Tractors/Loaders/Backhoes	1	8.00	97	0.37			
	Building Co	NSTRUCTION					
Cranes	1	3.00	226	0.29			
Forklifts	1	8.00	89	0.20			
Generator Sets	1	8.00	84	0.74			
Tractors/Loaders/Backhoes	1	4.00	97	0.37			
Welders	0	N/A	N/A	N/A			
	Pav	ING					
Pavers	1	8.00	125	0.42			
Paving Equipment	1	8.00	130	0.36			
Rollers	1	8.00	80	0.38			
	ARCHITECTURAL COATINGS						
Air Compressors	1	6.00	78	0.48			

Source: CalEEMod (v.2016.3.1)

Table 5 shows the construction emissions for the construction years 2018 through 2020.

Table 5: Construction Emissions (Unmitigated)

Thresholds	ROG	NO _X	PM ₁₀
	≤ 82 lbs/day	≤ 82 lbs/day	≤ 82 lbs/day
2018	6.0549	60.6242	20.8009
2019	5.8684	12.5636	1.0546
2020	5.7248	11.4530	0.9586
Maximum	6.0549	60.6242	20.8009
Threshold Exceeded	No	No	No
in any Year?	NU	NU	INU

NOTES: LBS/DAY = POUNDS PER DAY. SOURCE: CALEEMOD (v.2016.3.1)

The PCAPCD has established construction related emissions thresholds of significance as follows: 82 pounds per day (lbs/day) of ROG, NO_x , or PM_{10} . If the proposed project's emissions will exceed the PCAPCD's threshold of significance for construction-generated emissions, the proposed project will have a significant impact on air quality and all feasible mitigation are required to be implemented to reduce emissions. As shown in Table 5 above, annual construction emissions of ROG, NO_x , and PM_{10} will not exceed the PCAPCD thresholds of significance in any given year. Nevertheless, regardless of emission quantities, the PCAPCD requires construction related mitigation in accordance with their rules and regulations. Implementation of the following mitigation measure will ensure that the proposed project would reduce construction related emissions to the extent possible. With implementation of the following mitigation measure, the proposed project would have a *less than significant* impact related to construction emissions.

Mitigation Measure Air-1: Prior to approval of grading or improvement plans for the project, the applicant shall submit a Construction Emission/Dust Control Plan to PCAPCD. Construction contractors shall not break ground prior to receiving PCAPCD approval of the Construction Emission/Dust Control Plan, and delivering that approval to the City.

Operational Emissions

The PCAPCD is tasked with implementing programs and regulations required by the Federal Clean Air Act and the California Clean Air Act. In that capacity, the PCAPCD has prepared plans to attain Federal and State ambient air quality standards. To achieve attainment with the standards, the PCAPCD has established thresholds of significance for criteria pollutant emissions in their *Review of Land Use Projects Under CEQA* (2016) document. Projects with emissions below the thresholds of significance for criteria pollutants would be determined to "Not conflict or obstruct implementation of the District's air quality plan".

The proposed project would be a direct and indirect source of air pollution, in that it would generate and attract vehicle trips in the region (mobile source emissions) and it would increase area source emissions and energy consumption. The mobile source emissions would be entirely from vehicles, while the area source emissions would be primarily from the use of natural gas fuel combustion, landscape fuel combustion, consumer products, and architectural coatings.

CalEEMod™ (v.2016.3.1) was used to estimate emissions for buildout of the proposed project. Table 6 shows the emissions, which include mobile, area source, and energy emissions of criteria pollutants that would result from operations of the proposed project.

Table 6: Operational Buildout Generated Emissions

	RO	OG .	N	O _X	PN	1 10
Thresholds	55 lbs	s/day	55 lb:	s/day	82 lb:	s/day
Category	UM	М	UM	M	UM	M
Area	127.7862	3.9657	2.4984	1.2868	21.4914	0.1346
Energy	0.0766	0.0660	0.6542	0.5643	0.0529	0.0456
Mobile	1.5841	1.5580	8.3027	8.0835	2.9030	2.7032
Total	129.4469	5.5898	11.4553	9.9347	24.4473	2.8834
Threshold Exceeded?	Yes	No	No	No	No	No
Percent Reduction	95.	68	13	.27	88	.21

NOTES: UM = UNMITIGATED, M = MITIGATED.

SOURCE: CALEEMOD (V.2016.3.1).

The long-term operational emissions estimate for buildout of the proposed project, incorporates the potential area source and vehicle emissions, and emissions associated with utility and water usage, and wastewater and solid waste generation. The modeling included mitigation inputs including the following:

Traffic Modeling Assumptions

- Increase transit accessibility in the project site (minimum distance to transit stops is 0.6 miles)
- Increase accessibility to downtown/job center (minimum distance to downtown/job center is 1.45 miles)

- Improve pedestrian network so that the project site connects to offsite pedestrian networks
- Provide traffic calming measures on street segments and intersections

Energy Modeling Assumptions

- Exceed Title 24 by 15%
- Install high efficiency lighting
- Install high efficiency appliances within residences

Area Modeling Assumptions

- Use low VOC paint
- Use only natural gas hearths

Water Modeling Assumptions

- Install low flow bathroom faucet
- Install low-flow kitchen faucet
- Install low-flow toilet
- Install low-flow shower
- Use water-efficient irrigation systems

The PCAPCD has established their thresholds of significance by which the project emissions are compared against to determine the level of significance. The PCAPCD has established operations related emissions thresholds of significance as follows: 55 lbs/day of NO_x , 55 lbs/day of ROG, and 82 lbs/day of PM_{10} . If the proposed project's emissions will exceed the PCAPCD's threshold of significance for operational-generated emissions, the proposed project will have a significant impact on air quality and all feasible mitigation are required to be implemented to reduce emissions to the extent feasible. As shown in Table 6 above, annual emissions of NOx and PM_{10} would not exceed the PCAPCD thresholds of significance. Although the annual emissions of ROG would exceed the PCAPCD thresholds of significance, the mitigation inputs would reduce the emissions to below the threshold. As such, with implementation of the following mitigation measure, operation of the proposed project would have a *less than significant* impact relative to operational air emissions.

Mitigation Measure Air-2: To reduce criteria pollutant emissions and energy consumption, the project applicant shall institute measures to reduce wasteful, inefficient, and unnecessary consumption of energy during construction, operation, and maintenance/landscaping. The measures to reduce wasteful, inefficient, and unnecessary consumption of energy during construction, operation, and maintenance/landscaping include the following:

- Ensure that the pedestrian/bicycle network within the project area connects to offsite pedestrian networks.
- Provide traffic calming measures on proposed street segments within the project site, where feasible. Traffic calming features may include: marked crosswalks, textured pavement, curb extensions, median islands, or on-street parking.
- Exceed Title 24 energy efficiency requirements from the 2013 California Building Energy Efficiency Standards by 15 percent.
- Install high efficiency lighting and appliance within all buildings (i.e., EnergyStar qualified appliances).

- Install low-flow faucets, toilets, and showers as applicable.
- Use water-efficient irrigation systems throughout the project area.
- Prohibit wood burning fireplaces.

Response d): *Construction-Related Impacts on Sensitive Receptors:* Sensitive receptors are those parts of the population that can be severely impacted by air pollution. Sensitive receptors include children, the elderly, and the infirm. The residents located to the east and west of the project site are considered sensitive receptors. The proposed project would place additional sensitive receptors in the area. The operations of the proposed project would not contribute substantial concentrations of pollutants to sensitive receptors. The construction phase of the proposed project has the potential to increase pollution concentrations that would impact sensitive receptors.

The construction phase of the Project would be temporary and short-term, and the implementation of Mitigation Measure Air-1 would greatly reduce pollution concentrations generated during construction activities. Operation of the proposed Project would result in emissions primarily from vehicle trips, area sources, and energy sources. As described under Response a) – c) above, the proposed project would not generate significant concentrations of air emissions. Impacts to sensitive receptors during construction would be negligible and this is a *less than significant* impact.

Toxic Air Contaminant Impacts on Sensitive Receptors: A toxic air contaminant (TAC) is defined as an air pollutant that may cause or contribute to an increase in mortality or in serious illness, or that may pose a hazard to human health. TACs are usually present in minute quantities in the ambient air. However, their high toxicity or health risk may pose a threat to public health even at very low concentrations. In general, for those TACs that may cause cancer, there is no concentration that does not present some risk. This contrasts with the criteria pollutants for which acceptable levels of exposure can be determined and for which the state and federal governments have set ambient air quality standards.

The California Air Resources Board (CARB) published the *Air Quality and Land Use Handbook: A Community Health Perspective* (2007) to provide information to local planners and decision-makers about land use compatibility issues associated with emissions from industrial, commercial and mobile sources of air pollution. The CARB Handbook indicates that mobile sources continue to be the largest overall contributors to the State's air pollution problems, representing the greatest air pollution health risk to most Californians. The most serious pollutants on a statewide basis include diesel exhaust particulate matter (diesel PM), benzene, and 1,3-butadiene, all of which are emitted by motor vehicles. These mobile source air toxics are largely associated with freeways and high traffic roads. Non-mobile source air toxics are largely associated with industrial and commercial uses. Table 7 provides the CARB minimum separation recommendations on siting sensitive land uses.

In addition to the airplane engines, aircrafts can also emit PM and TACs from other on-board sources. These other aircraft sources include auxiliary power units and aircraft brake and tire emissions during touchdown. There is currently no data on PM number, size, and mass for brake and tire emissions from landing aircraft. LIDAR data collected in the UK suggest that these brake and tire emissions could be a significant PM source at aircrafts. Due to various data limitations, a means to estimate the relative contributions from aircraft and other PM sources to airport PM inventories that reflect actual, source-specific PM data and source operational procedures is lacking. It is noted that CARB does not provide minimum separation recommendations on siting sensitive land uses from airport land uses.

The project includes residential uses which are considered sensitive land uses. There are no source categories listed above that are proposed. Additionally, there are no source categories listed above that are within screening distances or minimum separation distances suggested for sensitive uses. State Route 65 is the closest freeway and is located over 3,500 feet from the project site. The project is consistent with the *CARB Minimum Separation Recommendations on Siting Sensitive Land Uses* (2005). A health risk assessment is not warranted for any further assessment. Implementation of the proposed project would not result in an increased exposure of sensitive receptors to localized concentrations of TACs. This Project would have a *less than significant* impact relative to this topic.

Table 7: CARB Minimum Separation Recommendations on Siting Sensitive Land Uses

Source Category	Advisory Recommendations
Freeways and High-Traffic Roads	• Avoid siting new sensitive land uses within 500 feet of a freeway, urban roads with 100,000 vehicles/day, or rural roads with 50,000 vehicles/day.1
Distribution Centers	 Avoid siting new sensitive land uses within 1,000 feet of a distribution center (that accommodates more than 100 trucks per day, more than 40 trucks with operating transport refrigeration units (TRUs) per day, or where TRU unit operations exceed 300 hours per week). Take into account the configuration of existing distribution centers and avoid locating residences and other new sensitive land uses near entry and exit points.
Rail Yards	 Avoid siting new sensitive land uses within 1,000 feet of a major service and maintenance rail yard. Within one mile of a rail yard, consider possible siting limitations and mitigation approaches.
Ports	• Avoid siting of new sensitive land uses immediately downwind of ports in the most heavily impacted zones. Consult local air districts or the CARB on the status of pending analyses of health risks.
Refineries	• Avoid siting new sensitive land uses immediately downwind of petroleum refineries. Consult with local air districts and other local agencies to determine an appropriate separation.
Chrome Platers	Avoid siting new sensitive land uses within 1,000 feet of a chrome plater.
Dry Cleaners Using Perchloro- ethylene	 Avoid siting new sensitive land uses within 300 feet of any dry cleaning operation. For operations with two or more machines, provide 500 feet. For operations with 3 or more machines, consult with the local air district. Do not site new sensitive land uses in the same building with perc dry cleaning operations.
Gasoline Dispensing Facilities	• Avoid siting new sensitive land uses within 300 feet of a large gas station (defined as a facility with a throughput of 3.6 million gallons per year or greater). A 50 foot separation is recommended for typical gas dispensing facilities.

SOURCE: AIR QUALITY AND LAND USE HANDBOOK: A COMMUNITY HEALTH PERSPECTIVE" (CARB 2005).

Response e): The proposed project would not generate objectionable odors. People in the immediate vicinity of construction activities may be subject to temporary odors typically associated with construction activities (diesel exhaust, hot asphalt, etc.). However, any odors generated by construction activities would be minor and would be short and temporary in duration. Implementation of the proposed project would have a *less than significant* impact relative to this topic.

IV. BIOLOGICAL RESOURCES

Would the project:	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact
a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?		X		
b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Game or US Fish and Wildlife Service?				X
c) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?		X		
d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?			Х	
e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?		X		
f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?				Х

Background

A Special-Status Plant Survey (Foothill Associates, 2016) was prepared for the proposed project. De Novo Planning Group peer reviewed the report for use in the Initial Study. The full report is contained in Appendix C. This report contains the findings of a focused botanical survey for six special-status plant species that was conducted for the project site. The plant species include: Ahart's dwarf rush (Juncus leiospermus var. aharti), big-scale balsam-root (Balsamorhiza macrolepis var. macrolepis), Bogg's Lake hedge-hyssop (Gratiola heterosepala), dwarf downingia (Downingia pusilla), legenere (Legenere limosa), and pincushion navarretia (Navarretia myersii ssp. myersii). The purpose of the plant survey was to determine whether the potentially occurring special-status plants exist within the project site. In addition, a comprehensive botanical inventory was conducted within the project site, in accordance with the California Department of Fish and Wildlife's (CDFW) (2009) protocol plant surveys by Foothill. Plants observed within the project site are provided in Appendix C.

A Dry-Season Sampling for Federally Listed Large Branchiopods at the Premier Oak Estates (November 2004) and a Wet-Season Sampling for Federally Listed Large Branchiopods at the

Premier Oak Estates, Placer County (June 2005) were prepared by Helm Biological Consulting. A Section 7 consultation was initiated with the USFWS in February 2007 for vernal pool branchiopods and valley elderberry longhorn beetle. The USFWS issued a not likely to adversely affect determination in June 13, 2007. Due to the time lapse since the USFWS's determination additional surveys were performed to reverify conditions. A Dry Season Sampling for Federally Listed Large Branchiopods at the Fullerton Ranch Project (Helm Biological Consulting, 2016) was performed (see Appendix D). No evidence of federally listed large branchiopods (cysts belonging to the genus Branchinecta or Lepidurus or carapaces of Lepidurus) were observed in the soils collected.

Additionally, a 90-Day Report 2016-2017 Wet-Season Survey for Listed Vernal Pool Branchiopods (Foothill Associates, 2017) was performed (see Appendix E). Because more than 10 years have passed since the previous wet-season invertebrate sampling surveys, and in due diligence of potential special-status species that may be present on the project site, protocol-level wet-season surveys for branchiopods were conducted as part of the 90-Day Report 2016-2017 Wet-Season Survey for Listed Vernal Pool Branchiopods (Foothill Associates, 2017). As part of this survey, the project site was surveyed on December 27, 2016, January 11 and 24, 2017, February 10 and 28, 2017, March 31, 2017, April 14 and 28, 2017, and May 12, 2017. A total of 13 features were sampled. No listed or non-listed branchiopod species were found in any of the sampled pools. This is consistent with the 2004 dry-season sampling results discussed above.

Other technical studies that have been prepare for the project site include a *Biological Resources Assessment Update for the Whispering Oaks Site, Lincoln, Placer County* (April 2006) and an *Arborist Report for the Fullerton Ranch Project Site* (Dudek 2016).

The project site is located west of Joiner Parkway and south of Nicolaus Road in a predominately residential area of Lincoln. The project site totals approximately 19.7 acres and is currently undeveloped. The project site is comprised of annual grassland and oak woodland with seasonal wetland features interspersed in the southern half of the project site. The western half of the project site is comprised of oak woodland with an annual grassland understory. The topography within the project site is generally level with elevations ranging from 133 to 135 feet above MSL.

Responses to Checklist Questions

Response a): A records search reveals that there are eight known special status species (federal or state listed, of CNPS List 1B or 2) within a 10-mile radius search of the project site (see Table 8). As noted previously, botanical surveys within blooming period have been performed, including focused surveys. The plants found on the project site are listed in Appendix C. Although the project site provides habitat for the special-status species within the vernal pools, these species were not observed. These species are not present within the project site. Therefore, the proposed project would have **no impact** on special-status plants.

Table 8: Special-Status Plants

Species	Status (Fed/State/CNPS)	Habitat	Potential for Occurrence
Ahart's dwarf rush Juncus leiospermus var. aharti	SC//1B	Vernal pools	Not observed during previous site visits.
Big-scale balsam-root Balsamorhiza macroleps var. macrolepis	SC//1B	Open woodlands and grasslands	Not observed during previous site visits.
Bogg's Lake hedge-hyssop Gratiola heterosepala	/CE/1B	Moist margins of vernal pools and marshes	Not observed during previous site visits.
Dwarf downingia Downingia pusilla	//2	Vernal pools	Not observed during previous site visits.
hispid salty bird's-beak Chloropyron molle ssp. hispidum	//1B	Alkali Sink, Valley Grassland, wetland- riparian	Not observed during previous site visits.
Legenere Legenere limosa	SC//1B	Vernal pools	Not observed during previous site visits.
Pincushion navarretia Navarretia myersii ssp. myersii	//1B	Vernal pools	Not observed during previous site visits.
Red Bluff dwarf rush Juncus leiospermus var. leiospermus	//1B	Vernal pools	Not observed during previous site visits.

Notes: (--) = None; Federal: SC = Species of Concern; State: CE = California Endangered; California Native Plant Society (CNPS): List 1B = Rare or Endangered in California; List 2 = Rare and Endangered in California, more common elsewhere.

SOURCE: CNDDB. 2016.

Table 9 shows the twenty-one special-status wildlife species which are known to occur within a ten-mile radius of the project site. The table shows the species name, protection status, geographic distribution, and habitat requirements. The property was surveyed for these special status species, and none were found. This included surveys for vernal pool branchiopods in 2007 (which resulted in a USFWS "not likely to adversely affect" determination) and in 2016.

Table 9: Special-Status Wildlife

Species	Status (Fed/State)	Geographic Distribution	Habitat Requirements		
Amphibians/Reptiles					
Western pond turtle Clemmys marmorata	/SSC	Occurs from the Oregon border of Del Norte and Siskiyou Counties south along the coast to San Francisco Bay, inland through the Sacramento Valley, and on the western slope of Sierra Nevada	Occupies ponds, marshes, rivers, streams, and irrigation canals with muddy or rocky bottoms and with watercress, cattails, water lilies, or other aquatic vegetation in woodlands, grasslands, and open forests		
Western spadefoot Scaphiopus hammondii	/SSC	Sierra Nevada foothills, Central Valley, Coast Ranges, coastal counties in southern California	Shallow streams with riffles and seasonal wetlands, such as vernal pools in annual grasslands and oak woodlands.		
Birds					
Bank swallow Riparia riparia	/T	Occurs along the Sacramento River from Tehama County to Sacramento County, along the Feather and lower American Rivers, in the Owens Valley; and in the plains east of the Cascade Range in Modoc, Lassen, and northern Siskiyou Counties. Small populations near the coast from San Francisco County to Monterey County	Nests in bluffs or banks, usually adjacent to water, where the soil consists of sand or sandy loam		
burrowing owl Athene cunicularia	/SSC	Lowlands throughout California, including the Central Valley, northeastern plateau, southeastern deserts, and coastal areas. Rare along south coast	Level, open, dry, heavily grazed or low stature grassland or desert vegetation with available burrows		
California black rail Laterallus jamaicensis coturniculus	/T	Permanent resident in the San Francisco Bay and east-ward through the Delta into Sacramento and San Joaquin Counties; small populations in Marin, Santa Cruz, San Luis Obispo, Orange, Riverside, and Imperial Counties	Tidal salt marshes associated with heavy growth of pickleweed; also occurs in brackish marshes or freshwater marshes at low elevations		

Species	Status (Fed/State)	Geographic Distribution	Habitat Requirements
grasshopper sparrow Ammodramus savannarum	/SSC	Dense grasslands on rolling hills, lowland plains, in valleys & on hillsides on lower mountain slopes.	Favors native grasslands with a mix of grasses, forbs & scattered shrubs. Loosely colonial when nesting. Valley & foothill grassland
Great blue heron Ardea herodias (rookery)	/	Found throughout much of North America and into Central and South America. Common throughout California.	Rookeries occur in tall trees near a variety of wetland habitat types. Isolated areas that discourage predation and human disturbance are preferred.
Osprey Pandion haliaetus	/SSC	Nests along the north coast from Marin County to Del Norte County, east through the Klamath and Cascade Ranges, and in the upper Sacramento Valley. Important inland breeding populations at Shasta Lake, Eagle Lake, and Lake Almanor and small numbers elsewhere south through the Sierra Nevada. Winters along the coast from San Mateo County to San Diego County	Nests in snags, trees, or utility poles near the ocean, large lakes, or rivers with abundant fish populations
song sparrow ("Modesto" population) Melospiza melodi	/SSC	Occurs primarily below 200 ft (61 m) elevation in the Central Valley from Colusa County in the Sacramento Valley south through the Sacramento–San Joaquin River Delta (exclusive of Suisun Marsh) to the northern San Joaquin Valley of Stanislaus County.	Emergent freshwater marshes dominated by tules and cattails as well as riparian willow thickets. Also nest in riparian forests of Valley Oak with a sufficient understory of blackberry along vegetated irrigation canals and levees, and in recently planted Valley Oak restoration sites
Swainson's hawk Buteo swainsoni	/CT	Range from the Lower Sacramento and San Joaquin Valleys, the Klamath Basin, and Butte Valley. Highest nesting densities occur near Davis and Woodland, Yolo County.	Nests in oaks or cottonwoods in or near riparian habitats. Forages in grasslands, irrigated pastures, and grain fields
Tricolored blackbird Agelaius tricolor	/ SSC (CC)	Permanent resident in the Central Valley from Butte County to Kern County. Breeds at scattered coastal locations from Marin County south to San Diego County; and at scattered locations in Lake, Sonoma, and Solano Counties. Rare nester in Siskiyou, Modoc, and Lassen Counties.	Nests in dense colonies in emergent marsh vegetation, such as tules and cattails, or upland sites with blackberries, nettles, thistles, and grainfields. Habitat must be large enough to support 50 pairs. Probably requires water at or near the nesting colony
White-tailed kite Elanus leucurus	/FP	Lowland areas west of Sierra Nevada from the head of the Sacramento Valley south, including coastal valleys and foothills to western San Diego County at the Mexico border	Low foothills or valley areas with valley or live oaks, riparian areas, and marshes near open grasslands for foraging
Fish			
Steelhead – Central Valley DPS Oncorhynchus mykiss irideus	FT/	This distinct population segment, or DPS, includes all naturally spawned populations of steelhead (and their progeny) in the Sacramento and San Joaquin Rivers and their tributaries, excluding steelhead from San Francisco Bay and San Pablo Bays and their tributaries.	Free of heavy sedimentation with adequate flow and cool, clear water. Gravel that is between 0.5 to 6.0 inches in diameter, dominated by 2 to 3 inch gravel. Escape cover such as logs, undercut banks, and deep pools for spawning adults.
Invertebrates			
California linderiella Linderiella occidentalis	/	Range from Redding in the north to Fresno County in the south, mainly east of the Sacramento and San Joaquin rivers.	Seasonal pools in unplowed grasslands with old alluvial soils underlain by hardpan or in sandstone depressions. Water in the pools has very low alkalinity, conductivity, and TDS.
Conservancy fairy shrimp Branchinecta conservatio	Е/	The historical distribution of the Conservancy fairy shrimp is not known. The species is currently known from several disjunct populations: the Vina Plains in Tehama County, south of Chico in Butte County, the Jepson Prairie Preserve and surrounding area in Solano County, Sacramento National Wildlife Refuge in Glenn County, Mapes Ranch west of Modesto, San Luis National Wildlife	Inhabit rather large, cool-water vernal pools with moderately turbid water.

Species	Status (Fed/State)	Geographic Distribution	Habitat Requirements
		Refuge and the Haystack Mountain/Yosemite Lake area in Merced County, and two locations on the Los Padres National Forest in Ventura County.	
Valley elderberry longhorn beetle Desmocerus californicus dimorphus	FT/	Stream side habitats below 3,000 feet throughout the Central Valley	Riparian and oak savanna habitats with elderberry shrubs; elderberries are the host plant.
Vernal pool fairy shrimp Branchinecta lynchi	FT/	Range from Central Valley, central and south Coast Ranges from Tehama County to Santa Barbara County. Isolated populations also in Riverside County.	Common in vernal pools; they are also found in sandstone rock outcrop pools.
Vernal pool tadpole shrimp Lepidurus packardi	E/	Shasta County south to Merced County	Vernal pools and ephemeral stock ponds.
Mammals			
Pallid bat Antrozous pallidus	/SSC	Occurs throughout California except the high Sierra from Shasta to Kern County and the northwest coast, primarily at lower and mid elevations	Occurs in a variety of habitats from desert to coniferous forest. Most closely associated with oak, yellow pine, redwood, and giant sequoia habitats in northern California and oak woodland, grassland, and desert scrub in southern California. Relies heavily on trees for roosts
purple martin Progne subis	/SSC	Inhabits woodlands, low elevation coniferous forest of Douglas-fir, ponderosa pine, & Monterey pine.	Nests in old woodpecker cavities mostly, also in human-made structures. Nest often located in tall, isolated tree/snag.
Townsend's big- eared bat Corynorhinus townsendii	/SSC	Coastal regions from Del Norte County south to Santa Barbara County	Roosts in caves, tunnels, mines, and dark attics of abandoned buildings. Very sensitive to disturbances and may abandon a roost after one onsite visit

FEDERAL: FE = ENDANGERED, FT = THREATENED, PFE = PROPOSED FOR ENDANGERED, PFT = PROPOSED FOR THREATENED; FC = CANDIDATE SPECIES FOR LISTING; D = DELISTED FROM FEDERAL LISTING STATUS.

STATE: CE = ENDANGERED, CT = THREATENED, CC = CANDIDATE SPECIES FOR LISTING; FP = FULLY PROTECTED UNDER THE CALIFORNIA FISH AND GAME CODE; SSC = SPECIES OF SPECIAL CONCERN IN CALIFORNIA.

SOURCE: CNDDB. 2016.

Historical and continuing site disturbance makes the presence of many special-status animals on the project site unlikely. However, nesting birds can utilize the trees and open areas afforded by the existing vegetation. There are a variety of raptors and/or birds protected by the MBTA that could utilize this habitat for nesting or foraging. The project would eliminate foraging habitat on the project site and would require the removal of some on-site trees. The proposed project would retain 94 on-site trees (53 blue oaks, 37 valley oaks, and 4 interior live oaks), which could be used for future nesting habitat, although the presence of the residents would make it a less desirable location for nesting in the retained trees by many species. Construction activities that occur during the nesting season (generally March 1-August 31) could disturb nesting sites if they were present during construction.

Surveys that were performed over the past decade, including surveys performed in the past several months, did not reveal the presence of active or remnant nests on the project site. The project site is designated for urban development by the City's General Plan, and potential impacts associated with the loss of foraging and nesting habitat located on the project site were previously analyzed in the City's General Plan EIR. The City subsequently approved the current residential land use designation for the project site under the General Plan and General Plan EIR. The following mitigation measure is consistent with the City of Lincoln General Plan and standard industry practices to avoid and/or minimize potential impacts to protected birds.

Implementation of the following mitigation measure would reduce this potential impact to a *less than significant* level.

Mitigation Measure Bio-1: If project construction activities, including vegetation clearing, are to occur during the nesting season for birds protected under the California Fish and Game Code and/or Migratory Bird Treaty Act (approximately March 1-August 31), the project applicant shall retain a qualified biologist to perform preconstruction surveys for protected birds, including nesting raptors, on the project site and in the immediate vicinity. At least two surveys shall be conducted no more than 15 days prior to the initiation of construction activities, including vegetation clearing. In the event that protected birds, including nesting raptors, are found on the project site, offsite improvement corridors, or the immediate vicinity, the project applicant shall:

- Locate and map the location of the nest site. Within 2 working days of the surveys prepare a report and submit to the City and CDFW;
- A no-disturbance buffer of 250 feet shall be established;
- On-going weekly surveys shall be conducted to ensure that the no disturbance buffer is maintained. Construction can resume when a qualified biologist has confirmed that the birds have fledged.

In the event of destruction of a nest with eggs, or if a juvenile or adult raptor should become stranded from the nest, injured or killed, the qualified biologist shall immediately notify the CDFW. The qualified biologist shall coordinate with the CDFW to have the injured raptor either transferred to a raptor recovery center or, in the case of mortality, transfer it to the CDFW within 48 hours of notification. If directed/authorized by the CDFW during the notification, the qualified biologist may transfer the injured raptors to a raptor recovery center.

Responses b-c): Riparian habitat is found in the interface between land and a river or stream. This habitat is significant in ecology, environmental management, and civil engineering because of its role in soil conservation, its habitat biodiversity, and the influence it has on fauna and aquatic ecosystems, including grassland, woodland, wetland or even non-vegetative.

Sensitive natural communities are those that are considered rare in the region, support special-status plant or wildlife species, or receive regulatory protection (i.e., §404 and 401 of the Clean Water Act, the CDFG §1600 et seq. of the California Fish and Game Code, and/or the Porter-Cologne Act). In addition, the California Natural Diversity Data Base (CNDDB) has designated a number of communities as rare; these communities are given the highest inventory priority (Holland 1986, CDFG 2003e).

The project site does not support any riparian habitat or sensitive natural communities. Four sensitive natural communities are known to occur within a 10-mile radius of the project site. This includes the Alkali Meadow, Alkali Seep, Northern Hardpan Vernal Pool, and Northern Volcanic Mud Flow Vernal Pool. These sensitive natural communities are not located on the project site. While not specifically mapped or designated as a sensitive natural community, the vernal pools located on the project site are unique because of the wetland characteristics. Additionally, the vernal pools/wetlands are protected under federal and state laws. The potential impacts to vernal pools/wetlands is discussed below.

The project site has been studied numerous times dating back to 2004. A *Wetland Delineation* was completed by North Fork Associates in May 2004. A second *Delineation of Water of the United States* was subsequently completed by Foothill Associates in July 2006. The USACE provided a verification letter in February 2007. Because the USACE verification had expired at the time applications were submitted for the proposed project, it was necessary to perform a reverification. As such, Foothill Associates reevaluated the project site and submitted a

reverification request to the USACE in July 2016. The USACE subsequently provided a verification for the Wetland Delineation in July 2016. The reverification request and the USACE verified Wetland Delineation are contained in Appendix F. The following discussion is based on the USACE verified Wetland Delineation.

Potential jurisdictional wetland types mapped within the site are depressional seasonal wetland and vernal pool. As shown in Figure 9 and Table 10, there are approximately 0.083 acres of depressional seasonal wetlands, 0.271 acres of vernal pools, and 0.035 acres of riverine seasonal wetland located on the project site.

Table 10: Summary of USACE Delineated Features

Feature	Area (Acres)	Length (Feet)					
Depressional Wetlands							
Depressional Seasonal Wetland	0.083	N/A					
Vernal Pool	0.271	N/A					
Other Waters of the U.S.							
Riverine Seasonal Wetland	0.035	636					
TOTAL	0.39	636					

Source: Foothills Associates, 2006 and 2016.

The development of the project will include the fill of 0.39 acres of wetland habitat. The proposed wetland fill would require authorization from several agencies, including the USACE, CDFW, and the Regional Water Quality Control Board.

Without the proper authorizations/permits, the fill activities would be a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.), Section 401 of the Clean Water Act, the Section 1600 et seq. of the California Fish and Game Code, and/or the Porter-Cologne Act, through direct removal, filling, hydrological interruption, or other means. Implementation of the following mitigation measures would ensure that the regulatory agencies are consulted, permits are obtained, compensatory mitigation is purchased, and the impact to jurisdictional wetlands/water is reduced to a *less than significant* level.

Mitigation Measure Bio-2: Prior to any construction activities that would disturb protected wetlands and/or jurisdictional areas on the project site, the appropriate state and federal authorizations (Streambed Alteration Agreement, Section 404 permit, Section 401 water quality certification) shall be obtained. All requirements of these authorizations shall be adhered to throughout the construction phase.

Mitigation Measure Bio-3: The project proponent shall compensate for any authorized disturbance to protected wetlands and/or jurisdictional areas to ensure no net loss of habitat functions and values. Compensation ratios shall be based on site-specific information and determined through coordination with state, federal, and local agencies as part of the permitting process for the project. Unless determined otherwise by the regulatory/permitting agency, the compensation shall be at a minimum ratio of 1 acre restored, created, and/or preserved for every 1 acre of protected wetlands and/or jurisdictional areas disturbed. Compensation may comprise onsite restoration/creation, off-site restoration, preservation, or mitigation credits (or a combination of these elements).

Response d): The project site is currently undeveloped and does not serve as a wildlife corridor, or nursery site. Although an open space area is located to the southwest of the project site, movement of wildlife through the project site is currently limited by existing development and roadways. For example, Nicolaus Road is located to the north of the project site, an existing residential area is located to the west of the project site, Milan Way is located to the south of the

project site, and existing single family residential development and other ranchettes are located to the west of the project site. The proposed project would not interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites. Implementation of the proposed project would result in a *less than significant* impact relative to this topic.

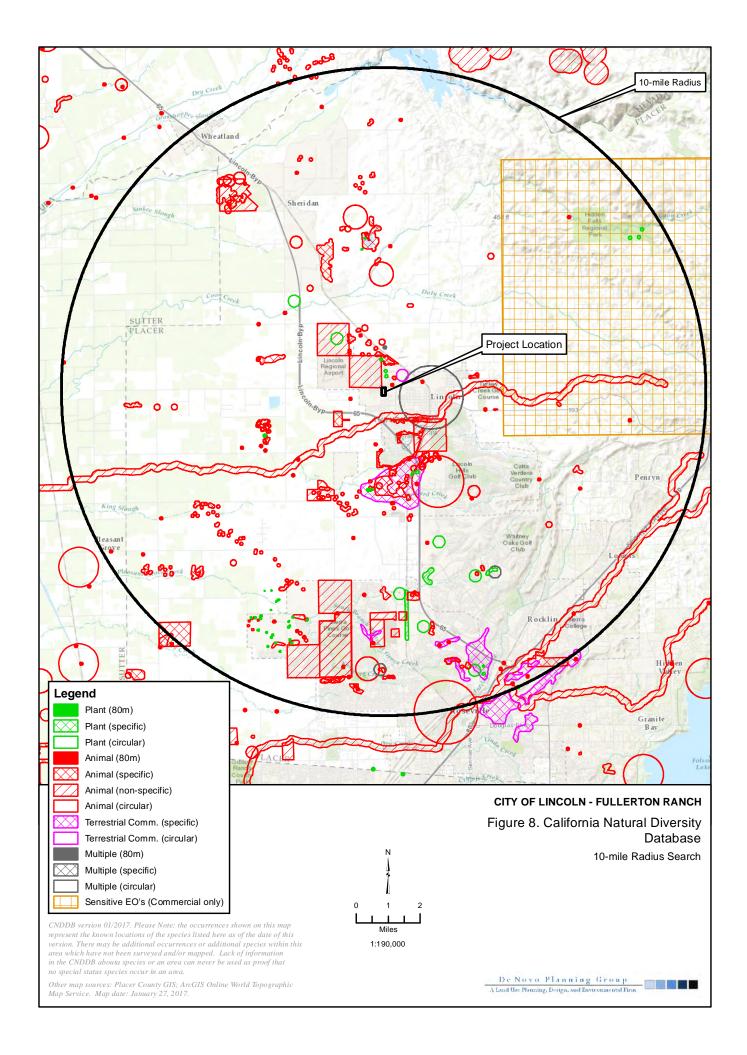
Response e): The removal of native oak trees is regulated by the City of Lincoln Oak Tree Preservation Ordinance. Chapter 18.69 of the City's Municipal Code encourages the preservation of native oak trees to promote aesthetic values, soil stability, healthy air, ground water absorption, and a host of other natural and human benefits. The ordinance establishes policies for the preservation of all native oak trees within City limits where possible when activities that require approval by the City. If a protected oak tree is removed or irrevocably harmed in violation of conditions of project approval, the City may require one or more of the following: planting of replacement trees; fee payment to the City; additional recourse or penalties.

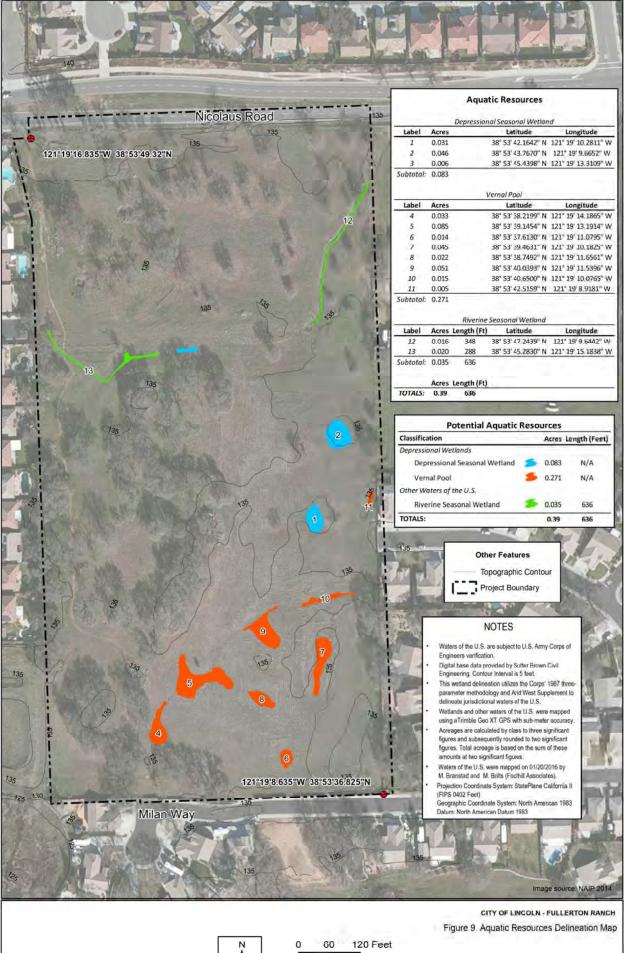
An Arborist Report for the Fullerton Ranch Project Site (Dudek 2016) was prepared to inventory and assess all on-site trees. De Novo Planning Group peer reviewed the report for use in the Initial Study. The full report is contained in Appendix G. Trees were identified to species and measured 4.5 feet above grade in the field. They were tagged with a unique tree identification number and the location of each individual tree was hand mapped on a site aerial photograph.

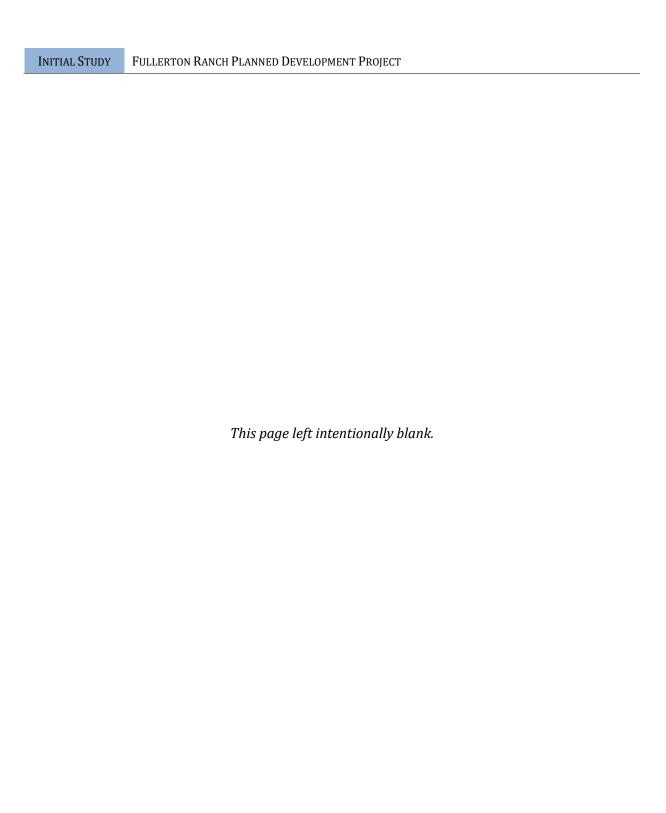
The largest tree measured 44.1 inches in diameter and the smallest measured 6.0 inches. Tree condition ranged from very poor to good. Species included *Quercus douglasii, Q. lobata,* and *Q. wislizenii*. As shown in Figure 10, the proposed project development footprint may require removal of up to 95 of the site's oak trees.

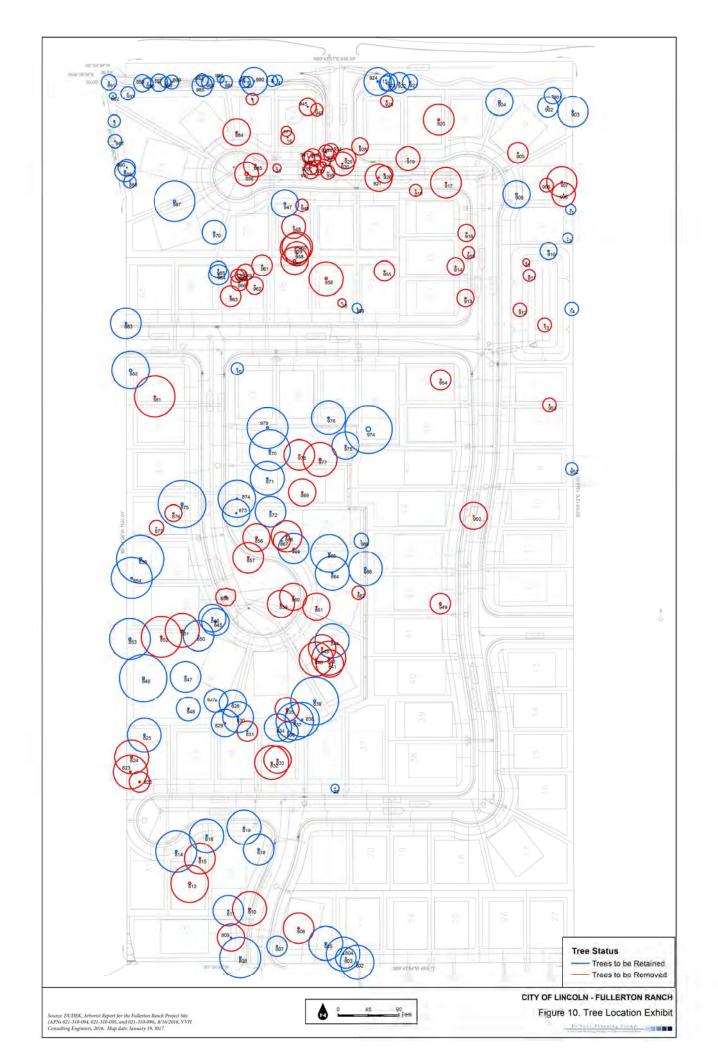
Mitigation for removal of oak trees from the project site is addressed through the requirements of the Oak Tree Preservation Ordinance, and may include on- or off-site tree planting, payment of an in-lieu fee, or a combination thereof, or other measures approved by the City. The in-lieu fee is used to offset the loss of the native oak tree habitat and the fund is used to plant new trees in the city, to maintain existing trees owned by the city, and to maintain trees located within the city's right-of-way.

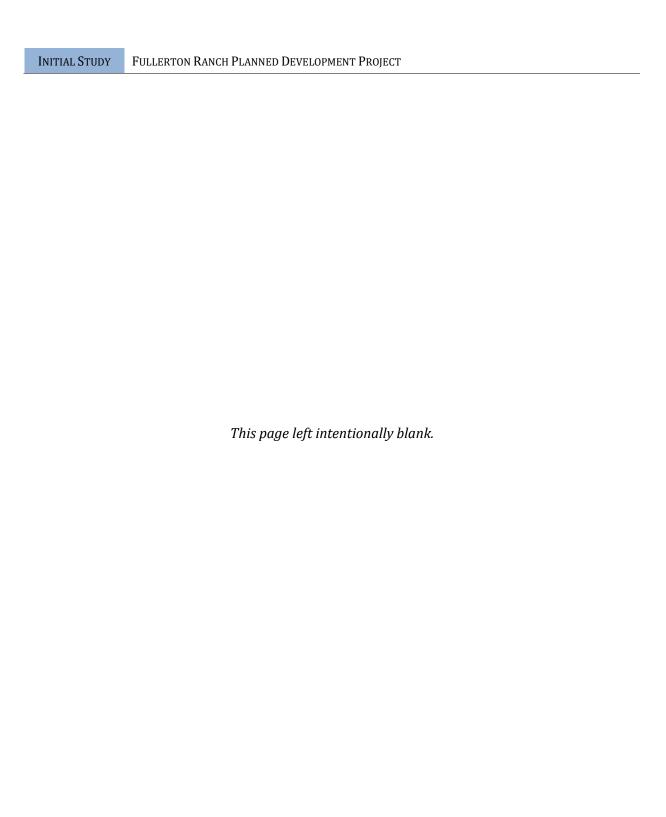
The project applicant is requesting a tree removal permit as part of the application package to ensure compliance with the City of Lincoln Oak Tree Preservation Ordinance. The City will make a determination for approval or denial with their consideration of the overall application package. Implementation of the following mitigation measure would ensure that the potential impact is reduced to a *less than significant* level.


Mitigation Measure Bio-4: Prior to removal of any trees, the project applicant shall obtain a tree removal permit from the City of Lincoln in accordance with the City's Oak Tree Preservation Ordinance (Chapter 18.69). For native oak trees that must be removed, the applicant shall implement the following:


Replacement of oak tree(s) removed or irrevocably harmed by planting replacement specimen
trees of no less than 15 gallons in size, having a total combined diameter at the time of planting
equal to the diameter of the removed tree(s). In order to ensure survival of the replacement
tree(s), the project applicant shall be responsible for inspection of the replacement tree(s)
during the early plant establishment period for sprouting success and survival for three years.
Sprouting success may be documented using monitoring data. Monitoring data may include


plant density (average number of individuals/unit area), cover of the area covered by a given species, and species composition. Success criteria will be based on the survival rates. Percent survival for years one, two and three are 90, 80 and 70, respectively. Species not meeting the success criteria shall be replanted, providing the mortality causes can be identified and corrected prior to replanting. If the causes cannot be identified, another native species with high survival rates shall be used for replacement. Photographs shall be taken in the same month each year to assist in evaluation of mitigation success.


- If the project site is not capable of supporting all the required replacement trees, a fee shall be paid to the City equal to the retail costs at the time of the replacement trees.
- To reduce the loss of protected native oak trees (those not requiring removal), the applicant shall comply with all conditions of project approval and any City guidelines for protected native oak trees. This includes implementation of the Tree Management Recommendations and Protection Measures as outlined in the Arborist Report (2016) for pre-construction, during construction, and post-construction.


Response f): The Placer County Conservation Plan (PCCP) is a county-proposed solution to coordinate and streamline the permitting process by allowing local entities to issue state and federal permits. The proposed PCCP is a habitat conservation plan (HCP) under the ESA and a natural community conservation plan (NCCP) under the California Natural Community Conservation Planning Act. As proposed, the PCCP would include the County Aquatic Resources Program to issue permits related to the Federal Clean Water Act and the California Fish and Game Code. The City of Lincoln is currently involved in the development of the PCCP. Although the PCCP has not been finalized or approved, the project is within the potential future growth area and would not conflict with the draft proposed reserve system for the PCCP (Placer County 2015). There are no other HCP/NCCPs applicable to the project site. Implementation of the proposed project would have **no impact** relative to this issue.

V. CULTURAL RESOURCES

Would the project:	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact
a) Cause a substantial adverse change in the significance of a historical resource as defined in '15064.5?		X		
b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to '15064.5?		X		
c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?		X		
d) Disturb any human remains, including those interred outside of formal cemeteries?		X		

Background

A Determination of Eligibility and Effect for the Fullerton Ranch Project Area, City of Lincoln, Placer County, California (Peak and Associates, 2017) was prepared for the proposed project (Appendix H). The following is based on that study.

The study included a review of literature maintained by the North Central Information Center (NCIC) of the California Historical Resources Information System at California State University, Sacramento. This indicated that the project area had been previously surveyed by Peak and Associates in 2004 (Peak and Associates, 2004). No resources were located on the property during the survey, but a residence, built in 1963, was noted on the project site. The building was not old enough to record at that time of the 2004 survey. The building's location was present by 1981, as shown on the Lincoln 1981 USGS topographic quadrangle, which is a photo revision of the 1953 quadrangle.

A complete, intensive pedestrian field survey of the project site was completed on December 28, 2016, with transects no wider than 10 meters. The ground visibility was fair and where necessary, weeds were cleared and small holes were dug by hand to check the sediments. The 1963 residence has been removed from the property.

The project site does not appear to have agricultural modification such as land leveling. There are several lines of barbed wire held by steel T-posts or older wooden split wooden posts extending from the boundary fencing on the north and south. A modern steel grate covers a concrete drain in the northeast section of the site, with a modern ditch leading away to near Nicolaus Road. Several small piles of debris can be found through the site including dirt, chunks of asphalt, concrete, wire, brush, and modern litter. Household litter can be found near the fence along the fence line bordering a housing tract on the east side.

The project site has a few groups of trees including native interior live oaks, valley oaks, black walnut, as well as almond. These trees are mostly mature and cover the west side of the site. Soil type and coloration varies, but mostly appears in the orange range, sandy, and with high proportion of coarse degraded granite. In the north end of site, the soil is slightly darker and contains more loam. The soil visibility is moderate to good depending on rodent disturbance, human trails, and areas of heavy or lacking grass. Occasional stones of varying sizes are scattered and piled throughout the site, consisting of local granite and andesite. All these stones appear to have been moved, evidenced by mechanical scrapes and marks.

No prehistoric or historic resources were observed during the pedestrian field survey.

The Native American Heritage Commission (NAHC) was contacted by Peak & Associates for a check of the Sacred Lands file and a list of Native Americans who may have information or concerns relative to the project site. A reply was received from the NAHC on December 21, 2016, indicating there were no resources listed in the Sacred Lands files. A list of contacts that may have concerns or more information was provided in the response. The individuals and organizations identified by the NAHC were contacted by letter on January 6, 2017 (see Appendix I). Correspondence requesting information and/or comment and a topographic map showing the project were sent to the United Auburn Indian Community of the Auburn Rancheria (Gene Whitehouse), Shingle Springs Band of Miwok Indians (Nicholas Fonseca), Tsi-Akim Maidu (Grayson Coney), and Tsi-Akim Maidu (Don Ryburg). To date, two replies have been received: United Auburn Indian Community of the Auburn Rancheria (Gene Whitehouse), and Shingle Springs Band of Miwok Indians (Nicholas Fonseca). According to the response letters, neither group is aware of any known cultural resources on the project site.

Responses to Checklist Questions

Responses a-b): As a result of the identification and evaluation efforts, there are no historic properties or archaeological resources present. As with any surface inspection, there is some possibility that a buried site may exist in the area and be obscured by vegetation, fill, or other historic activities, leaving no surface evidence. Should artifacts or unusual amounts of stone, bone, or shell be uncovered during construction activities, an archeologist should be consulted for an evaluation. Implementation of the following mitigation measure would require investigations and avoidance methods in the event that a previously undiscovered cultural resource is encountered during construction activities. This mitigation measure would reduce this potential impact to a *less than significant* level.

Mitigation Measure Cul-1: If cultural resources (i.e., prehistoric sites, historic sites, isolated artifacts/features, and paleontological sites) are discovered, work shall be halted immediately within 50 meters (165 feet) of the discovery, the City of Lincoln and tribal representatives from the United Auburn Indian Community (UAIC) of the Auburn Rancheria and the Shingle Springs Band of Miwok Indians shall be notified, and a qualified archaeologist that meets the Secretary of the Interior's Professional Qualifications Standards in prehistoric or historical archaeology (or a qualified paleontologist in the event paleontological resources are found) shall be retained to determine the significance of the discovery. The City of Lincoln shall consider recommendations presented by the professional for any unanticipated discoveries and shall carry out the measures deemed feasible and appropriate. Such measures may include avoidance, preservation in place, excavation, documentation, curation, data recovery, or other appropriate measures. Specific measures are developed based on the significance of the find.

Response c): The project site is located in an area that is currently undeveloped. The project site is located away from any permanent water sources, although a small intermittent drainage is located to the south of the project site. Markham Ravine is the closest permanent water source, located about 0.125 miles north of the northern edge of the project site. Exposed granitic outcrops are absent. Prehistoric period activity in the immediate project area focused on habitation adjacent to Markham and nearby Auburn Ravine and utilization of granitic outcrops for food processing. There is little chance of any buried prehistoric period deposits being present as the soil was generally formed in situ without contributions from alluvial sources. However, ground-disturbing activities have the potential to damage or destroy undiscovered paleontological resources, especially during deeper excavations.

Implementation of Mitigation Measure Cul-1 above would require investigations and avoidance methods in the event that a previously undiscovered paleontological resource is encountered during construction activities. This mitigation measure would reduce this impact to a *less than significant* level.

Response d): Indications are that humans have occupied the Central Valley for at least 10,000 years and it is not always possible to predict where human remains may occur outside of formal burials. Therefore, excavation and construction activities, regardless of depth, may yield human remains that may not be interred in marked, formal burials. Under CEQA, human remains are protected under the definition of archaeological materials as being "any evidence of human activity." Additionally, Public Resources Code Section 5097 has specific stop-work and notification procedures to follow in the event that human remains are inadvertently discovered during construction. Implementation of the following mitigation measure would reduce this potential impact to a *less than significant* level.

Mitigation Measure Cul-2: If any human remains are found during grading and construction activities, all work shall be halted immediately within 50 meters (165 feet) of the discovery and the County Coroner must be notified, according to Section 5097.98 of the State Public Resources Code and Section 7050.5 of California's Health and Safety Code. If the remains are determined to be Native American, the coroner shall notify the Native American Heritage Commission, and the procedures outlined in CEQA Section 15064.5(d) and (e) shall be followed. Additionally, if the Native American resources are identified, a Native American monitor, following the Guidelines for Monitors/Consultants of Native American Cultural, Religious, and Burial Sites established by the Native American Heritage Commission, may also be required and, if required, shall be retained at the applicant's expense.

VI. GEOLOGY AND SOILS

Would the project:	Potentially Significant Impact	Less Than Significant with Mitigation	Less Than Significant Impact	No Impact
a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:				
i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42.			X	
ii) Strong seismic ground shaking?			X	
iii) Seismic-related ground failure, including liquefaction?		X		
iv) Landslides?		X		
b) Result in substantial soil erosion or the loss of topsoil?		X		
c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?		X		
d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?		X		
e) Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?				Х

Background

A *Preliminary Geotechnical Engineering Report* (Wallace-Kuhl & Associates, 2004) was prepared for the proposed project. De Novo Planning Group peer reviewed the report for use in the Initial Study. The scope of the report included site reconnaissance, review of historical aerial photographs and available groundwater information, excavation and sampling of soil test pits across the project site, review of Department of Agricultural Soils Conservation Service (SCS) Soil Survey for Placer County, limited laboratory testing, and preparation of the preliminary report.

Responses to Checklist Questions

Responses a.i), **a.ii)**: The project site is within the City of Lincoln, Placer County on the eastern edge of the Sacramento Valley floor at the base of the Sierra Nevada foothills. The City of Lincoln is 90 miles east of the Bay Area and lies within Seismic Risk Zone 3, a risk zone that poses a lesser risk for earthquakes than those experienced in Zone 4 (e.g., San Francisco Bay

Area). As a result, the City could be affected by regionally occurring earthquakes; however, impacts resulting from such an event would be less in nature than those experienced in the Bay Area. Implementation of the proposed project would not affect the likelihood of an earthquake in the region. As shown in Figure 11, the City is not located within and does not cross a delineated Alquist-Priolo Earthquake Fault Zone. Additionally, mapped earthquake faults do not exist within the City or the project site.

Because of the City's substantial distance from the active Hayward, Cleveland Hills, and Concord Fault zones and the type of ground shaking expected from those faults, the probability of soil liquefaction within the City is considered low.

In order to minimize potential damage to the buildings and site improvements, all construction in California is required to be designed in accordance with the latest seismic design standards of the California Building Code. The California Building Code, Title 24, Part 2, Chapter 16 addresses structural design and Chapter 18 addresses soils and foundations. Collectively, these state requirements, which have been adopted by the City of Lincoln, include design standards and requirements that are intended to minimize impacts to structures in seismically active areas of California. Section 1613 specifically provides structural design standards for earthquake loads. Section 1803.5.11 and 1803.5.12 provide requirements for geotechnical investigations for structures assigned varying Seismic Design Categories in accordance with Section 1613. Design in accordance with these standards and policies would reduce any potential impact to a less than significant level. Because development of the proposed project must be designed in conformance with these state and local standards and policies, any potential impact would be *less than significant*.

Responses a.iii), c), d): Liquefaction normally occurs when sites underlain by saturated, loose to medium dense, granular soils are subjected to relatively high ground shaking. During an earthquake, ground shaking may cause certain types of soil deposits to lose shear strength, resulting in ground settlement, oscillation, loss of bearing capacity, landsliding, and the buoyant rise of buried structures. The majority of liquefaction hazards are associated with sandy soils, silty soils of low plasticity, and some gravelly soils. Cohesive soils are generally not considered to be susceptible to liquefaction. In general, liquefaction hazards are most severe within the upper 50 feet of the surface, except where slope faces or deep foundations are present.

Expansive soils are those that undergo volume changes as moisture content fluctuates; swelling substantially when wet or shrinking when dry. Soil expansion can damage structures by cracking foundations, causing settlement and distorting structural elements. Expansion is a typical characteristic of clay-type soils. Expansive soils shrink and swell in volume during changes in moisture content, such as a result of seasonal rain events, and can cause damage to foundations, concrete slabs, roadway improvements, and pavement sections.

Soil expansion is dependent on many factors. The more clayey, critically expansive surface soil and fill materials will be subjected to volume changes during seasonal fluctuations in moisture content. Figure 12 shows the soils within the Project site, and Figure 13 shows the shrink-swell potential of the soils within the site. The soils encountered at the site consist of mainly San Joaquin-Cometa sandy loams, with some Cometa-Ramona sandy loams along the eastern project boundary and Ramona sandy loam in the northwestern corner of the project site. The San Joaquin series consists of moderately deep, well and moderately well drained soils that formed in alluvium derived soils from mixed but dominantly granitic rock sources. The Ramona series consists of well drained soils that are typically sandy loam and fine sandy loam. The Cometa series consists of moderately deep, well and moderately well drained soils that formed in

alluvium from granitic rock sources. According to the *Preliminary Geotechnical Engineering Report*, the site surface soils very from non-expansive and low plasticity silty sands to moderately to highly expansive clay soils. Overall, the potential for soil expansion to occur at the Project site is considered low, but there will be soil inclusions encountered with moderate to high expansion potential.

Based on the results of the *Preliminary Geotechnical Engineering Report*, the on-site clays would not be suitable for use as fill within the upper portions of the building pads, and if exposed at final grade, should be removed and replaced with on-site low plasticity soils. Otherwise, special foundation and floor slab recommendations will be needed. Future studies should include additional laboratory testing to further define the geotechnical engineering requirements for the individual lots and structures. With implementation of the following mitigation measures, this potential impact would be *less than significant*.

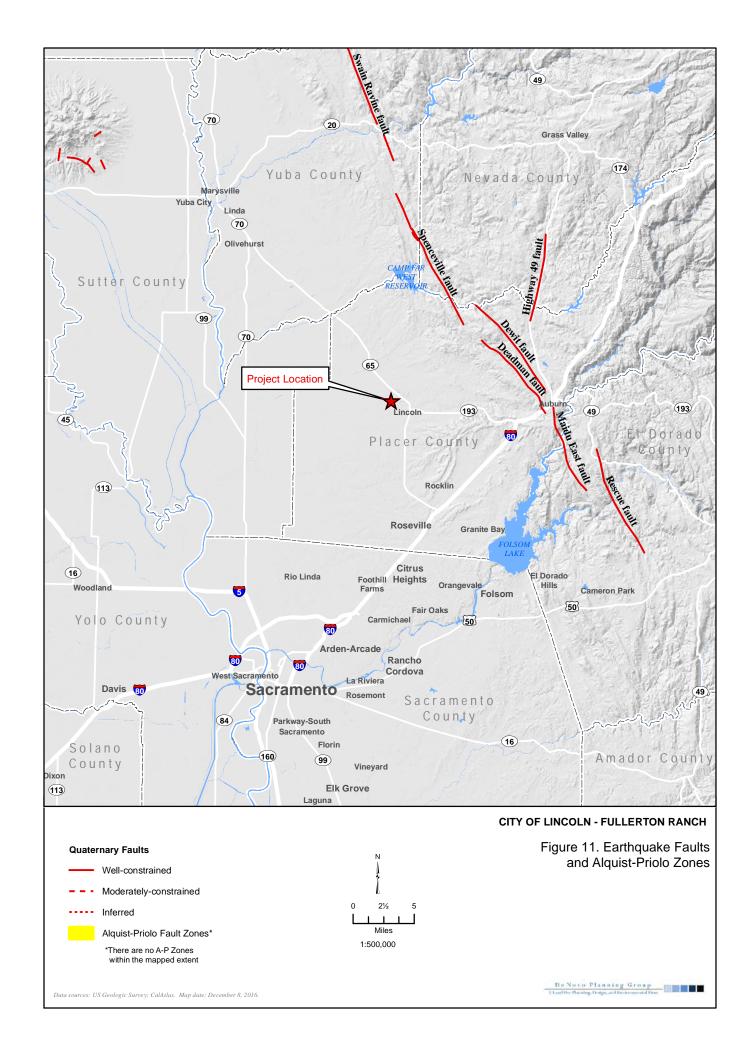
Mitigation Measure Geo-1: Prior to the development of the Project site, further subsurface geotechnical investigation shall be performed to identify onsite soil conditions and identify any site-specific engineering measures to be implemented during the construction of building foundations, surface improvements, and subsurface improvements. The results of the subsurface geotechnical investigation shall be reflected on the Improvements Plans, subject to review and approval by the City's Building Division.

Mitigation Measure Geo-2: Expansive materials and potentially weak and compressible fills at the site shall be evaluated by a Geotechnical Engineer during the grading plan stage of development. If highly expansive or compressible materials are encountered, special foundation designs and reinforcement, removal and replacement with soil with low to non-expansive characteristics, compaction strategies, or soil treatment options to lower the expansion potential shall be incorporated through requirements imposed by the City's Building Division. Additionally, the recommendations of the Preliminary Geotechnical Engineering Report (Wallace-Kuhl & Associates, 2004) shall be reflected on the Improvements Plans, subject to review and approval by the City's Building Division.

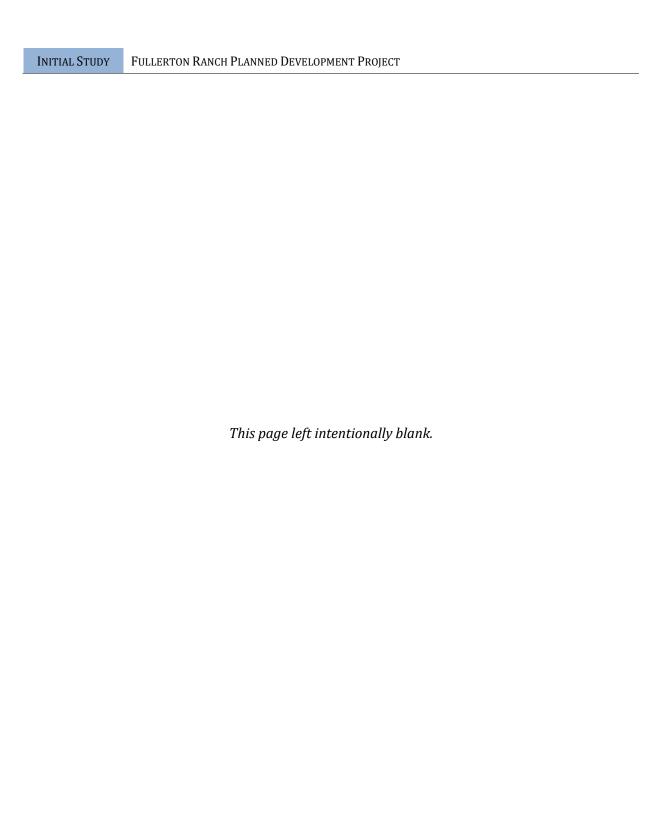
Response a.iv): There are several categories of landslides including: rockfalls, deep slope failure, and shallow slope failure. Factors such as the geological conditions, drainage, slope, vegetation, and others directly affect the potential for landslides. One of the most common causes of landslides is construction activity that is associated with road building (i.e. cut and fill).

The project site is relatively flat and there are no major slopes in the vicinity of the project site. Slope instability at the project site, as a result of seismic events, has very low potential because of the lack of relief across the area and its distance from active and potentially active faults. The project site is not located in the foothills, mountain terrain, or along a river bank. As such, the Project site is exposed to little or no risk associated with landslides.

The City's General Plan includes several policies and implementation measures designed to address a variety of environmental impacts associated with geology and soil conditions. For example, the draft Health and Safety Element provides a number of policies that have been developed to ensure a safe environment for its residents, visitors, and businesses. These policies and implementation measures include continued compliance with all applicable development requirements including the Uniform Building Code (see Policies HS-2.1 and HS-2.4) and the restriction of development within a variety of hazardous areas (see Policies HS-2.2 and HS-2.3). Policy HS-1.1 requires the preparation of engineering studies for all new development proposals within areas of potential soil instability. Additionally, Health and Safety Implementation Measure #1 requires the City to amend the Zoning Ordinance to prohibit


development of areas with slopes greater than 30%. The project site is not located in an area with slopes greater than 30%.

Implementation Measure #2 requires the City to adopt guidelines for both the evaluation and mitigation of all applicable geologic hazards common to the study area as part of the approval for both public and private projects. According to the City's General Plan EIR, with adherence to these codes and regulations and implementation of the policies and implementation measures contained in the Health and Safety Element, geologic hazard impacts associated with on-or off-site landslide, subsidence, liquefaction, or collapse would be minimized. The proposed project would be required to comply with all applicable development requirements included in the Uniform Building Code. This is a *less than significant* impact and no mitigation is required.


Response b): The project site is currently undeveloped and is not at significant risk of erosion under the existing conditions. Construction activities including grading could temporarily increase soil erosion rates during and shortly after project construction. Construction-related erosion could result in the loss of a substantial amount of nonrenewable topsoil and could adversely affect water quality in nearby surface waters. The RWQCB requires a project specific Storm Water Pollution Prevention Plan (SWPPP) to be prepared for each project that disturbs an area one acre or larger. The SWPPP will include project specific best management measures that are designed to control drainage and erosion. Furthermore, proposed project will include detailed project specific drainage plan that control storm water runoff and erosion, both during and after construction. The SWPPP and the project specific drainage plan would reduce the potential for erosion. Implementation of the following mitigation measure would ensure that the proposed project would result in a *less-than-significant* impact relative to this topic.

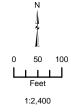
Mitigation Measure Geo-3: The project applicant shall submit a Notice of Intent (NOI) and Storm Water Pollution Prevention Plan (SWPPP) to the RWQCB in accordance with the NPDES General Construction Permit requirements. The SWPPP shall be designed to control pollutant discharges utilizing Best Management Practices (BMPs) and technology to reduce erosion and sediments. BMPs may consist of a wide variety of measures taken to reduce pollutants in stormwater runoff from the project site. Measures shall include temporary erosion control measures (such as silt fences, staked straw bales/wattles, silt/sediment basins and traps, check dams, geofabric, sandbag dikes, and temporary revegetation or other ground cover) that will be employed to control erosion from disturbed areas. Final selection of BMPs will be subject to approval by the City of Lincoln and the RWQCB. The SWPPP will be kept on site during construction activity and will be made available upon request to representatives of the RWQCB.

Response e): The proposed project would not require the use of septic tanks or alternative waste water disposal systems for the disposal of waste water. Implementation of the proposed project would result in **no impact** relative to this topic.



Legend

Shrink-Swell Potential of Soil*


Low Potential

*Shrink-Swell Potential is determined by linear extensibility. Linear extensibility refers to the change in length of an unconfined clod as moisture content is decreased from a moist to a dry state. Soils are considered to have low potential when the linear extensibility is less than 3%, moderate if 3-6%, and high if 6-9%. Map labels can be cross-referenced to Figure 10. Project Site Soils.

Sources: NRCS Web Soil Survey, Placer County California, Western Part, Version 8; Placer County GIS; ArcGIS Online World Imagery Service. Map date: December 7, 2016.

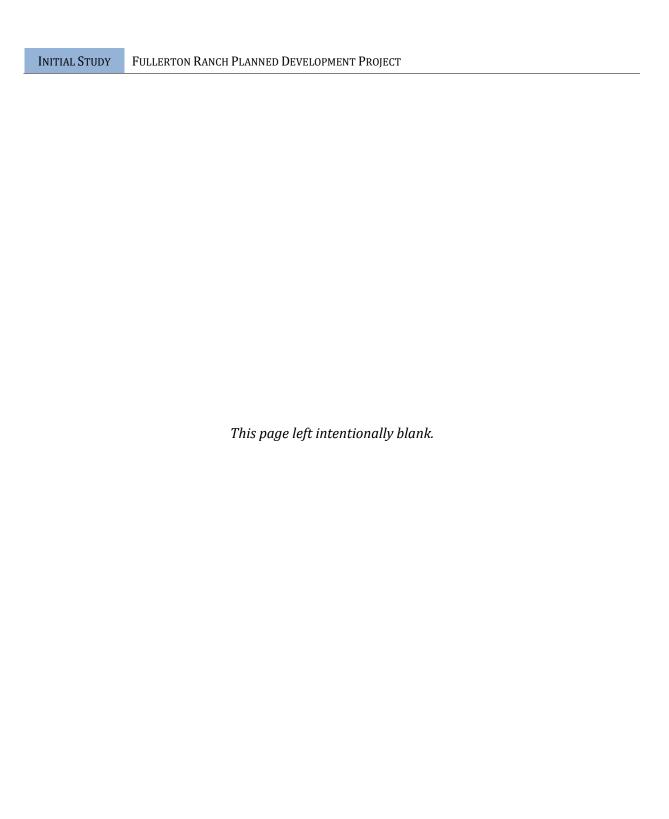

CITY OF LINCOLN - FULLERTON RANCH

Figure 13. Shrink-Swell Potential of Soils

Dc Novo Planning Group

A Land Use Planning, Design, and Environmental Firm

VII. GREENHOUSE GAS EMISSIONS

Would the project:	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact
a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?			Х	
b) Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gasses?			Х	

Background

Various gases in the Earth's atmosphere, classified as atmospheric greenhouse gases (GHGs), play a critical role in determining the Earth's surface temperature. Solar radiation enters Earth's atmosphere from space, and a portion of the radiation is absorbed by the Earth's surface. The Earth emits this radiation back toward space, but the properties of the radiation change from high-frequency solar radiation to lower-frequency infrared radiation.

Naturally occurring greenhouse gases include water vapor (H_2O) , carbon dioxide (CO_2) , methane (CH_4) , nitrous oxide (N_2O) , and ozone (O_3) . Several classes of halogenated substances that contain fluorine, chlorine, or bromine are also greenhouse gases, but they are, for the most part, solely a product of industrial activities. Although the direct greenhouse gases CO_2 , CH_4 , and N_2O occur naturally in the atmosphere, human activities have changed their atmospheric concentrations. From the pre-industrial era (i.e., ending about 1750) to 2005, concentrations of these three greenhouse gases have increased globally by 36, 148, and 18 percent, respectively $(IPCC\ 2007)^1$.

Greenhouse gases, which are transparent to solar radiation, are effective in absorbing infrared radiation. As a result, this radiation that otherwise would have escaped back into space is now retained, resulting in a warming of the atmosphere. This phenomenon is known as the greenhouse effect. Among the prominent GHGs contributing to the greenhouse effect are carbon dioxide (CO_2) , methane (CH_4) , ozone (O_3) , water vapor, nitrous oxide (N_2O) , and chlorofluorocarbons (CFCs).

Emissions of GHGs contributing to global climate change are attributable in large part to human activities associated with the industrial/manufacturing, utility, transportation, residential, and agricultural sectors (California Energy Commission 2006a)². In California, the transportation sector is the largest emitter of GHGs, followed by electricity generation (California Energy Commission 2006a).

As the name implies, global climate change is a global problem. GHGs are global pollutants, unlike criteria air pollutants and toxic air contaminants, which are pollutants of regional and local concern, respectively. California produced 492 million gross metric tons of carbon dioxide

¹ Intergovernmental Panel on Climate Change. 2007. "Climate Change 2007: The Physical Science Basis, Summary for Policymakers." Available at: http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_t he_physical_science_basis.htm.

² California Energy Commission. 2006a. Inventory of California Greenhouse Gas Emissions and Sinks 1990 to 2004. Available at: http://www.arb.ca.gov/cc/inventory/archive/archive.htm.

equivalents (MMTCO₂e) in 2004 (California Energy Commission 2006a). By 2020, California is projected to produce 507 MMTCO₂e per year.³

Carbon dioxide equivalents are a measurement used to account for the fact that different GHGs have different potential to retain infrared radiation in the atmosphere and contribute to the greenhouse effect. This potential, known as the global warming potential of a GHG, is also dependent on the lifetime, or persistence, of the gas molecule in the atmosphere. Expressing GHG emissions in carbon dioxide equivalents takes the contribution of all GHG emissions to the greenhouse effect and converts them to a single unit equivalent to the effect that would occur if only CO_2 were being emitted.

Consumption of fossil fuels in the transportation sector was the single largest source of California's GHG emissions. In 2012, transportation sector emissions accounted for approximately 37 percent of the total GHG emissions in the state (California Greenhouse Gas Emission Inventory: 2000-2012).⁴ This category was followed by the industrial sector contributing 21.9 percent of GHG emissions. The electric power generation sector (including both in-state and out of-state sources) has seen the greatest decline in GHG emissions down 14 percent from 2000, and currently contributing 11.2 percent of all state GHG emissions.

EFFECTS OF GLOBAL CLIMATE CHANGE

The effects of increasing global temperature are far-reaching and extremely difficult to quantify. The scientific community continues to study the effects of global climate change. In general, increases in the ambient global temperature as a result of increased GHGs are anticipated to result in rising sea levels, which could threaten coastal areas through accelerated coastal erosion, threats to levees and inland water systems and disruption to coastal wetlands and habitat.

If the temperature of the ocean warms, it is anticipated that the winter snow season would be shortened. Snowpack in the Sierra Nevada provides both water supply (runoff) and storage (within the snowpack before melting), which is a major source of supply for the state. The snowpack portion of the supply could potentially decline by 70 to 90 percent by the end of the 21st century (Cal EPA 2006).⁵ This phenomenon could lead to significant challenges securing an adequate water supply for a growing state population. Further, the increased ocean temperature could result in increased moisture flux into the state; however, since this would likely increasingly come in the form of rain rather than snow in the high elevations, increased precipitation could lead to increased potential and severity of flood events, placing more pressure on California's levee/flood control system.

Sea level has risen approximately seven inches during the last century and it is predicted to rise an additional 22 to 35 inches by 2100, depending on the future GHG emissions levels (Cal EPA 2006). If this occurs, resultant effects could include increased coastal flooding, saltwater intrusion and disruption of wetlands (Cal EPA 2006). As the existing climate throughout California changes over time, mass migration of species, or failure of species to migrate in time

PAGE 64

-

California Air Resources Board. 2010. "Functional Equivalent Document prepared for the California Cap on GHG Emissions and Market-Based Compliance Mechanisms."

⁴ EPA. Available at: http://www.arb.ca.gov/cc/inventory/pubs/reports/ghg_inventory_00-12_report.pdf.

⁵ California Environmental Protection Agency, Climate Action Team. 2006. Climate Action Team Report to Governor Schwarzenegger and the Legislature. Available at: http://www.climatechange.ca.gov/climate_action_team/reports/.

to adapt to the perturbations in climate, could also result. Under the emissions scenarios of the Climate Scenarios report (Cal EPA 2006), the impacts of global warming in California are anticipated to include, but are not limited to, the following.

Public Health

Higher temperatures are expected to increase the frequency, duration, and intensity of conditions conducive to air pollution formation. For example, days with weather conducive to ozone formation are projected to increase from 25 to 35 percent under the lower warming range and to 75 to 85 percent under the medium warming range. In addition, if global background ozone levels increase as predicted in some scenarios, it may become impossible to meet local air quality standards. Air quality could be further compromised by increases in wildfires, which emit fine particulate matter that can travel long distances depending on wind conditions. The Climate Scenarios report indicates that large wildfires could become up to 55 percent more frequent if GHG emissions are not significantly reduced.

In addition, under the higher warming scenario, there could be up to 100 more days per year with temperatures above 90°F in Los Angeles and 95°F in Sacramento by 2100. This is a large increase over historical patterns and approximately twice the increase projected if temperatures remain within or below the lower warming range. Rising temperatures will increase the risk of death from dehydration, heat stroke/exhaustion, heart attack, stroke, and respiratory distress caused by extreme heat.

Water Resources

A vast network of man-made reservoirs and aqueducts capture and transport water throughout the State from Northern California rivers and the Colorado River. The current distribution system relies on Sierra Nevada snow pack to supply water during the dry spring and summer months. Rising temperatures, potentially compounded by decreases in precipitation, could severely reduce spring snow pack, increasing the risk of summer water shortages.

The state's water supplies are also at risk from rising sea levels. An influx of saltwater would degrade California's estuaries, wetlands, and groundwater aquifers. Saltwater intrusion caused by rising sea levels is a major threat to the quality and reliability of water within the southern edge of the Sacramento/San Joaquin River Delta, a major state fresh water supply. Global warming is also projected to seriously affect agricultural areas, with California farmers projected to lose as much as 25 percent of the water supply they need; decrease the potential for hydropower production within the state (although the effects on hydropower are uncertain); and seriously harm winter tourism. Under the lower warming range, the snow dependent winter recreational season at lower elevations could be reduced by as much as one month. If temperatures reach the higher warming range and precipitation declines, there might be many years with insufficient snow for skiing, snowboarding, and other snow dependent recreational activities.

If GHG emissions continue unabated, more precipitation will fall as rain instead of snow, and the snow that does fall will melt earlier, reducing the Sierra Nevada spring snow pack by as much as 70 to 90 percent. Under the lower warming scenario, snow pack losses are expected to be only half as large as those expected if temperatures were to rise to the higher warming range. How much snow pack will be lost depends in part on future precipitation patterns, the projections for which remain uncertain. However, even under the wetter climate projections, the loss of snow pack would pose challenges to water managers, hamper hydropower generation, and nearly eliminate all skiing and other snow-related recreational activities.

Agriculture

Increased GHG emissions are expected to cause widespread changes to the agriculture industry reducing the quantity and quality of agricultural products statewide. Although higher carbon dioxide levels can stimulate plant production and increase plant water-use efficiency, California's farmers will face greater water demand for crops and a less reliable water supply as temperatures rise.

Plant growth tends to be slow at low temperatures, increasing with rising temperatures up to a threshold. However, faster growth can result in less-than-optimal development for many crops, so rising temperatures are likely to worsen the quantity and quality of yield for a number of California's agricultural products. Products likely to be most affected include wine grapes, fruits and nuts, and milk.

Crop growth and development will be affected, as will the intensity and frequency of pest and disease outbreaks. Rising temperatures will likely aggravate ozone pollution, which makes plants more susceptible to disease and pests and interferes with plant growth.

In addition, continued global warming will likely shift the ranges of existing invasive plants and weeds and alter competition patterns with native plants. Range expansion is expected in many species while range contractions are less likely in rapidly evolving species with significant populations already established. Should range contractions occur, it is likely that new or different weed species will fill the emerging gaps. Continued global warming is also likely to alter the abundance and types of many pests, lengthen pests' breeding season, and increase pathogen growth rates.

Forests and Landscapes

Global warming is expected to alter the distribution and character of natural vegetation thereby resulting in a possible increased risk of large of wildfires. If temperatures rise into the medium warming range, the risk of large wildfires in California could increase by as much as 55 percent, which is almost twice the increase expected if temperatures stay in the lower warming range. However, since wildfire risk is determined by a combination of factors, including precipitation, winds, temperature, and landscape and vegetation conditions, future risks will not be uniform throughout the state. For example, if precipitation increases as temperatures rise, wildfires in Southern California are expected to increase by approximately 30 percent toward the end of the century. In contrast, precipitation decreases could increase wildfires in Northern California by up to 90 percent.

Moreover, continued global warming will alter natural ecosystems and biological diversity within the state. For example, alpine and sub-alpine ecosystems are expected to decline by as much as 60 to 80 percent by the end of the century as a result of increasing temperatures. The productivity of the state's forests is also expected to decrease as a result of global warming.

Rising Sea Levels

Rising sea levels, more intense coastal storms, and warmer water temperatures will increasingly threaten the state's coastal regions. Under the higher warming scenario, sea level is anticipated to rise 22 to 35 inches by 2100. Elevations of this magnitude would inundate coastal areas with saltwater, accelerate coastal erosion, threaten vital levees and inland water systems, and disrupt wetlands and natural habitats.

SIGNIFICANCE THRESHOLDS

PCAPCD recently developed recommendations for thresholds of significance for evaluating construction-and operation-related GHG emissions for proposed land use development projects within its jurisdiction. These thresholds were developed in collaboration with the Sacramento Metropolitan Air Quality Management District, the Yolo Solano Air Quality Management District, and the Feather River Air Quality Management District. PCAPCD recommends a two-tiered approach for assessing a project's operational emissions. The first tier consists of comparing a project's annual operational emissions to PCAPCD's recommended mass emission threshold. This threshold gives lead agencies the ability to conclude that smaller developments would not necessarily make a considerable contribution to the cumulative impact of climate change.

The second tier consists of evaluating a project's consistency with California's GHG reduction targets. Prior to the Newhall Ranch decision, the second-tier involved comparison of the project emissions to a "no action taken" (NAT) scenario. In the Newhall Ranch decision, the court found that, although comparison of a project to NAT (or "business as usual") may be appropriate in concept, the comparison of a specific local project against a statewide business as usual scenario is not an analogous comparison. The Court stated that the BAU approach would need to be based on a substantial evidence-supported link between data in the Scoping Plan and the project, at its proposed location, to demonstrate consistency of a project's reductions with statewide goals.

Based on current data available it is not possible, within the structure of the Scoping Plan sectors, to develop the evidence to reliably relate a specific land use development project's reductions to the Scoping Plan's statewide goal, as envisioned by the Court. Based on the court's finding, the NAT approach is now considered problematic and is no longer recommended by PCAPCD. Therefore, consistent with direction from the PCAPCD, the following analysis replaces the second tier with a threshold that is consistent with the Newhall Ranch decision. This new second-tier consists of evaluating the consistency of a project's GHG efficiency with California's GHG reduction targets. In light of the Newhall Ranch decision, efficiency metrics were developed in coordination with PCAPCD to assess the project's consistency with California's adopted GHG reduction target for 2020 under AB 32.

PCAPCD's recommended methodology for assessing a project's consistency with GHG targets established in AB 32 is the use of GHG efficiency metrics to assess the GHG efficiency of a project on a "service population (SP)" basis (the sum of the number of jobs and the number of residents supported by a project). This metric represents the GHG efficiency needed to achieve a fair share of the state's emissions mandate embodied in AB 32. The use of "fair share" in this instance refers to the GHG efficiency that, if applied statewide, would meet the AB 32 emissions target and support efforts to reduce emissions beyond 2020. The intent of AB 32 is to accommodate population and economic growth in California, but do so in a way that results in less GHG emissions. With a reduced rate of emissions per service population, California can accommodate expected population growth and achieve economic development objectives, while also abiding by AB 32's emissions target and supporting efforts to reduce statewide GHG levels beyond 2020.

The per service population efficiency target is based on the AB 32 GHG reduction target and GHG emissions inventory prepared for the ARB 2008 Scoping Plan. The efficiency approach allows lead agencies to assess whether any given project or plan would accommodate population and employment growth in a way that is consistent with the emissions limit

established under AB 32. The resultant GHG efficiency metric applicable to the project would be $4.5 \text{ MT CO}_2\text{e/SP/year}$.

The project is anticipated to be built out and fully operational by mid 2020. Therefore, the City bases its significance determination for this project on the 2020 target. Analysis of project emissions at buildout is consistent with current CEQA practice and available guidance from air districts on analyzing emissions from the first fully operational year (SMAQMD 2015:6-5). Operational emissions would be highest during the first year and would decline due to fleet turnover and implementation of additional regulations at the State level. Furthermore, if the project's estimated GHG emissions per service population in 2020 are less than these metrics, the impact would be considered less than significant for the AB 32 target year.

Based on the discussion above, the following thresholds are applied to this analysis:

- For the evaluation of construction-related emissions, the PCAPCD-recommended threshold of 1,100 metric tons of carbon dioxide-equivalent per year (MT CO₂e/year) is used. If the project's construction-related emissions are above this threshold, a significant impact would result.
- For the evaluation of operational emissions, the PCAPCD-recommended De Minimis Level threshold of 1,100 MT CO₂e/year is used. If the project's operational emissions are above 1,100 MT CO₂e/year and below the PCAPCD-recommended Bright-Line threshold of 10,000 MT CO₂e/year, the PCAPCD-recommended Efficiency Matrix threshold is used. For urban residential uses, the Efficiency Matrix threshold is 4.5 MT CO₂e/year/capita. For rural residential uses, the Efficiency Matrix threshold is 5.5 MT CO₂e/year/capita. The project site is located in a suburban residential area, which does not specifically have an Efficiency Matrix threshold. For purposes of this analysis the stricter urban Efficiency Matrix threshold of 4.5 MT CO₂e/year/capita will be used. If the project's operational-related emissions are above the De Minimis Level threshold of 1,100 MT CO₂e/year and above the 4.5 MT CO₂e/year/capita Efficiency Matric threshold, a significant impact would result. Further, if the project's operational-related emissions are above the Bright-Line threshold, a significant impact would result.

Responses to Checklist Questions

Responses a), b): The proposed project's short-term construction-related and long-term operational GHG emissions for buildout of the proposed Project, were estimated using the California Emission Estimator Model (CalEEMod)TM (v.2016.3.1). CalEEMod is a statewide model designed to provide a uniform platform for government agencies, land use planners, and environmental professionals to quantify GHG emissions from land use projects. The model quantifies direct GHG emissions from construction and operation (including vehicle use), as well as indirect GHG emissions, such as GHG emissions from energy use, solid waste disposal, vegetation planting and/or removal, and water use. Emissions are expressed in annual metric tons of CO_2 equivalent units of measure (i.e., $MTCO_2e$), based on the global warming potential of the individual pollutants.

Short-Term Construction GHG Emissions

Estimated increases in GHG emissions associated with construction of the proposed project (all phases collectively) are summarized in Table 11. The modeling included mitigation inputs for construction operations including the following:

- Reduce vehicle speed on unpaved roads to 5 miles per hour (mph); and
- Water exposed area 3 times daily.

Table 11: Construction GHG Emissions

	Bio-CO ₂	NBio-CO ₂	Total CO ₂	CH ₄	N ₂ O	CO ₂ e	
Year	MT/yr						
2018	0.0000	225.8618	225.8618	0.0533	0.0000	227.1953	
2019	0.0000	246.8680	246.8680	0.0339	0.0000	247.7144	
2020	0.0000	51.8196	51.8196	6.5300e-003	0.0000	51.9829	
Maximum	0.0000	246.8680	246.8680	0.0533	0.0000	247.7144	

Source: CalEEMod (v.2016.3.1).

As presented in the table, the maximum short-term construction emissions of GHG associated with development of the project are estimated to be 247.7144 MTCO₂e. This value is well below the PCAPCD-recommended threshold of 1,100 MTCO₂e for construction-related emissions. These construction GHG emissions are a one-time release and are comparatively much lower than overall emissions associated with operational phases of a project. Construction GHG emissions from the proposed project do not impede local GHG reduction efforts, or violate GHG reduction goals set by AB 32, as required by the Public Resources Code, Section 21082.2. Therefore, cumulatively these construction emissions would not generate a significant contribution to global climate change.

Long-Term Operational GHG Emissions

The long-term operational GHG emissions estimate for buildout of the proposed project incorporates the potential area source and vehicle emissions, and emissions associated with utility and water usage, and wastewater and solid waste generation. The modeling included mitigation inputs including the following:

Traffic Modeling Assumptions

- Increase transit accessibility in the project site (minimum distance to transit stops is 0.6 miles)
- Increase accessibility to downtown/job center (minimum distance to downtown/job center is 1.45 miles)
- Improve pedestrian network so that the project site connects to offsite pedestrian networks
- Provide traffic calming measures on street segments and intersections

Energy Modeling Assumptions

- Exceed Title 24 by 15%
- Install high efficiency lighting
- Install high efficiency appliances within residences

Area Modeling Assumptions

• Use low VOC paint

Use only natural gas hearths

Water Modeling Assumptions

- Install low flow bathroom faucet
- Install low-flow kitchen faucet
- Install low-flow toilet
- Install low-flow shower
- Use water-efficient irrigation systems

Estimated GHG emissions associated with buildout of the proposed project with and without the above mitigation incorporated are summarized in Tables 12 and 13. As shown in Tables 12 and 13, the annual operational GHG emissions associated with buildout of the proposed project would be 1,059.9021 MTCO₂e without mitigation, which is slightly below the De Minimis level threshold, and well below the bright line threshold. The GHG emissions would be reduced to 930.2354 MTCO₂e with the above referenced mitigation incorporated. The mitigation results in a total decrease of 129.6667 MTCO₂e, representing a decrease of 12.23 percent. With and without these basic mitigation measures, the total emissions would be below the De Minimis level threshold.

Table 12: Operational GHG Emissions (Unmitigated)

	e 12. Operational arta Emissions (Onmeigatea)									
	Bio-CO ₂	NBio-CO ₂	Total CO ₂	CH ₄	N ₂ O	CO ₂ e				
Category	MT/yr									
Area	83.6696	36.0722	119.7418	0.0782	6.5800e-003	123.6573				
Energy	0.0000	234.7804	234.7804	0.0123	4.5300e-003	236.4384				
Mobile	0.0000	648.6329	648.6329	0.0327	0.0000	649.4506				
Waste	15.2730	0.0000	15.2730	0.9026	0.0000	37.8383				
Water	1.6743	5.2882	6.9625	0.1725	4.1700e-003	12.5175				
Total	100.6169	924.7737	1,025.3906	1.1983	0.0153	1,059.9021				

Source: CalEEMod (v.2016.3.1).

Table 13: Operational GHG Emissions (Mitigated)

	oper woonen and zimostone (r. norgacou)										
	Bio-CO ₂	NBio-CO ₂	Total CO ₂	CH ₄	N ₂ O	CO2e					
Category		MT/yr									
Area	0.0000	58.4021	58.4021	2.0633e-003	1.0500e-003	58.7673					
Energy	0.0000	210.0198	210.0198	0.0114	4.0600e-003	211.5149					
Mobile	0.0000	611.0924	611.0924	0.0318	0.0000	611.8862					
Waste	15.2730	0.0000	15.2730	0.9026	0.0000	37.8383					
Water	1.3394	4.4434	5.7829	0.1380	3.3400e-003	10.2287					
Total	16.6125	883.9577	900.5702	1.0858	8.4500e-003	930.2354					

Source: CalEEMod (v.2016.3.1).

This project's operational-related GHG emissions (930.2354 MTCO $_2$ e) are well below the PCAPCD-recommended mass emission threshold of 1,100 MTCO $_2$ e for operational-related emissions. Additionally, although the project would not exceed the PCAPCD operational threshold, the project was evaluated to demonstrate consistency with a GHG Efficiency Matrix of 4.5 MT CO $_2$ e/SP/year.

Trip generation and associated mobile source emissions were estimated using information provided by Fehr & Peers for the project traffic study. Taking into account an average household size of 2.59, the project would provide housing for an estimated 209 individuals, and no land uses that harbor employment. Therefore, GHG emissions per service population for the project would be $4.45~MT~CO_2e/SP/year$ in 2020, which would be lower than the target efficiency of $4.5~MT~CO_2e/SP/year$. Thus, the project would be consistent with the GHG Efficiency Matrix threshold. The project would be fully operational by 2020 and would meet the State's 2020 GHG reduction targets under AB 32. Additionally, certain regulations that are relevant to the land use development and that are being implemented as part of the AB 32 Scoping Plan will continue to be phased in after 2020 (e.g., Advanced Clean Cars, Renewables Portfolio Standard [RPS], SB 375) and result in additional GHG reductions. Therefore, project emissions are expected to decline in the future as additional regulations are implemented at the State level.

Another consideration in addressing the project's GHG emissions is whether the SACOG MTP/SCS, which addresses GHG emissions goals for automobiles and light duty trucks for 2020 and 2036 in the Sacramento Metropolitan Region, would address the project's emissions (SACOG 2016). SACOG was tasked by ARB to achieve a seven percent reduction in per capita GHGs from passenger cars and light trucks by 2020 and a 16 percent reduction by 2035, relative to emission levels in 2005. Based on the development outlined in the MTP/SCS, the region would achieve both reduction targets by implementing its SCS (SACOG 2016:173). This target cannot be directly translated to an overall threshold, given it is geared toward GHG emissions from transportation only. However, mobile source emissions from passenger vehicles represent a large proportion of GHG emissions associated with land use development projects, especially residential development, resulting from vehicle trips to and from the development. The project is included in the SCS planning period (through 2036) and the rest of the project site is consistent with the "Established Community" designation in the SCS (SACOG 2016: 28). While the MTP/SCS acknowledges it cannot predict land use on a parcel-by-parcel basis throughout the SACOG region, SACOG does account for some growth in areas designated as "Established Communities" through 2036. This growth assumes that many of the newer subdivisions, including the City of Lincoln, will likely continue to build at a steadier pace than traditional infill in the near term (through 2020) (SACOG 2016: 31). If development follows the trends and predictions for growth in the SCS for the SACOG region over the next 20 years, development at the project site would be consistent with SCS assumptions.

SACOG states that for the purposes of determining SCS consistency, the policies of the MTP/SCS are embedded in the metrics and growth forecast assumptions of the MTP/SCS. Projects consistent with the growth forecast assumptions of the MTP/SCS, are consistent with the MTP/SCS and its policies (SACOG 2016). The MTP/SCS forecasts 3,280 new units per year through 2036 in Established Communities (SACOG 2016: 31). The 81 units of the project are, therefore, within the growth anticipated in the MTP/SCS and development from the project when added to other entitled projects is not expected to exceed the MTP/SCS buildout assumptions for the area within this Community Type. The project would be located in an Established Community and is in line with the MTP/SCS which addresses GHG emissions goals for automobiles and light duty trucks for 2020 and 2036.

As described above, the project's GHG emissions per service population would be below the derived efficiency metric for 2020. As such, the project will be consistent with the 2020 GHG reduction target that applies through the construction of the project. The project would not

result in operational GHG emissions that exceed PCAPCD's recommended efficiency threshold for 2020. Therefore, this impact would be *less than significant*.

VIII. HAZARDS AND HAZARDOUS MATERIALS

Would the project:	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact
a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?			Х	
b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?			Х	
c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?			X	
d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?			X	
e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?		X		
f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?		Х		
g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?				X
h) Expose people or structures to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?			X	

Responses to Checklist Questions

Responses a), b): The proposed project would place residential uses in an area of the City that currently contains residential uses. The proposed residential land uses do not routinely transport, use, or dispose of hazardous materials, or present a reasonably foreseeable release of hazardous materials, with the exception of common hazardous materials such as household cleaners, paint, etc. The operational phase of the proposed project does not pose a significant hazard to the public or the environment.

Onsite reconnaissance and historical records indicate that there are no known underground storage tanks or pipelines located on the project site that contain hazardous materials. Therefore, the disturbance of such items during construction activities is unlikely. Construction

equipment and materials would likely require the use of petroleum based products (oil, gasoline, diesel fuel), and a variety of common chemicals including paints, cleaners, and solvents. Transportation, storage, use, and disposal of hazardous materials during construction activities would be required to comply with applicable federal, state, and local statutes and regulations. Compliance would ensure that human health and the environment are not exposed to hazardous materials. Therefore, the proposed project would have a *less than significant* impact relative to this issue.

Response c): The project site is outside a ¼ mile radius of the nearest school. The closest school is Foskett Ranch Elementary located approximately 0.62 miles to the north of the project site. The operations of a residential subdivision would not emit hazardous emissions or result in the storage or handling of hazardous or acutely hazardous materials, substances or waste above the level of existing conditions. Implementation of the proposed project would result in a **less than significant** impact relative to this topic.

Response d): According the California Department of Toxic Substances Control (DTSC) there are no Federal Superfund Sites, State Response Sites, or Voluntary Cleanup Sites on, or in the near vicinity of the project site. The project site is not included on a list of hazardous materials sites compiled pursuant to Government Code § 65962.5. The nearest investigation sites include:

- Lincoln Auxiliary Field (site #80000580): This site is a State Response Site which has a current status of No Further Action. The government acquired the 627.87-acre site between 1942 and 1944 for use as an auxiliary field to Mather Air Force Base (AFB). The site was declared surplus in 1944. On January 2, 1947, the property was quitclaimed to the City of Lincoln. The site was investigated for lead contamination as a result of the previous airfield operations located on the site. No potential hazards related to Department of Defense activities have been identified with this site.
- Foskett Ranch Elementary School (site #31020003): This site is a School Investigation
 which has a current status of No Action Required. For the past 130 years, the site was
 used for livestock grazing. The site was evaluated for potential contaminants associated
 with the previous agricultural uses. No contaminants of concern were found on the site.

Implementation of the proposed project would result in a *less than significant* impact relative to this environmental topic.

Responses e), f): The Federal Aviation Administration (FAA) establishes distances of ground clearance for take-off and landing safety based on such items as the type of aircraft using the airport. The project site is not located within the vicinity of a private airstrip. The closest airstrip is the Lincoln Regional Airport approximately 1.49 miles west of the project site. According to the Placer County Airport Land Use Compatibility Plan (Placer County ALUP), project site is located within Compatibility Zones C2 and D for the Lincoln Regional Airport (see Figure 16 in Section XII, Noise). Each compatibility zone is discussed below.

Compatibility Zone C2: Within Compatibility Zone C2, aircraft typically overfly these areas at an altitude of 1,000 to 1,500 feet above ground level on visual approaches. Safety is a concern only with regard to uses involving high concentrations of people and particularly risk-sensitive uses such as schools and hospitals (PCTPA 2014: 6-3 and 6-4). For Lincoln Regional Airport, the Placer County ALUP's intensity criteria for single-family residential home land uses within Compatibility Zone C2 is a maximum site-wide average intensity of 300 people per acre and maximum single-acre intensity of 1,200 people per acre. The proposed project would result in

the construction of residential housing that would generate an estimated 209 people based on an average of 2.59 people per household. After development of the 19.7-acre site with residential uses, the density of development would be approximately 14.2 people per acre, which is well below the lowest site-wide intensity standard in the Placer County ALUP. Therefore, the project would be consistent with the Placer County ALUP's land use compatibility and safety standards. No schools or hospitals are proposed as part of the project.

Compatibility Zone D: Within Compatibility Zone D, areas are sometimes overflown by aircraft arriving and departing the Airport. Hazards to flight are the only compatibility concern. Height limits are no less than 150 feet within Compatibility Zone D. Single-family residential home land uses within Compatibility Zone D do not have intensity limits. Therefore, the project would be consistent with the Placer County ALUP's land use compatibility and safety standards. No schools or hospitals are proposed as part of the project.

One of the required project approvals includes Airport Land Use Commission (Commission) review of the proposed rezoning for consistency with the Placer County ALUP. The Commission noted, "Single-family residential is considered a compatible use in Zones C2 and D. As such, there are no airport noise and safety concerns, or airspace protection issues associated with the proposed rezone. The subdivision is located where about 80 percent of aircraft overflights occur." The Commission reviewed the project and determined that the proposed project is consistent with the Placer County Airport Land Use Compatibility Plan Zones C2 and D and recommended the following mitigation in order to ensure compatibility.

Implementation of the following mitigation measures would ensure that the proposed project would result in a *less-than-significant* impact relative to the Lincoln Regional Airport Compatibility Zones C2 and D.

Mitigation Measure Haz-1: An overflight notification shall be recorded for residential land uses within Compatibility Zone C2 and an airport proximity disclosure shall be provided for residential land uses within Compatibility Zone D.

Mitigation Measure Haz-2: Ensure that the proposed on-site detention uses are implemented in a manner consistent with ALUCP Policy 3.5.3 (a)(6) and Federal Aviation Administration regulation (FAA Advisory Circular 150.5200-33B, "Hazardous Wildlife Attractants On or Near Airports"). This requirement shall be noted on the project improvement plans.

Response g): The General Plan provides a number of policies that address conformance with local emergency response programs and continued cooperation with emergency response service providers. For example, policies in the Health and Safety Element have been developed to ensure that all applicable disaster plans are updated regularly (see Policy HS-7.2) and a coordinated emergency response system is maintained with other agencies (see Policies HS-7.1 and HS-7.5). The proposed project does not include any actions that would impair or physically interfere with an adopted emergency response plan or emergency evacuation plan. The project involves the development of residential uses near similar residential uses, and would not interfere with any emergency response or evacuation plans. Implementation of the proposed project would result in **no impact** on this environmental topic.

Response h): The risk of wildfire is related to a variety of parameters, including fuel loading (vegetation), fire weather (winds, temperatures, humidity levels and fuel moisture contents), and topography (degree of slope). Steep slopes contribute to fire hazard by intensifying the effects of wind and making fire suppression difficult. Fuels such as grass are highly flammable because they have a high surface area to mass ratio and require less heat to reach the ignition

point, while fuels such as trees have a lower surface area to mass ratio and require more heat to reach the ignition point.

The City has areas with an abundance of flashy fuels (i.e., grassland) in the outlying residential parcels and open lands that, when combined with warm and dry summers with temperatures often exceeding 100 degrees Fahrenheit, create a situation that results in higher risk of wildland fires. Most wildland fires are human caused, so areas with easy human access to land with the appropriate fire parameters generally result in an increased risk of fire.

The California Department of Forestry has designated the northeastern edge of the City as having a moderate wildland fire potential; however, moderate rating does not extend to the project site. Because the project site is not located within a designated wildfire hazard area, this is a *less than significant* impact and no mitigation is required.

IX. HYDROLOGY AND WATER QUALITY

Would the project:	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact
a) Violate any water quality standards or waste discharge requirements?			X	
b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?			X	
c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?		X		
d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site?		X		
e) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?		Х		
f) Otherwise substantially degrade water quality?			X	
g) Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?				X
h) Place within a 100-year flood hazard area structures which would impede or redirect flood flows?				X
i) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?				X
j) Inundation by seiche, tsunami, or mudflow?				X

Responses to Checklist Questions

Response a): Implementation of proposed project would not violate any water quality or waste discharge requirements. Construction activities including grading could temporarily increase soil erosion rates during and shortly after project construction. Construction-related erosion could result in the loss of soil and could adversely affect water quality in nearby surface waters. The RWQCB requires a project specific SWPPP to be prepared for each project that disturbs an area one acre or larger. The SWPPP is required to include project specific best management

measures that are designed to control drainage and erosion. Mitigation Measure Geo-3 would require the preparation of a SWPPP to ensure that the proposed project prepares and implements a SWPPP throughout the construction phase of the project. Furthermore, the proposed project includes a preliminary grading and drainage plan that has a specific drainage plan designed to control storm water runoff and erosion, both during and after construction. The SWPPP (Mitigation Measure Geo-3) and the project specific drainage plan would reduce the potential for the proposed project to violate water quality standards during construction. Implementation of the proposed project would result in a *less-than-significant* impact relative to this topic.

Response b): The proposed project would connect to the City of Lincoln water system. The City's municipal water supply is primarily surface water, and groundwater wells within the City are typically only used as a backup water supply source. The City provides potable water to all residents and commercial customers within the City limits. The potable water is provided by the Placer County Water Agency (PCWA) (17 million gallons per day [MGD]) and four Cityowned municipal wells (7 MGD). Water supplied by PCWA comprises the City's base water supply and is derived from PCWA and Nevada Irrigation District (NID) entitlement to surface water fed by the Sierra snowpack. Water from PCWA is treated at PCWA's Foothill Water Treatment Plant and is then delivered to the City. The City's wells are used as back-up water supply.

The proposed project would not substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted). According to the *Preliminary Geotechnical Engineering Report* prepared for the project by Wallace-Kuhl & Associates (July 2004), a permanent groundwater table was not encountered within the test pits for the project site. The Report concluded that the permanent groundwater table is not within 160 of the existing site grades. The project site is not a recharge site.

Project construction would add additional impervious surfaces to the project site; however, the front and back yard spaces would remain largely pervious, which would allow infiltration to underlying groundwater. In addition, Markham Ravine lower tributary would not be disturbed as part of the project, and one detention basin would be constructed onsite. The water quality basin would continue to contribute to groundwater recharge following construction of the project. Furthermore, the project is not anticipated to significantly affect groundwater quality because sufficient stormwater infrastructure would be constructed as part of project to detain and filter stormwater runoff and prevent long-term water quality degradation. Therefore, project construction and operation would not substantially deplete or interfere with groundwater supply or quality. This impact would be *less than significant*.

Responses c-e): When land is in a natural or undeveloped condition, precipitation will infiltrate/percolate the soils and mulch. Much of the rainwater that falls on natural or undeveloped land slowly infiltrates the soil and is stored either temporarily or permanently in underground layers of soil. When the soil becomes completely soaked or saturated with water or the rate of rainfall exceeds the infiltration capacity of the soil, the rainwater begins to flow on the surface of land to low lying areas, ditches, channels, streams, and rivers. Rainwater that flows off of a site is defined as storm water runoff. When a site is in a natural condition or is undeveloped, a larger percentage of rainwater infiltrates into the soil and a smaller percentage flows off the site as storm water runoff.

The infiltration and runoff process is altered when a site is developed with urban uses. Houses, buildings, roads, and parking lots introduce asphalt, concrete, and roofing materials to the landscape. These materials are relatively impervious, which means that they absorb less rainwater. As impervious surfaces are added to the ground conditions, the natural infiltration process is reduced. As a result, the volume and rate of storm water runoff increases. The increased volumes and rates of storm water runoff can result in flooding in some areas if adequate storm drainage facilities are not provided.

There are no rivers, streams, or water courses located on or immediately adjacent to the project site. As such, there is no potential for the project to alter a water course, which could lead to on or offsite flooding. Drainage improvements associated with the project site would be located on the project site, and the project would not alter or adversely impact offsite drainage facilities.

The proposed project would increase impervious surfaces throughout the project site. The proposed project would require the installation of storm drainage infrastructure to ensure that storm waters properly drain from the project site. The proposed storm drainage plan includes an engineered network of storm drain lines, manholes, inlets, and a water quality basin. The storm drainage plan was designed and engineered to ensure proper construction of storm drainage infrastructure to control runoff and prevent flooding, erosion, and sedimentation. The City Engineer reviews all storm drainage plans as part of the improvement plan submittal to ensure that all facilities are designed to the City's standards and specifications. The City Engineer also reviews all storm drainage plans to ensure that post-project runoff does not exceed pre-project runoff. The City Engineer's review of pre- and post-project runoff is intended to ensure that the capacity of the existing storm drainage system is not exceeded. This determination is ultimately made by the City Engineer during the improvement plan review and approval. Mitigation Measure Hydro-1 will require the post-project runoff to be equal to or less than pre-project runoff, which would ensure that the proposed project would not substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site. The storm drainage plan will require the construction of new storm water drainage facilities on the project site; however, the construction of these facilities would not substantially alter the existing drainage pattern of the area, or alter the course of a stream or river. Implementation of the proposed project with the following mitigation measure would have a *less-than-significant* impact relative to this environmental topic.

Mitigation Measure Hydro-1: The storm drainage plan shall be designed and engineered to ensure that post-project runoff is equal to or less than pre-project runoff in accordance with the West Placer Storm Water Quality Design Manual. The applicant shall provide the City Engineer with all stormwater runoff calculations with the improvement plan submittal.

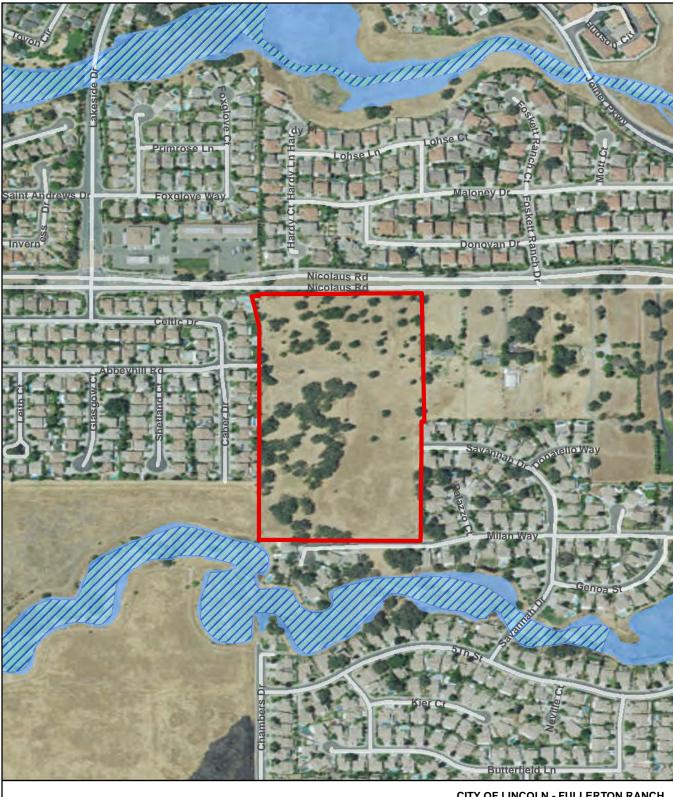
Response f): Construction activities including grading could temporarily increase soil erosion rates during and shortly after project construction. Construction-related erosion could result in the loss of soil and could adversely affect water quality in nearby surface waters. The RWQCB requires a project specific SWPPP to be prepared for each project that disturbs an area one acre or larger. The SWPPP is required to include project specific best management measures that are designed to control drainage and erosion. Mitigation Measure Geo-3 would require the preparation of a SWPPP to ensure that the proposed project prepares and implements a SWPPP throughout the construction phase of the project. Furthermore, the proposed project includes a detailed project specific drainage plan that controls storm water runoff and erosion after construction. The SWPPP (Mitigation Measure Geo-3) and the project specific drainage plan would reduce the potential for polluted runoff and/or degradation of water quality.

Implementation of the proposed project would result in a *less-than-significant* impact relative to this topic.

Responses g-h): As shown in Figure 14, the project site is located within Flood Zone X, which is not within the 100-year flood zone as shown on the Flood Insurance Rate Map (FIRM). The closest 100-year flood zone is located to the south, outside of the project site. While the Markham Ravine Lower Tributary is located near the southwestern corner of the project site, the entire project site is outside of this regulatory floodway.

Further, in 2007, the State of California passed a series of laws referred to as Senate Bill (SB) 5 directing the Department of Water Resources (DWR) to prepare flood maps for the Central Valley flood system and the State Plan of Flood Control, which includes a system of levees and flood control facilities located in the Central Valley. This legislation also set specific locations within the area affected by the 200-year flood event as the urban level of flood protection (ULOP) for the Central Valley.

SB5 "requires all cities and counties within the Sacramento-San Joaquin Valley, as defined in California Government Code Sections 65007(h) and (j), to make findings related to an ULOP or national Federal Emergency Management Agency (FEMA) standard of flood protection before: (1) entering into a development agreement for any property that is located within a flood hazard zone; (2) approving a discretionary permit or other discretionary entitlement, or ministerial permit that would result in the construction of a new residence, for a project that is located within a flood hazard zone; or (3) approving a tentative map, or a parcel map for which a tentative map was not required, for any subdivision that is located within a flood hazard zone." The City of Lincoln completed its General Plan updated in June 2016 to meet the requirements of SB 5.


Implementation of the proposed project would have *no impact* relative to this environmental topic.

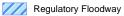
Response i): The project site is not located within an area with a control levee or dam. As shown in Figure 15, the project site is not located within a dam inundation area. The proposed project would not expose people or structures to a significant risk of loss, injury or death involving flooding as a result of the failure of a levee or dam. Implementation of the proposed project would have *no impact* relative to this environmental topic.

Response j): The project site is not anticipated to be inundated by a tsunami because it is located at an elevation of 130 feet above sea level and is approximately 100 miles away from the Pacific Ocean which is the closest ocean waterbody. Implementation of the proposed project would have **no impact** relative to this environmental topic.

The project site is not anticipated to be inundated by a seiche because it is not located in close proximity to a water body capable of creating a seiche. Implementation of the proposed project would have **no impact** relative to this environmental topic.

A mudflow is a category of landslide that is associated with heavy saturation of soils and sometimes is associated with seismicity. Factors such as the geological conditions, drainage, slope, vegetation, and others directly affect the potential for mudflow. The City's General Plan EIR does not identify mudslides as a topic of concern. Additionally, the project site is essentially flat and would be graded as part of the project. No steep areas that would have the potential to generate mudflows during operations would be created. Therefore, implementation of the proposed project would have *no impact* relative to this environmental topic.

250


Feet 1:6,000 500

Legend

Project Boundary

FEMA Designation

1% Annual Chance Flood Hazards (100-yr Flood Zone)

Sources: FEMA Preliminary FIRM Panel 06061C_PRELIMDB issued 12/28/2015. Placer County GIS; ArcGIS Online World Imagery Service. Map date: December 12, 2016.

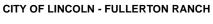
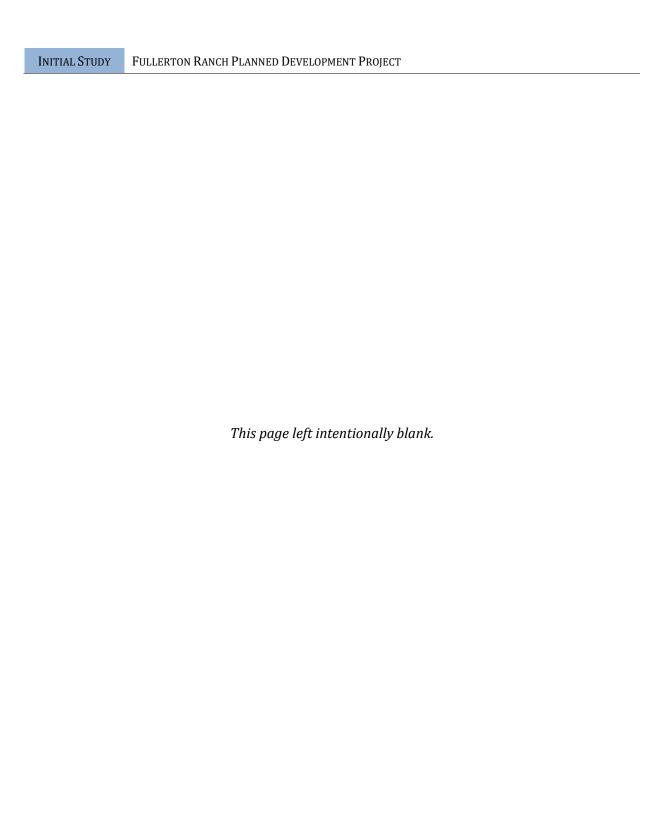
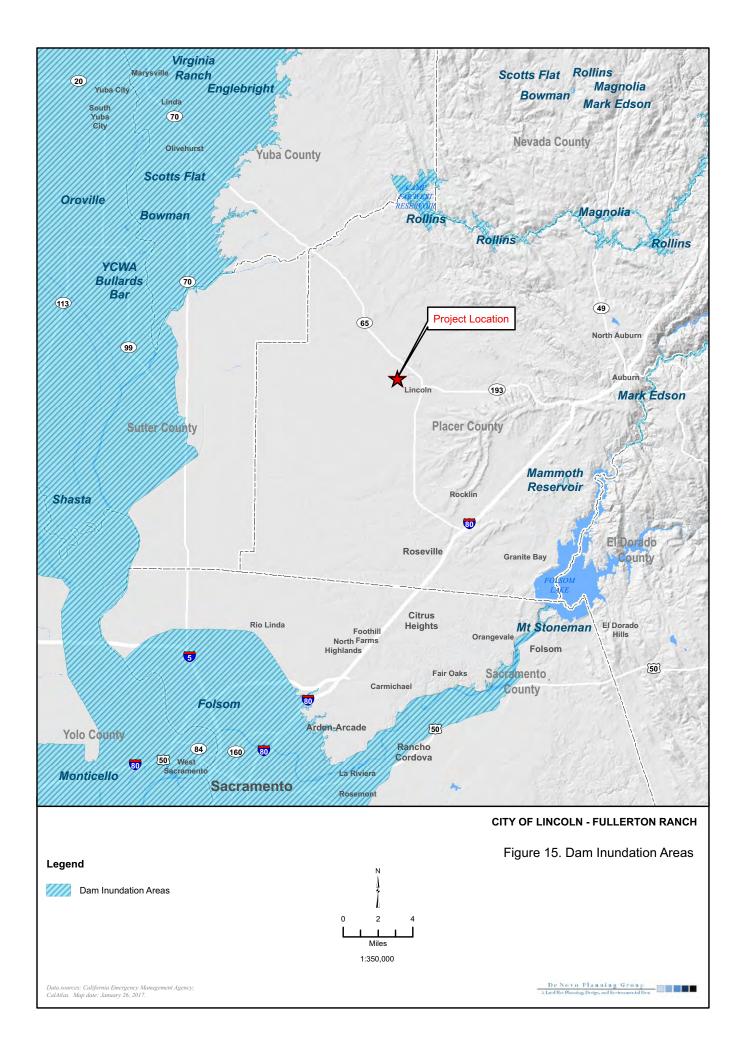




Figure 14. FEMA Flood Zone Map

X. LAND USE AND PLANNING

Would the project:	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact
a) Physically divide an established community?			X	
b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?			X	
c) Conflict with any applicable habitat conservation plan or natural community conservation plan?				X

Responses to Checklist Questions

Response a): The proposed project is a residential subdivision on an undeveloped site that is surrounded by residential subdivisions. The proposed residential subdivision is consistent with the surrounding uses and would not physically divide an established community. Implementation of the proposed project would have a *less than significant* impact relative to this topic.

Response b): The key planning documents that are directly related to, or that establish a framework within which the proposed project must be consistent, include:

- City of Lincoln General Plan
- City of Lincoln Zoning Ordinance

The proposed project is a residential development in an area surrounded by existing and planned residential developments. Development of the project site would alter the existing landscape from undeveloped land to a residential neighborhood. The 19.7-acre project site currently has a Low Density Residential (LDR) General Plan Land Use Designation and a Residential Estate (R-E) Zoning Designation. The LDR General Plan designation allows for 3 to 5.9 dwelling units to the acre. The current R-E zoning, however, is not consistent with the General Plan Land Use designation and it warrants a rezone to a zone that conforms to the General Plan Land Use Designation. The applicant has proposed to rezone from R-E to PD-LDR, which would bring the zoning into consistency with the General Plan Land Use Designation. In addition, the rezoning would establish specific development standards, setbacks, plotting, parking, and other project characteristics that have been developed specifically for this proposed neighborhood. Approval of the rezone would create consistency between the General Plan and Zoning Ordinance for the project site.

According to Chapter 18.32 of the Lincoln Municipal Code, the City's PD zone is established to encourage and provide for a creative and more flexible approach to the use of land; to maximize choices for living environments available to the people of the City; and to encourage more efficient allocation and maintenance of privately controlled common open space through the redistribution of overall densities where such a rearrangement is desirable and feasible.

The proposed standards and regulations (Table 1) are proposed for this project in-lieu of the existing standards provided in the Lincoln Municipal Code, except where otherwise stated. Where the proposed PD standards are silent on an issue, then the standards in the Municipal

Code or other applicable city, state, or federal codes will apply, as appropriate. If the project is approved by the City of Lincoln, the proposed PD zone change would ensure that the project does not conflict with the City's Zoning Ordinance. The proposed PD zone change does not cause a significant physical environmental impact.

The proposed project would result in 81 units on 19.7 acres, which would result in approximately 4.11 dwelling units per acre. This density falls within the allowed density for the LDR General Plan designation. The proposed uses and density are generally consistent with the LDR General Plan Land Use Designation.

The above analysis indicates that the proposed project is consistent with the General Plan. The project applicant has proposed a zone change to ensure that the proposed development standards that were designed for this proposed neighborhood is not in conflict with the Zoning Ordinance. The project as proposed would not conflict with any applicable land use plan, policy, or regulation of the City of Lincoln. Implementation of the proposed project would have a *less than significant* impact relative to this issue.

Response c): The adopted Placer County Conservation Plan (PCCP) was drafted with the intention to protect oak woodlands, vernal pool grasslands, non-vernal pool grasslands, riparian, freshwater wetlands and streams in portions of western Placer County. The City of Lincoln is a partner in the PCCP. The project site is identified as an area for Potential Future Growth in the Draft PCCP Reserve Map and no areas proposed for preservation are located within the project site (Placer 2015). Because the project would not conflict with the development guidelines in the PCCP, implementation of the proposed project would have **no impact** relative to this issue.

XI. MINERAL RESOURCES

Would the project:	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact
a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?				х
b) Result in the loss of availability of a locally- important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?				Х

Responses to Checklist Questions

Response a): The California Geological Survey (CGS) has mapped mineral and mineral aggregate resources in Placer County. The MZ-4 designation covers the site and the surrounding area, a designation defined as "areas of no known mineral occurrences where geologic information does not rule out either the presence or absence of significant mineral resources" (CDMG, 1995). No mineral extraction operations exist at the property. Additionally, there are no oil and gas extraction wells within or in the vicinity of the property. Implementation of the proposed project would have **no impact** relative to this issue.

Response b): The project site does not contain a locally-important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan. The proposed project would not result in loss of a mineral resource. Implementation of the proposed project would have *no impact* relative to this issue.

XII. NOISE

Would the project result in:	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact
a) Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?		X		
b) Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?			Х	
c) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?		X		
d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?		X		
e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?				Х
f) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?				Х

Background

An *Environmental Noise Assessment* (2017) was prepared by j.c. brennan & associates for the proposed project. The following is a summary of the report, which is contained in Appendix J.

Regulatory Framework

City of Lincoln General Plan Health and Safety Element: The General Plan Noise Element provides the following goals and policies:

- *Goal HS-8*: To protect residents from health hazards and annoyance associated with excessive noise levels.
- *Policy HS 8.1*: Sensitive Receptors: The City will allow the development of new noise-sensitive land uses (which include but are not limited to residential, health care facilities and schools) only in areas exposed to existing or projected levels of noise which satisfy the levels specified in Table 8.1 (Table 16 of this section). Noise mitigation measures spaces to levels specified in Table 8.1 (Table 16 of this section).
- *Policy HS 8.2*: Protect Residential Areas: The City will strive to achieve exterior noise levels for existing and future dwellings in residential areas that do not exceed exterior noise levels of 60 dBA CNEL and interior noise levels of 45 dBA CNEL.

- Policy HS 8.3: Railroad Noise: The City will work with railroad operators to assess the feasibility of noise mitigation measures, where sensitive noise receptors are impacted by rail operations.
- *Policy HS 8.4*: Controlling Truck Traffic: The City shall control noise sources in residential areas and other noise-sensitive areas by restricting truck traffic to designated truck routes.
- *Policy HS 8.5*: Noise Monitoring: The City shall establish an ongoing noise monitoring program for the purpose of enforcing noise standards established by the City.
- *Policy HS 8.6*: Development Around Airports: The City shall require that development around Lincoln Airport be consistent with the noise standards contained in the approved Airport Land Use Commission Plan, and where deemed appropriate, require aviation easements from new development.
- *Policy HS 8.7*: Update Airport Master Plan: The City shall pursue the update of the Airport Master Plan noise contours through the year 2030, consistent with the anticipated use of the airport by larger aircraft, and to revise the General Plan as necessary to reflect new noise contours.
- *Policy HS 8.8*: Construction Noise: The City will provide guidelines to developers for reducing potential construction noise impacts on surrounding land uses.
- *Policy HS 8.9*: Noise Compatibility Guidelines: The City shall use adopted noise compatibility guidelines to evaluate compatibility of proposed new development and ensure compatibility between residential, commercial and other surrounding land uses (Table 16 of this section).
- *Policy HS 8.10*: Sound Attenuation Features: The City shall require sound attenuation features such as walls, berming, and heavy landscaping between commercial and industrial uses and residential uses to reduce noise and vibration. Setback distances may also be used to reduce noise.
- *Policy HS 8.11*: Noise Buffering: The City shall require a variety of sound attenuation features (including noise buffering or insulation) in new development along major streets and highways, and along railroad tracks.
- *Policy HS 8.15*: Limiting Construction Activities: The City shall establish restrictions regarding the hours and days of construction activities throughout the City.

Placer County Airport Land Use Compatibility Plan: According to the Placer County ALUP, the project site is located within Compatibility Zones D and C2 for the Lincoln Regional Airport. The Land Use Compatibility Plan states that single-family residential uses are considered "Normally Compatible" within this zone. Figure 16 shows the Compatibility Zones and noise contours for the Lincoln Regional Airport.

Annoyance associated with aircraft overflights is the major concern within Compatibility Zone C2. While these areas do not fall within the take-off or landing overflight zone, they are close enough to the airport to expect that there will be some planes flying over at times. The exact flight path of a plane is largely up to the discretion of the pilot. The elevation of the plane during a flyover is largely going to affect the noise levels. The higher the plane, the lower the noise level at ground elevation, while the lower the plane the higher the noise level at ground elevation. Additionally, the type of plane largely influences the noise level generated by the plane, Small personal aircraft generate the least amount of noise compared to large jets. During an over overflight of a plane at low elevation, it is expected that there would be a spike in the noise level, and the level of spike will depend on the type of plane. This spike would be short-lived and would amount to 10 to 20 seconds of elevated noise.

Existing Noise Levels

Traffic noise was the dominant noise sources discerned on the project site during field noise monitoring. There are other major sources of noise within the City of Lincoln, such as the Sierra Pacific Lumber Mill or the Union Pacific Railroad. Noise monitoring did not indicate that these other regional noise sources were noise sources that were substantial at the project site. This is likely due to distance, combined with the shielding and various attenuating structures that separate the project site from these regional noise sources. The following discussion focuses on existing traffic noise levels, as traffic noise was determined to be the dominant noise source at the project site.

The FHWA Highway Traffic Noise Prediction Model (FHWA-RD 77-108) was used to develop $L_{\rm dn}$ (24-hour average) noise contours for the primary project-area roadways. The model is based upon the CALVENO noise emission factors for automobiles, medium trucks, and heavy trucks, with consideration given to vehicle volume, speed, roadway configuration, distance to the receiver, and the acoustical characteristics of the site. The FHWA Model predicts hourly $L_{\rm eq}$ values for free-flowing traffic conditions, and is generally considered to be accurate within 1.5 dB. To predict $L_{\rm dn}$ values, it is necessary to determine the hourly distribution of traffic for a typical 24-hour period.

Existing traffic volumes were obtained from the traffic consultant (Fehr & Peers, August 2017). Day/night traffic distributions were based upon file data for similar roadways and field-measured values where available. Using these data sources and the FHWA traffic noise prediction methodology, traffic noise levels were calculated for existing conditions. Table 14 shows the results of this analysis. The complete inputs and results for the FHWA traffic noise modeling are contained within the Environmental Noise Assessment (Appendix J).

Table 14: Existing Traffic Noise Levels

Roadway	Segment	Noise Level at Closest	Distances to Traffic Noise Contours L _{dn} , feet			
		Receptors (L _{dn})	70 dB	65 dB	60 dB	
Nicolaus Rd.	West of Lakeside Dr.	57.0	11	23	50	
Nicolaus Rd.	Lakeside Dr. to Fullerton Ranch	57.7	11	25	53	
Nicolaus Rd.	Fullerton Ranch to Joiner Pkwy.	56.9	11	25	53	
Nicolaus Rd.	East of Joiner	60.9	15	32	68	
Joiner Pkwy.	Nicolaus Rd. to 1st St.	55.8	10	21	45	
Joiner Pkwy.	South of 1st St.	56.9	13	29	63	

Notes: Distances to traffic noise contours are measured in feet from the centerlines of the roadways. Source: FHWA-RD-77-108 with inputs from Fehr & Peers and J.C. Brennan & Associates, Inc. 2017.

Traffic noise levels are predicted at the sensitive receptors located at the closest typical setback distance along each project-area roadway segments. In some locations, sensitive receptors may be located at distances which vary from the assumed calculation distance and may experience shielding from intervening barriers or sound walls. However, the traffic noise analysis is believed to be representative of the majority of sensitive receptors located closest to the project-area roadway segments analyzed in this report. Where sound walls occur, a -5 dB offset was applied to account for typical acoustic shielding provided by a 6-foot tall sound wall.

The actual distances to noise level contours may vary from the distances calculated by the FHWA model due to roadway curvature, grade, shielding from local topography or structures,

elevated roadways, or elevated receivers. The distances reported in Table 14 are generally considered to be conservative worst-case calculations of noise exposure along the project-area roadways.

Community Noise Survey

A community noise survey was conducted to document existing ambient noise levels at the project site. The data collected included the hourly average (L_{eq}), median (L_{50}), and the maximum level (L_{max}) during the measurement period. Noise monitoring sites and the measured noise levels at each site are summarized in Table 15. Figure 17 shows the locations of the noise monitoring site.

Community noise monitoring equipment included a Larson Davis Laboratories (LDL) Model 820 precision integrating sound level meter equipped with an LDL ½" microphone. The measurement system was calibrated using a LDL Model CAL200 acoustical calibrator before and after testing. The measurement equipment meets all pertinent requirements of the American National Standards Institute (ANSI) for Type 1 (precision) sound level meters.

Table 15: Existing Ambient Noise Monitoring Results

	CNEL /	Measured Hourly Noise Le					1)				
Noise Measurement Site	L_{DN}	- 1 / a.m 10 b.m.1			Nightime (10 p.m. – 7 a.m.)						
	(DBA)	LEQ	L50	LMAX	L_{EQ}	L50	L _{MAX}				
Continuous (24-hour) Noise Level Measurements											
A: North border of project site.	65	63	58	81	57	45	76				
Short	Term Noise	Level M	easurem	ents							
1: Abbeyhill Rd. @ W. border of project site	N/A	51	46	63		1/12/17, 2:26 pm. – Roadway traffic, birds, rain					
2: Milan Way @ S. border of project site.	N/A	53	53	55	1/12/17, 2:51 pm. – Birds/wildlife/rain						
3: Savannah Dr. @ E. border of project site.	N/A	58	58	60	1/12/17, 3:10 pm. – Birds/wildlife/rain						

SOURCE: J.C. BRENNAN & ASSOCIATES, INC. - 2017.

Noise Standards

The noise standards applicable to the project include the relevant portions of the City of Lincoln General Plan as described in the Regulatory Framework section above. The City of Lincoln has established acceptable standards for noise levels as follows:

Policy HS 8.1: Sensitive Receptors: The City will allow the development of new noise-sensitive land uses (which include but are not limited to residential, health care facilities and schools) only in areas exposed to existing or projected levels of noise which satisfy the levels specified in Table 8.1 (Table 16 of this section). Noise mitigation measures spaces to levels specified in Table 8.1 (Table 16 of this section).

Noise Level (CHEL) Residential - Low Density Single Family, Duplex, Mobile Homes Businfertial - Multiple Family, Group Homes Motels / Hotels Schools, Libraries, Charches, Hospitals, Extended Care Facilities Auditorium, Concert Halls, Amphitheaters Sports Arevas, Clandoor Speciator Sports Playgrounds, Neighborhood Farks Golf Courses, Riding Stables, Water Recreation, Cemeteries Office thildings, **Business Commercial** and Professional industrial, Manufacturing. Utilities, Agriculture Normally Acceptable. Specified land use is satisfactory, based on the assumption that any buildings involved are of normal, conventional construction, without any special noise insulation requirements. Conditionally Acceptable. New construction or development should be undertaken only after a detailed analysis of the noise reduction requirements. is made and needed insulation features have been included in the design. Normally Unacceptable. New construction or development should generally be discouraged. If new construction or development does proceed, a detailed analysis of the noise reduction requirements must be made and needed noise insulation features included in the design. Outdoor meas must

Table 16: Maximum Allowable Noise Exposure by Land Use

Vibration Standards

Vibration is like noise in that it involves a source, a transmission path, and a receiver. While vibration is related to noise, it differs in that noise is generally considered to be pressure waves transmitted through air, whereas vibration usually consists of the excitation of a structure or surface. As with noise, vibration consists of an amplitude and frequency. A person's perception to the vibration will depend on their individual sensitivity to vibration, as well as the amplitude and frequency of the source and the response of the system which is vibrating.

Unacceptable. New construction or development should not be undertaken-

be shielded.

Vibration can be measured in terms of acceleration, velocity, or displacement. A common practice is to monitor vibration measures in terms of peak particle velocities in inches per

second. Standards pertaining to perception as well as damage to structures have been developed for vibration levels defined in terms of peak particle velocities. The City of Lincoln does not have specific policies pertaining to vibration levels. However, vibration levels associated with construction activities are addressed as potential noise impacts associated with project implementation.

Human and structural response to different vibration levels is influenced by a number of factors, including ground type, distance between source and receptor, duration, and the number of perceived vibration events. The threshold for damage to structures ranges from 0.2 to 0.6 peak particle velocity in inches per second (in/sec p.p.v). The general threshold at which human annoyance could occur is notes as 0.1 in/sec p.p.v.

Responses to Checklist Questions **Responses a, c):**

Traffic Noise at Existing Receptors

To describe future noise levels due to traffic, the Federal Highway Administration Highway Traffic Noise Prediction Model (FHWA RD-77-108) was used. Inputs to the model included traffic volumes provided by Fehr & Peers. The FHWA model is based upon the Calveno reference noise factors for automobiles, medium trucks and heavy trucks, with consideration given to vehicle volume, speed, roadway configuration, distance to the receiver, and the acoustical characteristics of the site. The FHWA model was developed to predict hourly $L_{\rm eq}$ values for free-flowing traffic conditions. To predict $L_{\rm dn}/{\rm CNEL}$ values, it is necessary to determine the day/night distribution of traffic and adjust the traffic volume input data to yield an equivalent hourly traffic volume.

Table 17 shows the noise levels associated with traffic on the local roadway network under the existing and existing plus project traffic conditions. As indicated by Table 17, the related noise level increases under development of the proposed project are predicted to be no more than 0.2 dB. A 3.0 dBA change is considered to be a just-perceivable difference. Therefore, the impact of a 0.2 dB traffic noise increase on existing receptors would be considered *less than significant*.

Table 17: Existing Traffic Noise Levels vs. Existing Plus Project Traffic Noise Levels

		Noise Le	Noise Levels (CNEL / L _{dn} , dB)			Distance to Existing + Project Traffic Noise		
Roadway	Segment	- · · ·	Existing	Change	,	ntours, fe		
		Existing	+ Project	(dB)	70 dB L _{dn}	65 dB L _{dn}	60 dB L _{dn}	
Nicolaus Rd.	West of Lakeside Dr.	57.0	57.1	0.1	11	24	51	
Nicolaus Rd.	Lakeside Dr. to Fullerton Ranch	57.7	57.8	0.1	12	25	54	
Nicolaus Rd.	Fullerton Ranch to Joiner Pkwy.	56.9	57.0	0.1	12	25	54	
Nicolaus Rd.	East of Joiner Pkwy.	60.9	60.9	0.0	15	32	69	
Joiner Pkwy.	Nicolaus Rd. to 1st St.	55.8	55.9	0.1	10	21	45	
Joiner Pkwy.	South of 1st St.	56.9	57.1	0.2	14	30	64	

¹ DISTANCES TO TRAFFIC NOISE CONTOURS ARE MEASURED IN FEET FROM THE CENTERLINES OF THE ROADWAYS. ACTUAL DISTANCES MAY VARY DUE TO SHIELDING FROM EXISTING NOISE BARRIERS OR INTERVENING STRUCTURES. TRAFFIC NOISE LEVELS MAY VARY DEPENDING ON ACTUAL SETBACK DISTANCES AND LOCALIZED SHIELDING.

SOURCE: FHWA-RD-77-108 WITH INPUTS FROM FEHR & PEERS AND J.C. BRENNAN & ASSOCIATES, INC. 2017.

Table 18 shows the noise levels associated with traffic on the local roadway network under the cumulative and cumulative plus project traffic conditions. The traffic noise levels shown in Table 18 are based upon the existing land uses and, in some cases, include shielding from existing sound walls. The predicted traffic noise levels for Nicolaus Road between Fullerton Ranch and Joiner Parkway assume shielding from the current sound walls adjacent to the existing residential uses.

Table 18: Cumulative Traffic Noise Levels vs. Cumulative Plus Project Traffic Noise Levels

	Segment	Noise Lev	Distance to Existing + Project Traffic Noise				
Roadway		Cumulative	Cumulative + Project	Change (dB)	Contours, feet ¹ 70 dB 65 dB 60 dB		
			Troject	(42)	L_{dn}	L_{dn}	L_{dn}
Nicolaus Rd.	West of Lakeside Dr.	61.0	61.0	0.0	20	43	94
Nicolaus Rd.	Lakeside Dr. to Fullerton Ranch	61.4	61.5	0.1	20	44	94
Nicolaus Rd.	Fullerton Ranch to Joiner Pkwy.	60.6	60.7	0.1	20	44	94
Nicolaus Rd.	East of Joiner Pkwy.	64.5	64.5	0.0	26	56	120
Joiner Pkwy.	Nicolaus Rd. to 1st St.	58.8	58.8	0.0	15	33	71
Joiner Pkwy.	South of 1st St.	59.7	59.7	0.0	21	45	96

¹ DISTANCES TO TRAFFIC NOISE CONTOURS ARE MEASURED IN FEET FROM THE CENTERLINES OF THE ROADWAYS. ACTUAL DISTANCES MAY VARY DUE TO SHIELDING FROM EXISTING NOISE BARRIERS OR INTERVENING STRUCTURES. TRAFFIC NOISE LEVELS MAY VARY DEPENDING ON ACTUAL SETBACK DISTANCES AND LOCALIZED SHIELDING.

SOURCE: FHWA-RD-77-108 WITH INPUTS FROM FEHR & PEERS AND J.C. BRENNAN & ASSOCIATES, INC. 2017.

Under cumulative plus project conditions, there would not be significant increases in noise levels compared to the cumulative no project conditions. However, the 60, 65 and 70 dB L_{dn} contours would extend farther under cumulative conditions and potentially impact additional sensitive receptors. As shown in the table, the proposed project would contribute no more than 0.1 dB L_{dn} to noise levels on roadways fronting residential uses along the study area roadways. As described earlier, a 3-dBA change is considered to be a just-perceivable difference. Additionally, the project would not cause new exceedances of the City of Lincoln 60 dB CNEL exterior noise level standard. Therefore, the impact of a 0.1 dB traffic noise increase on existing receptors would be considered *less than significant*.

Traffic Noise at New Receptors

The existing vs existing plus project scenario is not performed for "New" receptors because these receptors are not present under the existing conditions. As such, there is no impact to new receptors under these scenarios. The focus of this discussion is the cumulative plus project condition on new receptors.

The cumulative context for noise impacts associated with the proposed project consists of the existing and future noise sources that could affect the project or surrounding uses. Noise generated by construction would be temporary, and would not add to the permanent noise environment or be considered as part of the cumulative context. The total noise impact of the proposed project would be fairly small and would not be a substantial increase to the existing future noise environment.

Cumulative noise impacts would occur primarily as a result of increased traffic on local roadways due to the proposed project and other projects within the area.

The FHWA traffic noise prediction model was used to predict Cumulative + Project traffic noise levels at the proposed residential uses associated with the project. Table 19 shows the predicted traffic noise levels at the proposed residential uses adjacent to the major project-area roadways. The Noise Report (Appendix J) provides the complete inputs and results to the FHWA traffic noise prediction model.

Table 19: Cumulative + Project Transportation Noise Levels at Proposed Residential Uses

D J	Receptor	Approximate	4.0/	Predicted Traffic Noise Levels, L _{dn}				
Roadway	Description	Residential Setback, feet ¹	ADT	No Wall	6' Wall	7' Wall	8' Wall	9' Wall
Nicolaus Road	Nearest Backyards	70'	25,710	67 dB	61 dB	59 dB	58 dB	57 dB

¹ SETBACK DISTANCES ARE MEASURED IN FEET FROM THE CENTERLINES OF THE ROADWAYS TO THE CENTER OF RESIDENTIAL BACKYARDS.

SOURCE: FHWA-RD-77-108 WITH INPUTS FROM ABRAMS ASSOCIATES, AND J.C. BRENNAN & ASSOCIATES, INC. 2017.

The Table 19 data indicate that a 7-foot tall sound wall would achieve the City of Lincoln 60 dB CNEL exterior noise level standard. However, a 6-foot tall would achieve 61 dB CNEL which meets the City's conditionally acceptable noise level standard of up to 65 dB CNEL. Based upon discussions with City staff and review of existing sound wall heights around the project site, a 6-foot tall wall would be consistent with surrounding wall heights while also ensuring that future residents are not exposed to excessive noise levels. Therefore, a 6-foot tall sound wall should be constructed. Figure 18 shows the recommended wall location.

Interior Noise Impacts

Modern construction typically provides a 25 dB exterior-to-interior noise level reduction with windows closed. Therefore, sensitive receptors exposed to exterior noise of 70 dB CNEL/ L_{dn} , or less, will typically comply with the City of Lincoln 45 dB CNEL interior noise level standard. Additional noise reduction measures, such as acoustically rated windows are generally required for exterior noise levels exceeding 70 dB CNEL/ L_{dn} .

It should be noted that exterior noise levels are typically 2 to 3 dB higher at second floor locations. The proposed residential uses are predicted to be exposed to unmitigated first floor exterior transportation noise levels of 67 dB CNEL/ $L_{\rm dn}$. Therefore, second floor facades are predicted to be exposed to exterior noise levels of up to 70 dB CNEL/ $L_{\rm dn}$. Based upon a 25 dB exterior-to-interior noise level reduction, interior noise levels are predicted to be 45 dB CNEL. These interior noise levels would meet the City of Lincoln 45 dB CNEL interior noise level standard and no interior noise mitigation would be required.

The following mitigation measure will minimize noise impacts resulting from transportation noise on the proposed project site. Implementation of this mitigation measure would ensure consistency with the City's noise standards and would reduce this potentially significant impact to a *less than significant* level.

Mitigation Measure Noise-1: A 6-foot tall sound wall shall be constructed along Nicolaus Road, in accordance with the Noise Barrier Location Map (JC Brennan 2017). The sound wall shall be reflected on the Improvements Plans, subject to review and approval by the City's Building Division.

⁻⁻ MEETS THE CITY OF EXTERIOR NOISE STANDARD WITHOUT MITIGATION.

Response b): The primary vibration-generating activities associated with the proposed project would occur during construction when activities such as grading, utilities placement, and roadway construction occur. Sensitive receptors which could be impacted by construction related vibrations, especially vibratory compactors/rollers, are located approximately 25 feet or further from the project site. At this distance construction vibrations are not predicted to exceed acceptable levels. Additionally, construction activities would be temporary in nature and would likely occur during normal daytime working hours. Construction vibration impacts include human annoyance and building structural damage. Human annoyance occurs when construction vibration rises significantly above the threshold of perception. Building damage can take the form of cosmetic or structural. Table 20 shows the typical vibration levels produced by construction equipment.

Table 20: Vibration Levels for Varying Construction Equipment

Type of Equipment	Peak Particle Velocity @ 25 Feet (Inches/Second)	Peak Particle Velocity @ 50 Feet (Inches/Second)	Peak Particle Velocity @ 100 Feet (Inches/Second)
Large Bulldozer	0.089	0.031	0.011
Loaded Trucks	0.076	0.027	0.010
Small Bulldozer	0.003	0.001	0.000
Auger/drill Rigs	0.089	0.031	0.011
Jackhammer	0.035	0.012	0.004
Vibratory Hammer	0.070	0.025	0.009
Vibratory Compactor	0.210 (<0.200 @ 26')	0.074	0.026

SOURCE: FEDERAL TRANSIT ADMINISTRATION, TRANSIT NOISE AND VIBRATION IMPACT ASSESSMENT GUIDELINES, MAY 2006

The Table 20 data indicate that construction vibration levels anticipated for the project are less than the 0.2 in/sec p.p.v. threshold of damage to buildings and less than the 0.1 in/sec threshold of annoyance criteria at distances over 25 feet. Therefore, construction vibrations are not predicted to cause damage to existing buildings or cause annoyance to sensitive receptors. Therefore, this impact would be considered *less than significant*.

Response d): The proposed project could result in temporary or periodic increases in ambient noise levels in the project vicinity above levels existing without the project. These temporary or periodic increases in noise would be associated with the construction phase of the project. The new development, maintenance of roadways, installation of public utilities, and infrastructure improvements associated with the project will require construction activities. These activities include the use of heavy equipment and impact tools. Table 21 provides a list of the types of equipment which may be associated with construction activities and the associated noise levels.

Activities involved in project construction would typically generate maximum noise levels ranging from 85 to 90 dB at a distance of 50 feet. The nearest residential receptors would be located 25 to 50 feet or more from the majority of project construction activities.

Table 21: Construction Equipment Noise

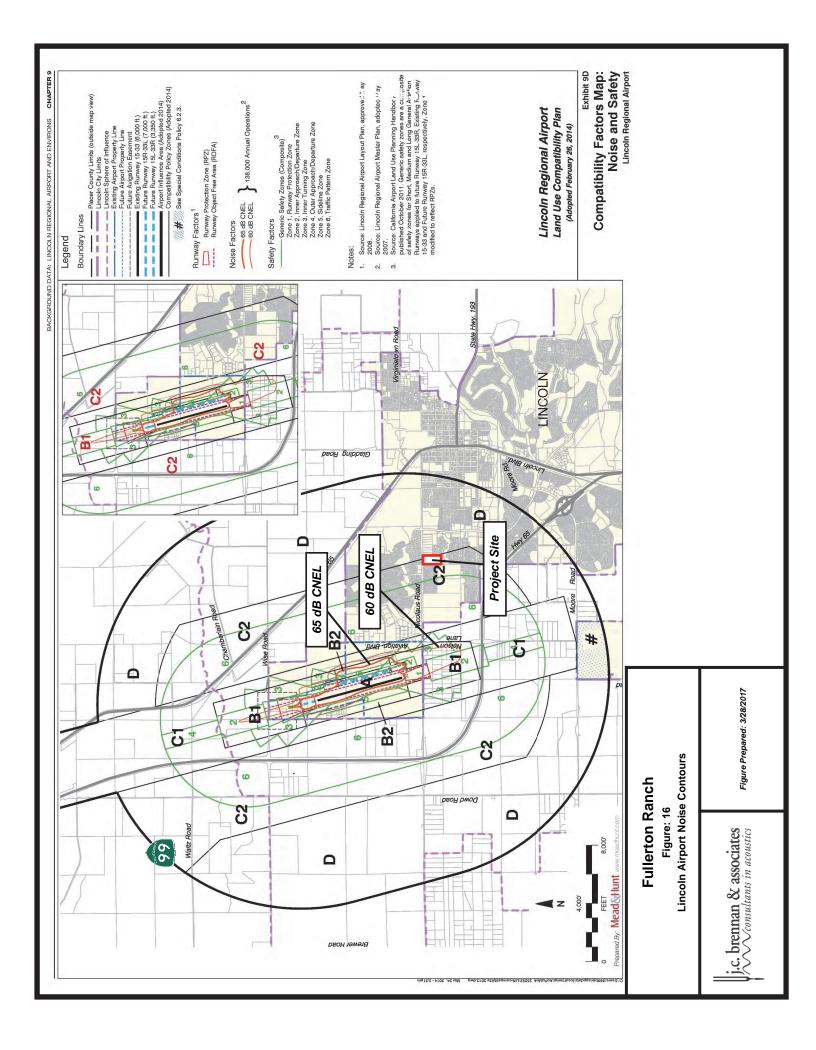
Tuble 211 constituent		redicted Noise	Distances to Noise Contours, feet			
Type of Equipment	Noise Level at 50'	Noise Level at 100'	Noise Level at 200'	Noise Level at 400'	70 dB L _{max} contour	65 dB L _{max} contour
Backhoe	78	72	66	60	126	223
Compactor	83	77	71	65	223	397
Compressor (air)	78	72	66	60	126	223
Concrete Saw	90	84	78	72	500	889
Dozer	82	76	70	64	199	354
Dump Truck	76	70	64	58	100	177
Excavator	81	75	69	63	177	315
Generator	81	75	69	63	177	315
Jackhammer	89	83	77	71	446	792
Pneumatic Tools	85	79	73	67	281	500

SOURCE: ROADWAY CONSTRUCTION NOISE MODEL USER'S GUIDE. FEDERAL HIGHWAY ADMINISTRATION. FHWA-HEP-05-054. JANUARY 2006. J.C. BRENNAN & ASSOCIATES, INC. 2017.

There is generally an increase in ambient noise between the hours of 7 a.m. and 7 p.m. By limiting the hours of construction to these hours, the potential for nuisance noise is reduced because project construction-related noise increases would be less noticeable. The use of mufflers on construction equipment would decrease the overall noise generated during construction. Because sound diminishes with distance, locating noise-generating equipment away from noise sensitive uses would reduce overall noise impacts associated with project construction. Implementation of the following mitigation measure would reduce impacts to a *less-than-significant* level.

Mitigation Measure Noise-2: All project construction activities shall comply with the following:

- Construction hours shall be limited to 7 a.m. to 7 p.m., Monday through Friday (unless extended by a special permit).
- All heavy construction equipment and all stationary noise sources (such as diesel generators) shall have manufacturer-installed mufflers.
- Equipment warm up areas, water tanks, and equipment storage areas shall be located in an area as far away from existing residences as is feasible.


The above requirements shall be reflected on the Improvements Plans, subject to review and approval by the City's Building Division.

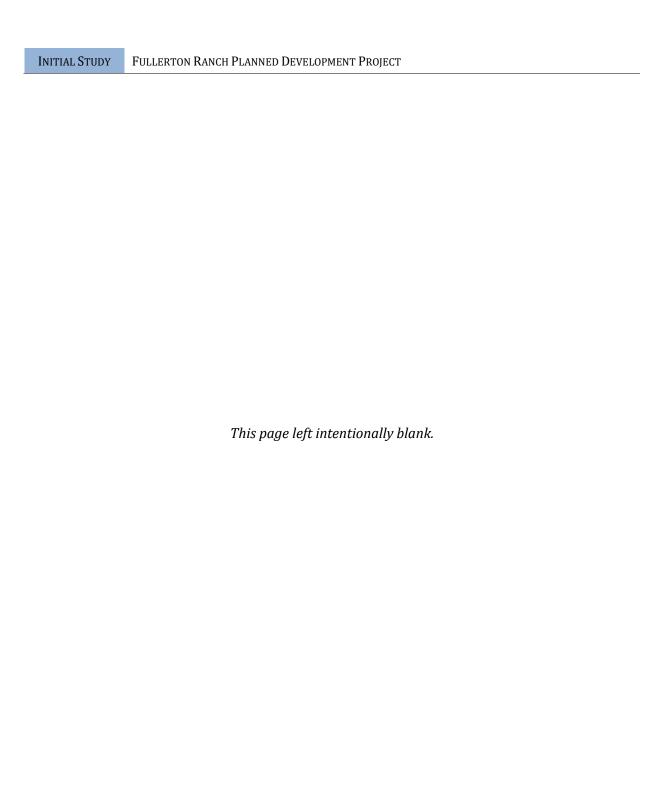
Response e): The project site is located within an airport land use plan and, within two miles of a public airport or public use airport. The closest airstrip is the Lincoln Regional Airport approximately 1.49 miles northwest of the project site. According to the Lincoln Regional Airport-Specific Compatibility Policies and Maps (Placer County ALUCP, 2014), the majority of the project site is located in Compatibility Zone C2, and the northeastern corner of the project site is in Zone D (see Figure 16). As shown in Figure 16, the project site is located approximately one-mile outside of the 60 dB CNEL noise contour for the Lincoln Regional Airport. Therefore, no new sensitive receptors (future residents) would be exposed to aircraft noise exceeding the City of Lincoln 60 dB CNEL exterior and 45 dB CNEL interior noise level standard.

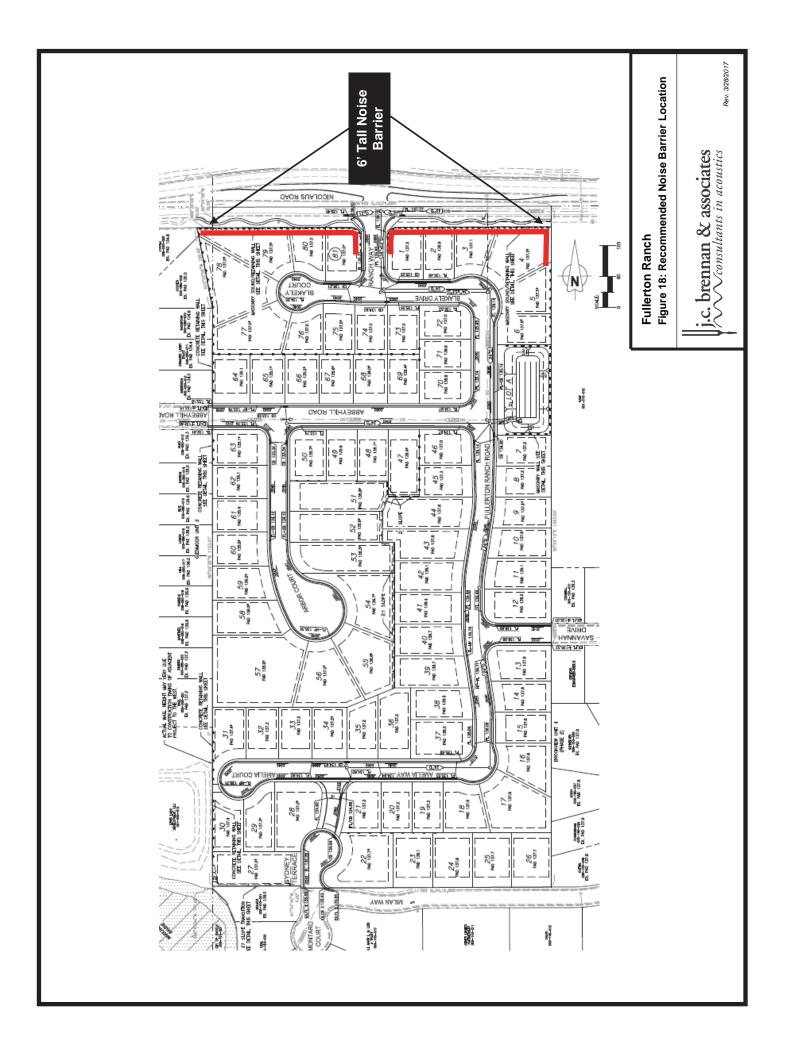
During the field visit, the noise engineer did not observe aircraft overflights directly over the project site. The project site does not fall within the take-off or landing overflight zone, however, given the proximity to the airport it can be expected that there will be some planes flying over the project site at times. The exact flight path of a plane is largely up to the discretion of the pilot with guidance from air traffic controllers. The elevation of the plane during a flyover is largely going to affect the noise levels. The higher the plane, the lower the noise level at ground elevation, while the lower the plane the higher the noise level at ground elevation. Additionally, the type of plane largely influences the noise level generated by the plane, Small personal aircraft generate the least amount of noise compared to large jets. During an over overflight of a plane at low elevation, it would be expected that there would be a spike in the noise level. This spike would be short-lived and would amount to 10-20 seconds of elevated noise. This would be similar to a spike in noise along a roadway where a loud motorcycle (i.e. Harley Davidson) drives by. Because these elevated noise levels are not continuous (i.e. they are just spikes), they do not significantly influence the CNEL dB levels at the noise sensitive uses. While occasional overflights could occur and result in a 10 to 20 second spike in noise, they are not predicted to cause any exceedance of the City of Lincoln exterior or interior noise level standards as discussed above. Implementation of the proposed project would result in **no** *impact* relative to this topic.

Response f): The project site is not located within the vicinity of a private airstrip. The closest airstrip is the Lincoln Regional Airport approximately 1.49 miles northwest of the project site. The project site is located within Compatibility Zones C2 and D. As noted previously, the Land Use Compatibility Plan states that single-family residential uses are considered "Normally Compatible" within this zone.

Additionally, as defined in this plan, annoyance associated with aircraft overflights is the major concern within Compatibility Zone C2. Although the zone lies outside the CNEL 55 dB contour, noise from individual aircraft overflights may adversely affect certain land uses. Safety is a concern only with regard to uses involving high concentrations of people and particularly risk-sensitive uses such as schools and hospitals. The proposed project would not result in a high concentration of people, and does not include school or hospital uses. Therefore, implementation of the proposed project would result in *no impact* relative to this topic.

Legend


: Continuous (24-hr) Noise Measurement Site


: Short-Term Noise Measurement Site

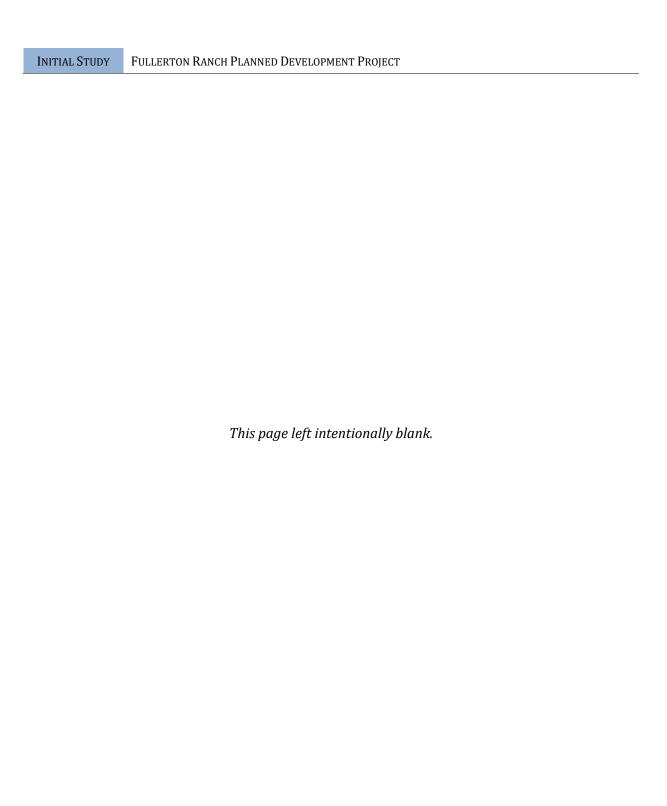


Figure Prepared: January 2017

XIII. POPULATION AND HOUSING

Would the project:	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact
a) Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?			X	
b) Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?				Х
c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?				х

Responses to Checklist Questions

Response a): According to the 2015 US Census population estimates, the population in Lincoln is 46,474 people. According to the City of Lincoln 2013-2021 Housing Element, the average persons per household is 2.59. The proposed project would result in the construction of residential housing that would generate an estimated 209 people. This is an estimated 0.45 percent growth in Lincoln. An estimated 0.45 percent growth in Lincoln is not considered substantial growth in Lincoln or the region and it is consistent with the assumed growth in the General Plan. The 209 people may come from Lincoln or surrounding communities. The proposed project would not include upsizing of offsite infrastructure or roadways. The installation of new infrastructure would be limited to the internal subdivision. The sizing of the infrastructure would be specific to the number of units proposed within the project site. Implementation of the proposed project would not induce substantial population growth in an area, either directly or indirectly. Implementation of the proposed project would have a *less than significant* impact relative to this topic.

Responses b), c): The project site currently undeveloped and does not contain housing. The proposed project would not displace housing or people. Implementation of the proposed project would have *no impact* relative to this topic.

XIV. PUBLIC SERVICES

	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact					
a) Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:									
Fire protection?			X						
Police protection?			X						
Schools?			X						
Parks?		X							
Other public facilities?				X					

Responses to Checklist Questions

Response a):

Fire Protection

Fire protection is provided by the City of Lincoln Fire Department (Fire Department). The Fire Department covers roughly 20 square miles with a population of approximately 45,000 residents from its three stations located throughout the City. Fire Station #34, which is located at 126 Joiner Parkway and serves as the Fire Department's Headquarters, is the nearest fire station to the project site (0.5 miles south).

In 2014, the Fire Department received 3,977 calls for service (City of Lincoln, 2016). The Fire Department's independent Insurance Services Office (ISO) rating (a rating which can be used to assess the effectiveness of fire protection services) was most recently evaluated in September 2014, with a Public Protection Class 5 (ratings are made on a scale of 1 to 10, with 1 being the highest). Average response time in the City is 7.5 minutes.

The City expands fire protection services as growth and development occurs to meet the adopted fire response time of five minutes or less as a general guideline. (General Plan Policies PFS-8.2, PFS-8.4, and PFS-8.5). Funding for fire operations and services is derived from a combination of development impact fees and the City's General Fund. Development impact fees are paid prior to construction and are typically used to fund new facilities and equipment, while the General Fund (revenues from property tax and sales tax) is typically used to fund ongoing fire operations.

In terms of generating funding for the construction of needed facilities and equipment, the City has an existing Public Facilities Element which is a capital facilities fee program. Based on the requirements of this program, all new development must participate in the funding of needed facilities and equipment based on adopted program standards. The project would be subject to this funding mechanism. In determining the capital facility needs, these standards call for 1.26 firefighters per 1,000 residents, 500 square feet of fire station facilities per firefighter, each station to contain approximately 11,000 square feet and requiring two fire trucks per station with one out of six trucks being a ladder truck. These costs are spread over new development

based on an equivalent dwelling unit factor such that capital facilities costs are equally borne by both residential and non-residential development.

The proposed project would add 81 residential units, which is anticipated to add 209 people to the City of Lincoln. Using the 1.26 firefighters per 1,000 residents standard, the addition of 209 person to the proposed project site would require 0.26 firefighters.

The proposed project would not result in a need to construct a new fire station or physically alter an existing fire station. As previously stated, the Lincoln Fire Department would receive development impact fees and property tax revenues from each parcel on the project site. The combination of those funds is intended to pay for project impacts on fire protection service.

Additionally, the project site is currently designated LDR by the City's land use map, which allows for three to 5.9 units per acre. The proposed project includes 81 units on 19.7 acres, for a density of 4.11 units per acre. The project would reduce the potential number of units allowed by the current City land use designation. Development of the project site for residential uses was analyzed in the City's General Plan EIR. The City's General Plan EIR concluded that, with adoption of the policies and implementation measures included in the General Plan. Impacts to fire protection would be less than significant. Consistent with this conclusion, the proposed project's impact to fire service is considered *less than significant*.

Police Protection

Law enforcement is provided by City of Lincoln Police Department (Police Department). The Police Department is divided into three divisions: The Administrative Division, the Operations Division, and the Support Division. The Office of the Chief of Police makes up the Administrative Division and is responsible for overseeing the entire operation of the Police Department. The Operations division consists of two units: Patrol and Investigations. These units are directly responsible for the enforcement of local and state laws, investigation of criminal activity, and ensuring the safety of the citizens of the City of Lincoln. The Support Services division is composed of Communications, Records, Citizen Volunteers, Animal Control, and Property and Evidence. The goal of the Support Services Division is to maintain the day-to-day functions of the Police Department, manage the business aspect of the agency, data and record retention, and continually assess the needs of the department and City while implementing programs to enhance the experience of the Police Department for customers and employees alike. The Police Department has 20.5 sworn police officers based at the department's headquarters on 7th Street (approximately 1.4 miles from the project site) (City of Lincoln Police Department 2015).

The proposed project would add 81 residential units, which is anticipated to add 209 people to the City of Lincoln. The additional of 209 people in the City of Lincoln would place additional demands for police service on the City of Lincoln Police Department.

The City would expand police protection service consistent with community needs and provide an adequate level of service (General Plan Policy PFS-8.8), including striving to maintain an average response time of five minutes or less for high priority calls (General Plan Policy PFS-8.14). Per General Plan Policy PFS-8.11, the project would result in an increase in demand on police services equal to less than 0.5 officers. The on-going operations of the Police Department is funded primarily from the City's General Fund, which receives revenue from property taxes, transit taxes, fees, and other sources. The owner of each residence would pay taxes and fees that would increase the General Fund. Typically, the City would use a part of this additional revenue to increase police staffing, as needed.

In addition to the operational funding for police services, the City requires each development to pay development impact fees for police services prior to construction. These fees are used to fund the direct impact on increased demand for police facilities and equipment. The City's Master Fee Schedule is a compilation of the fees charged for services and development with the City of Lincoln. All fees are reviewed from time to time in order to ensure that the fees charged do not exceed the estimated costs required to produce the services and that all fees are in compliance with the California Government Code Sections 66016 and 66018.

In terms of generating funding for the construction of needed facilities and equipment, the City has implemented a Public Facilities Element capital facilities fee program. Based on the requirements of this program all new development must participate in the funding of needed facilities and equipment based on adopted program standards. The project would be subject to this funding mechanism. In determining the capital facility needs, these standards call for 1.87 sworn and 0.4 non-sworn per 1,000 residents, 350 square feet of police station facilities per employee, and requiring 1 additional police vehicle per 1,000 new residents. These costs are spread over new development based on an equivalent dwelling unit factor such that capital facilities costs are equally borne by both residential and non-residential development.

The proposed project would add 81 residential units, which is anticipated to add 209 people to the City of Lincoln. Using the 1.87 sworn and 0.4 non-sworn per 1,000 residents standard, the addition of 209 person to the proposed project site would require 0.39 sworn officers and 0.08 non-sworn officers. Additionally, using the 1 additional police vehicle per 1,000 new residents standard, the addition of 209 person to the proposed project site would require 0.21 additional police vehicles.

The payment of the fees by the project proponent would serve as adequate compensation for impacts the police service impacts. Additionally, the City of Lincoln receives ongoing revenues that would come from property taxes, sales taxes, and other revenues generated by new development to fund ongoing police service. The taxes and fees would provide the City with the means to offset the increased demand for law enforcement services created by the project. The proposed project would not result in a need to construct a new police station or physically alter an existing police station. As previously stated, the Lincoln Police Department would receive development impact fees and property tax revenues from each parcel on the project site. The combination of those funds are intended to pay for project impacts on police protection service.

Development of the project site for residential uses was analyzed in the City's General Plan EIR. The City's General Plan EIR concluded that, with adoption of the policies and implementation measures included in the General Plan. Impacts to law enforcement would be less than significant. Consistent with this conclusion, the proposed project's impact to police service is considered *less than significant*.

Schools

The project site is within the area served by the Western Placer Unified School District (WPUSD). WPUSD has a total of 11 schools, three of which currently serve the project area (i.e., Creekside Oaks Elementary, Glen Edwards Middle School, and Lincoln High School). Based on enrollment for the 2013-2014 school year, Creekside Oaks had remaining capacity for approximately 270 students, Glen Edwards Middle School had remaining capacity for approximately 420 students, and Lincoln High School had remaining capacity for approximately 225 students (WPUSD 2014: 30). However, according to WPUSD staff in 2015, Creekside Oaks

Elementary has limited capacity to serve additional students, while Glen Edwards Middle School and Lincoln High School are at capacity.⁶

Funding for new school construction is provided through State and local revenue sources. The project applicant would be required to contribute funding to school facilities. The specific requirements would be set forth in the Development Agreement for the project.

The Leroy F. Greene School Facilities Act allows the School District to collect impact fees up to approximately 50 percent of the estimated cost of new school facilities. The collection of the impact fees is based on the assumption that the State School Facility funding program remains intact and that state funds are available for partial funding of new school facilities. Although school impact fees might not be sufficient to fund 100 percent of new school facility construction and operation, the California State Legislature has declared the school impact fee to be full and adequate mitigation under CEQA.

Pursuant to Section 65995.5–7 of the California Government Code, the WPUSD has imposed Level 1 residential developer impact fees at the current rate of \$3.48 per square-foot of new residential construction (WPUSD 2016). In addition to collecting Level I fees at the time of building permits, the City would certify that school facilities meeting adopted School District standards are available for the development (General Plan Policy PFS-9.1) and would coordinate with the School District to make sure that adequate developer fees are collected in accordance with State law (General Plan Policy PFS-9.7). The City would also work with WPUSD and the applicant to evaluate alternatives to funding/providing adequate school facilities, pursuant to General Plan Policy PFS-9.9. The WPUSD 2016 School Facility Fee Justification report indicated that residential development creates a school facility cost of \$7.28 per square foot. Therefore, there would be a gap between what is collected and costs that are generated from residential development for the project.

As discussed above, the provisions of State law are considered full and complete mitigation for the purposes of analysis under CEQA for school construction needed to serve new development. In fact, State law expressly precludes the City from reaching a conclusion under CEQA that payment of the Leroy F. Greene School Facilities Act school impact fees would not completely mitigate new development impacts on school facilities. Consequently, the City of Lincoln is without the legal authority under CEQA to impose any fee, condition, or other exaction on the project for the funding of new school construction other than the fees allowed by the Leroy F. Greene School Facilities Act. Although WPUSD may collect higher fees than those imposed by the Leroy F. Greene School Facilities Act, no such fees are required to mitigate the impact under CEQA. Because the project would pay fees as required by The Leroy F. Greene School Facilities Act, this impact would be *less than significant*.

Parks

City parks and facilities are maintained by the Recreation Division of the City's Public Services Department Parks and Recreation. Currently, there are approximately 160 acres of City park lands and 1,838 acres of open space and trails within the City of Lincoln. The City park dedication in-lieu fee (Chapter 17.32 of the City Municipal Code) requires dedication of land, payment of in-lieu fees, or a combination of both. The City of Lincoln has an adopted standard of five acres of park land per 1,000 residents for newly incorporated areas. This requirement can

⁶ City of Lincoln. Draft Environmental Impact Report – Independence at Lincoln Development Project (page 4.9-3). September 30, 2016.

be met through the provision of park credit for a variety of traditional and non-traditional park lands that are constructed. The amount of credit granted against the five acres per 1,000 population standard may vary based upon the recreational value of the land to City residents (City of Lincoln 2008: 4-8). When park land is not constructed within the project site the City requires the payment of in-lieu park fees.

The project would result in the construction of 81 single-family residential homes. According to the 2015 US Census population estimates, the population in Lincoln is 46,474 people. Lincoln Municipal Code Section 17.32.040 provides the parkland formula for dedication of park land. According to the Municipal Code, the average density per single-family dwelling unit is 3.6. Based on the City's ratio, the addition of 81 single-family units at the site would increase population by up to 291 individuals. This would require the project to create 1.455 acres of parks or pay an in-lieu fee for 1.455 acres of park land. The project does not propose to construct any park land within the project site. As such, the proposed project is subject to the City park dedication in-lieu fees.

The payment of the City park dedication in-lieu fees would serve as an adequate offset for the park demand. With the implementation of the following mitigation measure, the proposed project's impact to park and recreational facilities is considered *less than significant*.

Mitigation Measure Public-1: The applicant shall pay applicable park in-lieu fees or dedicate 1.455 acres of parkland in accordance with the City of Lincoln Municipal Code standards outlined in Chapter 17.32. Proof of payment of the in-lieu fees shall be submitted to the City Engineer.

Other Public Facilities

The proposed project would not result in a need for other public facilities that are not addressed above, or in Section XVIII, Utilities and Service Systems. Implementation of the proposed project would have **no impact** relative to this issue.

XV. RECREATION

	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact
a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?			X	
b) Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?				X

Responses to Checklist Questions

Responses a): Currently, there are approximately 160 acres of City park lands and 1,838 acres of open space and trails within the City of Lincoln. The project would result in the construction of 81 single-family residential homes. Lincoln Municipal Code Section 17.32.040 provides the parkland formula for dedication of park land. According to the Municipal Code, the average density per single-family dwelling unit is 3.6. Using this rate, the proposed project would result in an estimated 291 individuals. The estimated new demand for parks is 1.455 acres. The project does not include the construction of new parks so the developer would be required to pay in-lieu fees. The in-lieu fees would ultimately fund the construction of new park land to offset the increased demand for these facilities. With implementation of Mitigation Measure Public-1, this potential impact would be reduced to a *less-than-significant* level.

Responses b): The proposed project does not include the construction of recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment. Implementation of the proposed project would have *no impact* relative to this topic.

XVI. TRANSPORTATION AND TRAFFIC

Would the project:	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact
a) Cause an increase in traffic which is substantial in relation to the existing traffic load and capacity of the street system (i.e., result in a substantial increase in either the number of vehicle trips, the volume to capacity ratio on roads, or congestion at intersections)?			X	
b) Exceed, either individually or cumulatively, a level of service standard established by the county congestion management agency for designated roads or highways?			Х	
c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?				Х
d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?			Х	
e) Result in inadequate emergency access?			X	
f) Conflict with adopted policies, plans, or programs supporting alternative transportation (e.g., bus turnouts, bicycle racks)?		Х		

Background

The *Traffic and Circulation Section of the Fullerton Ranch Project IS/MND* (August 2017) was prepared by Fehr & Peers for the proposed project under contract to De Novo Planning Group. Based on comments from City of Lincoln staff, the *Traffic and Circulation Section of the Fullerton Ranch Project IS/MND* was updated in August 2017. The following is a summary of the report, which is contained in Appendix K.

The following six study intersections and seven roadway segments have been included in the analysis:

Project Study Intersections

- 1. Nicolaus Road / Lakeside Drive
- 2. Nicolaus Road / Project Access
- 3. Joiner Parkway/ 5th Street
- 4. Joiner Parkway / 3rd Street
- 5. Nicolaus Road / Joiner Parkway
- 6. Joiner Parkway / 1st Street

Project Roadway Segments

- 1. Nicolaus Road west of Joiner Parkway
- 2. Nicolaus Road east of Nelson Lane

- 3. Lakeside south of Nicolaus
- 4. Celtic Drive / Abbeyhill Road west of project site
- 5. 5th Street west of Joiner Parkway
- 6. Savannah Drive east of project site
- 7. Milan Way west of Savannah Drive and south of project site

Traffic Analysis Scenarios

The study intersections were evaluated for the following four scenarios:

- **Scenario 1: Existing Conditions** Level of Service (LOS) based on existing peak hour volumes and existing intersection configurations.
- **Scenario 2: Existing Plus Project** Existing traffic volumes plus trips from the proposed project.
- **Scenario 3: Cumulative Conditions** This scenario includes cumulative volumes based on the Placer County Regional Travel Demand Forecasting (TDF) Model.
- **Scenario 4: Cumulative Plus Project Conditions** This scenario includes cumulative volumes plus the trips from the proposed project

Existing Roadway Network

The following is a detailed description of the roadways that could be affected by the project:

- State Route (SR) 65 is a north-south state highway that begins at Interstate 80 (I-80) and extends north through Lincoln to SR 70 south of Marysville. SR 65 is a four-lane freeway from I-80 to the at-grade intersection with Nelson Lane. The highway continues as a four-lane divided highway from Nelson Lane to north of Wise Road. North of Wise Road, it becomes a two-lane state highway connecting the area to Yuba County and Marysville to the north. The section of SR 65 between Lincoln Boulevard and Riosa Road is known as the Lincoln Bypass. The Lincoln Bypass opened in 2012 to facilitate travel between South Placer County and Yuba County and reduce through traffic in the City of Lincoln. The former SR 65 alignment through Downtown Lincoln is now called Lincoln Boulevard.
- **Nicolaus Road** is an east-west arterial roadway that extends from 0 Street in Lincoln west to Pleasant Grove Road in unincorporated Placer County. Within the study area, Nicolaus Road is a four-lane divided roadway between Nelson Lane and Joiner Parkway. This roadway has two lanes east of Joiner Parkway and is a two-lane rural roadway west of Nelson Lane. Nicolaus Road has a grade separated overcrossing of the SR 65 bypass. In addition, Nicolaus Road is a Surface Transportation Assistance Act (STAA) truck route, which means that California legal trucks may use it to deliver goods and materials to industrial uses in the Lincoln Airport Industrial Area.
- **Joiner Parkway** is an arterial street that spans much of the City of Lincoln from south to north. Within the study area, Joiner Parkway is a four-lane divided arterial. North of Nicolaus Road, Joiner Parkway narrows from four to two lanes.
- **Abbeyhill Road/Celtic Drive** is an existing east-west local roadway that extends from the western project site boundary west to Tartan Court. Within the study area, Abbeyhill Road is a two-lane undivided residential roadway. Tartan Court, a north-south roadway, extends north to its terminus at Celtic Drive. Celtic Drive, an east-west roadway, terminates at Waverly Drive to the west. From Waverly Drive, drivers can head south approximately 0.32 miles where the road terminates. Alternatively, drivers

can travel north to access Nicolaus Drive. Waverly Drive becomes Teal Hollow Drive at the intersection with Nicolaus Drive.

- **Savannah Drive** is a looped roadway located to the east and southeast of the project site. Within the study area, Savannah Drive is a two-lane undivided residential roadway. This local roadway connects 5th Street to Milan Way and serves the residential areas to the south and southeast of the site.
- **Milan Way** is a local east-west roadway located to the south of the project site. Within the study area, Milan Way is a two-lane undivided residential roadway. This roadway contains cul-de-sacs on both the eastern and western termini.
- **5th Street** is a local roadway located to the south of the project site. Within the study area, 5th Street is a two-lane undivided residential roadway. This roadway traverses across the City east to its terminus at East Avenue.

<u>Intersection Analysis Methodology</u>

The operational performance of the roadway network is commonly described with the term LOS. LOS is a qualitative description of operating conditions, ranging from LOS A (free-flow traffic conditions with little or no delay) to LOS F (oversaturated conditions where traffic flows exceed design capacity, resulting in long queues and delays). The LOS analysis methods outlined in the *Highway Capacity Manual* (HCM) (Transportation Research Board 2010) were used in the *Transportation Impact Analysis Report*.

A signalized intersection's LOS is based on the weighted average control delay of all vehicles passing through the intersection. Delay is measured in seconds per vehicle, and includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration. For side-street control intersections, the delay and LOS is reported for the entire intersection and the minor street movement with the greatest delay. Table 22 summarizes the relationship between the delay and LOS for signalized and unsignalized intersections.

Table 22: LOS Criteria - Intersections

LOS	Description (for Signalized Interceptions)		e Delay /Vehicle)	
LOS	Description (for Signalized Intersections)	Signalized Intersections	Unsignalized Intersections	
A	Operations with very low delay occurring with favorable traffic signal progression and/or short cycle lengths.	< 10.0	< 10.0	
В	Operations with low delay occurring with good progression and/or short cycle lengths.	> 10.0 to 20.0	> 10.0 to 15.0	
С	Operations with average delays resulting from fair progression and/or longer cycle lengths. Individual cycle failures begin to appear.	> 20.0 to 35.0	> 15.0 to 25.0	
D	Operations with longer delays due to a combination of unfavorable progression, long cycle lengths, or high V/C ratios. Many vehicles stop and individual cycle failures are noticeable.	> 35.0 to 55.0	> 25.0 to 35.0	
E	Operations with high delay values indicating poor progression, and long cycle lengths. Individual cycle failures are frequent occurrences. This is considered to be the limit of acceptable delay.	> 55.0 to 80.0	> 35.0 to 50.0	

LOS Description (for Signalized Intersections)	Description (for Canalized Interceptions)	Averag (Seconds	e Delay /Vehicle)
	Signalized Intersections	Unsignalized Intersections	
F	Operations with delays unacceptable to most drivers occurring due to over-saturation, poor progression, or very long cycle lengths.	> 80.0	> 50.0

NOTE: LOS = LEVEL OF SERVICE; V/C RATIO = VOLUME-TO-CAPACITY RATIO

LOS AT SIGNALIZED INTERSECTIONS AND ROUNDABOUTS BASED ON AVERAGE DELAY FOR ALL VEHICLES. LOS AT UNSIGNALIZED INTERSECTIONS IS REPORTED FOR ENTIRE INTERSECTION AND FOR MINOR STREET MOVEMENT WITH GREATEST DELAY.

Source: Transportation Research Board 2016

Existing Intersection Levels of Service

Existing traffic operations were analyzed at the six study intersections for the two study hours. Table 23 displays the results. Refer to Appendix K for technical calculations. Based on the results presented of the Existing AM and PM peak hour analysis, all intersections currently operate at LOS C or better. These results match Existing conditions, which generally reveal modest levels of queuing and vehicle delay during the study periods.

General Plan Policy T-2.3 establishes the City of Lincoln's level of service C policy for signalized intersections during the p.m. peak hour. Since the City does not have any similar level of service policy for unsignalized intersections or other time periods (i.e., a.m. peak hour), this study applies this LOS C standard to all City of Lincoln intersections during both the a.m. and p.m. peak hour, consistent with previous traffic analyses prepared for the City of Lincoln.

Table 23: Peak Hour Intersection LOS - Existing Conditions

Intersection	Control	AM Ped	ık Hour	PM Peak Hour	
intersection	Control	Delay ¹	LOS	Delay ¹	LOS
Lakeside Drive / Nicolaus Road	AWSC	14.0	В	10.8	В
Fullerton Ranch Access / Nicolaus Road (future)	SSSC	0.0	A	0.0	A
Joiner Parkway/Nicolaus Road	Signal	22.3	С	18.0	В
Joiner Parkway / 5 th Street	Signal	16.2	В	14.2	В
Joiner Parkway / 3 rd Street	Signal	17.5	В	14.9	В
Joiner Parkway /1st Street	Signal	28.7	С	20.5	С

NOTES: LOS = LEVEL OF SERVICE. AWSC = ALL-WAY STOP CONTROL, SSSC = SIDE-STREET STOP CONTROL.

SOURCE: FEHR & PEERS, 2017.

Transit Service

Transit service in Lincoln consists of the "Lincoln Route", which is operated by Placer County Transit. Although this route serves downtown and other areas of the City, it does not currently extend to the northwest quadrant of the City, in which the project site is located.

Bicycle and Pedestrian Facilities

The following types of bicycle facilities exist within the study area:

¹ FOR SIGNALIZED AND ALL-WAY STOP CONTROLLED INTERSECTIONS, AVERAGE INTERSECTION DELAY IS REPORTED IN SECONDS PER VEHICLE FOR ALL APPROACHES.

- Multi-use paths (Class I) are paved trails that are separated from roadways, and allow for shared use by both cyclists and pedestrians.
- On-street bike lanes (Class II) are designated for use by bicycles by striping, pavement legends, and signs.

A Class I multi-use path exists along Nicolaus Road (north side) between Joiner Parkway and Lakeside Drive. Class II bike lanes exist along portions of Aviation Boulevard, Nicolaus Road west of Teal Hollow Drive/Waverly Drive, Nicolaus Road east of Joiner Parkway, parts of Joiner Parkway, and First Street east of Joiner Parkway. The south side of the segment of Nicolaus Road west of Waverly Drive has a shoulder of suitable width to facilitate bicycle travel. However, lane marking and signage is not present to designate it as bike lane.

The pedestrian network in the study area includes sidewalks along a majority of residential streets. Arterial streets such as Nicolaus Road and Joiner Parkway also feature sidewalks, although there are gaps particularly where abutting properties which have not been developed. The south side of the segment of Nicolaus Road west of Waverly Drive does not have a sidewalk. All intersections have three or more crosswalks except for Waverly Drive/Nicolaus Road, which has two crosswalks, and Nicolaus Road/Nelson Lane, which has no crosswalks and no adjacent pedestrian facilities.

Responses to Checklist Questions Responses a-b):

- . -

Project Trip Generation

Table 24 shows the estimated trips generated for the proposed 81 single family residences during weekday daily, AM peak hour, and PM peak hour conditions. As shown below, the project would generate approximately 771 daily vehicle trips, 61 new AM peak hour trips, and 81 new PM peak hour trips. The trips generated by the residential land uses are based on trip rates from the *Trip Generation Manual* (9th Edition, Institute of Transportation Engineers 2012).

Table 24: Project Trip Generation

Tubic 2 1111 of cot 111p denier													
		Twin Date 1						Trips					
Land Use (ITE Code)	Size	Size	Trip Rate ¹		1 rip kate		AM Peak Hour PM I		AM Peak Hour PM Peak Hour		AM Peak Hou		our
		Daily	AM	PM	Daily	In	Out	Total	In	Out	Total		
Single Family Residential (210)	81 DU	9.52	0.75	1.00	771	15	46	61	51	30	81		
Total External Vehicle Trips					771	15	46	61	51	30	81		

NOTES: DU = DWELLING UNITS

Source: Fehr & Peers, 2017.

Project Trip Distribution

The distribution of project generated vehicles trips was based on the following information and analysis methods:

1. Existing directional travel patterns to and from the housing development south of Nicolaus Road between Waverly Drive and Joiner Parkway.

¹ Trip rate for single family residential units based on LU categories 210 from the Trip Generation Manual (Institute of Transportation Engineers 2012).

- 2. Existing travel patterns along Nicolaus Road, Nelson Lane, and Joiner Parkway (to understand regional travel patterns).
- 3. Complementary land uses (i.e., employment, retail, and schools) within the study area.

(Note: As shown in Figure 6, the project proposes to construct an access point from Sydney Terrace at the southern portion of the project site. This access point extension from Sydney Terrace provides a connection from the proposed Amelia Way/Amelia Court roadway to the existing Milan Way/Montaro Court roadway to the south of the project site.)

The AM peak hour trip distribution for the 81 single family residential units was determined to be:

- 1. 52% to and from the west on Nicolaus Road;
- 2. 15% to and from the east on Nicolaus Road;
- 3. 3% to and from the north on Joiner Parkway;
- 4. 25% to and from the south on Joiner Parkway:
- 5. 2% to and from the south-east on 1st Street; and
- 6. 3% to and from the south-west on 1st Street.

The PM peak hour trip distribution for the 81 single family residential units was determined to be:

- 1. 57% to and from the west on Nicolaus Road;
- 2. 13% to and from the east on Nicolaus Road;
- 3. 2% to and from the north on Joiner Parkway;
- 4. 25% to and from the south on Joiner Parkway;
- 5. 2% to and from the south-east on 1st Street; and
- 6. 1% to and from the south-west on 1st Street.

Existing Plus Project Intersection Levels of Service

The "project only" trips developed through the trip generation and distribution processes were assigned to the roadway network by adding those new trips to existing traffic volumes. Table 25 displays the results of the Existing Plus Project operations analysis. According to this table, the addition of project generated traffic at all six study intersections would only result in a minor change in control delay. All intersections would operate at LOS C or better under Existing Plus Project conditions during both AM and PM peak hour conditions.

It should be noted that the Fullerton Ranch Access / Nicolaus Road side-street stop controlled intersection was analyzed for:

- Full access, including:
 - o EB right-turn in;
 - o WB left-turn in:
 - o NB left-turn out; and
 - o NB right-turn out.

Table 25: Peak Hour Intersection LOS - Existing Plus Project Conditions

Intersection	Control	AM Peak	Hour	PM Peak Hour		
mtersection	Control	Delay ¹	LOS	Delay ¹	LOS	
Lakeside Drive /Nicolaus Road	AWSC	16.5	В	13.4	В	
Fullerton Ranch Access / Nicolaus Road	SSSC	0.1 17.4 (NB LT)	A C (NB LT)	0.4 8.7 (WB LT)	A A	
Joiner Parkway/Nicolaus Road	Signal	23.6	С	19.4	В	
Joiner Parkway / 5 th Street	Signal	16.4	В	14.3	В	
Joiner Parkway / 3 rd Street	Signal	17.7	В	15.0	В	
Joiner Parkway /1st Street	Signal	28.9	С	20.6	С	

Notes: LOS = LEVEL OF SERVICE. AWSC = ALL-WAY STOP CONTROL, SSSC = SIDE-STREET STOP CONTROL. NB LT = NORTH-BOUND LEFT-TURN. WB LT = WEST-BOUND LEFT-TURN.

Source: Fehr & Peers, 2017.

Table 26 presents average daily trip (ADT) estimates for each study roadway segment and project access point under Existing and Existing Plus Project conditions. By providing full access at the Fullerton Ranch Driveway / Nicolaus Road side-street stop controlled intersection, a lower number of project generated traffic would use Lakeside Drive south of Nicolaus and Celtic Drive west of the project site. Project generated traffic volumes would not change on 5th Street west of Joiner Parkway, Savannah Drive, or Milan Way. As seen in the table, the project would:

- Increase traffic levels along Nicolaus Road on both sides of the project site. However, Nicolaus Road would be operating well below capacity.
- Increase the ADT at the project's points of access, which under Existing Plus Project conditions includes Lakeside Drive, Celtic Drive, Abbeyhill Lane, 5th Street, Savannah Drive, and Milan Way. The resultant volumes are all well below the capacity of a twolane collector street.

Table 26: Two-Way Average Daily Traffic - Existing and Existing Plus Project Conditions

Roadway Segment	Average Daily Traffic (Existing Conditions)	Average Daily Traffic (Existing Plus Project Conditions)
Nicolaus Road west of Joiner Parkway	8,700	8,905
Nicolaus Road east of Nelson Lane	7,300	7,640
Lakeside south of Nicolaus	1,000	1,020
Celtic Drive / Abbeyhill Road west of Project Site	400	420
5 th Street west of Joiner Parkway	1,600	1,840
Savannah Drive east of Project Site	700	910
Milan Way west of Savannah Drive and south of the Project Site	250	280

NOTE: N.A. = NOT APPLICABLE SOURCE: FEHR & PEERS, 2017.

¹ FOR SIGNALIZED AND ALL-WAY STOP CONTROLLED INTERSECTIONS, AVERAGE INTERSECTION DELAY IS REPORTED IN SECONDS PER VEHICLE FOR ALL APPROACHES.

Cumulative Plus Project Intersection Levels of Service and Two-Way Average Daily Traffic

Table 27 presents the results of the Cumulative operations analyses. According to this table, vehicle traffic generated by the proposed 81 single family residences would result in a minor change in control delay. All intersections would operate at LOS C or better under Cumulative Plus Project conditions during both AM and PM peak hour conditions.

Table 28 presents ADT estimates for each study roadway segment and project access point under Cumulative and Cumulative Plus Project conditions. By providing full access at the Fullerton Ranch Driveway / Nicolaus Road side-street stop controlled intersection, a lower number of project generated traffic would use Lakeside Drive South of Nicolaus Road and Celtic Drive / Abbeyhill Road west of the project site.

Table 27: Peak Hour Intersection LOS - Cumulative and Cumulative Plus Project Conditions

Tubic 27.1 cux Hour I	LOS	230	Cumulative No Project Conditions				,	nulative	Plus Proj itions	ject
Intersection	Standard	Control	AM Pea	k Hour	PM Ped	ık Hour	AM Ped	ık Hour	PM Peak Hour	
			Delay ¹	LOS	Delay ¹	LOS	Delay ¹	LOS	Delay ¹	LOS
Lakeside Drive/Nicolaus Road	С	Signal	33.7	С	24.9	С	34.1	С	25.1	С
Fullerton Ranch Access / Nicolaus Road (future)	С	SSSC	0.0 (Does Not Exist)	A (Does Not Exist)	0.0 (Does Not Exist)	A (Does Not Exist)	1.6 (19.5) (NB LT)	A (C) (NB LT)	0.5 (10.0) (WB LT)	A (A) (WB LT)
Joiner Parkway/Nicolaus Road	С	Signal	29.9	С	26.5	С	29.9	С	27.1	С
Joiner Parkway / 5 th Street	С	Signal	23.5	С	20.1	С	23.6	С	20.4	С
Joiner Parkway / 3 rd Street	С	Signal	22.6	С	26.4	С	22.6	С	26.5	С
Joiner Parkway/1st Street	С	Signal	28.4	С	32.0	С	28.5	С	32.1	С

NOTES: LOS = LEVEL OF SERVICE. AWSC = ALL-WAY STOP CONTROL. SSSC = SIDE-STREET STOP CONTROL. BOLDED CELLS REPRESENT SIGNIFICANT IMPACTS.

Source: Fehr & Peers, 2017.

¹ FOR SIGNALIZED INTERSECTIONS AND ALL-WAY STOP CONTROLLED INTERSECTIONS, AVERAGE INTERSECTION DELAY IS REPORTED IN SECONDS PER VEHICLE FOR ALL APPROACHES. FOR SIDE-STREET STOP CONTROLLED INTERSECTIONS, THE DELAY AND LOS FOR THE MOST-DELAYED INDIVIDUAL MOVEMENT IS SHOWN IN PARENTHESES, AND DELAY/LOS FOR THE ENTIRE INTERSECTION IS SHOWN WITHOUT PARENTHESES.

Table 28: Two-Way Average Daily Traffic - Cumulative and Cumulative Plus Project Conditions

	Average Daily Traffic				
Roadway Segment	Existing Conditions	Cumulative No Project Conditions	ect Cumulative Plus Project Conditions		
Nicolaus Road west of Joiner Parkway	8,700	27,100	27,305		
Nicolaus Road east of Nelson Lane	7,300	24,400	24,740		
Lakeside Drive south of Nicolaus Road	1,000	1,100	1,120		
Celtic Drive / Abbeyhill Road west of Project Site	400	450	470		
5 th Street west of Joiner Parkway	1,600	4,100	4,340		
Savannah Drive east of Project Site	700	700	910		
Milan Way west of Savannah Drive south of Project Site	250	250	280		

NOTE: N.A. = NOT APPLICABLE SOURCE: FEHR & PEERS, 2017.

Conclusion

All intersections would operate at LOS C or better under Existing Plus Project and Cumulative Plus Project conditions during both AM and PM peak hour conditions. Therefore, impacts would be considered *less than significant*.

Response c): The proposed project does not include airport or airstrip facilities and is not located adjacent to an airport or airstrip. According to the Placer County ALUP, project site is located within Compatibility Zone C2 for the Lincoln Regional Airport. The proposed project does not include buildings over two stories, and there are no proposed towers or other elevated structures proposed. The proposed project would not result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks. Implementation of proposed project would have **no impact** relative to this topic.

Responses d-e): No site circulation or access issues have been identified that would cause a traffic safety problem/hazard or any unusual traffic congestion or delay. The volumes on the internal residential roadways (with homes fronting on them) would be relatively low such that no significant conflicts would be expected with through traffic and vehicles backing out of the driveways and/or garages within the project.

Most emergency vehicles arriving to and from the Fullerton Ranch Project would need to pass through the Nicolaus Road / Joiner Parkway intersection, which is equipped with emergency vehicle pre-emption. The project site includes multiple access points, including Nicolaus Road / Fullerton Ranch Access, Celtic Drive, Abbeyhill Road, Savannah Drive, and Milan Way. All accesses would be designed to City standards that accommodate turning requirements for fire trucks. These multiple entry/exit points provide flexibility for emergency vehicles to access or evacuate from multiple directions during an emergency.

At the proposed project entrances on Nicolaus Road, there are no safety, capacity, or sight distance issues identified with providing a westbound left-turn movement entering the project site. In addition, there were no safety, capacity, or sight distance issues identified with providing a northbound left-turn movement exiting the project site.

In addition, with the addition of project traffic, none of the warrants for a traffic signal would be met at the Nicolaus Road / Fullerton Ranch access location. The analysis indicates the intersections would continue to operate at acceptable City LOS conditions in the future with the side street stop control and a traffic signal would not be required under cumulative plus project conditions. Therefore, impacts associated with design features and emergency access would be considered *less than significant*.

Response f): The Transportation & Circulation Element of the *City of Lincoln General Plan* (March 2008) includes the following goals and policies that are relevant to transportation and circulation:

- **Policy T-4.3:** Promote Public Transit. The City shall promote the use of public transit through development conditions requiring park-and-ride lots, bus turnouts and passenger shelters along major streets adjacent to appropriate land uses.
- **Policy T-5.1:** Develop Bike Lanes. The City shall require bike lanes in the design and construction of major new street and highway improvements, and to establish bike lanes on those city streets wide enough to accommodate bicycles safely.
- **Policy T-5.4:** Bicycle and Pedestrian Crossings. The City shall provide pedestrian/bicycle crossings at appropriate intervals along new roadways that will adequately serve new large-scale commercial office, industrial development, and residential development as well as parks and schools.
- **Policy T-5.6:** Trails and Pathways to Retail and Employment Centers. The City shall promote pedestrian convenience and safety through development conditions requiring sidewalks, walking paths, or hiking trails that connect residential areas with commercial, shopping, and employment centers. Where feasible, trails will be looped and interconnected.
- **Policy T-5.7:** Trails and Pathways along Creeks and Wetland Areas. The City shall encourage the development of trails and pathways along the edges of creeks and wetland areas. Where feasible, trails will be looped and interconnected.
- **Policy T-5.9:** Pedestrian Access. The City shall encourage specific plans and development plans to include design of pedestrian access that enables residents to walk from their homes to places of work, recreation and shopping.
- **Policy HS-3.18:** Design for Transportation Alternatives. The City shall encourage all new development to be designed to promote pedestrian and bicycle access and circulation (including the use of NEVs), to the greatest extent feasible.

The *City of Lincoln Bicycle Transportation Plan Update* (2012) includes the following goals policies related to bicycle circulation in new development areas that are relevant to the project:

- **Policy 1.5:** Provide bicycle connections that allow for regional bike travel to and from the City of Lincoln.
- **Policy 1.6:** Integrate bicycle planning with other community planning, including land use and transportation planning.
- **Policy 2.1:** Require new development projects to reserve the right-of-way for multi-use trails shown in the proposed system of bikeways.
- **Policy 2.3:** Provide pedestrian/bicycle crossings at appropriate intervals along new roadways that will adequately serve new large-scale commercial office, industrial development, and residential development.

The proposed project does not conflict with any of the above listed policies from the General Plan Transportation & Circulation Element. The proposed project would not generate a significant increase in traffic in the area compared to the existing and it would not decrease levels of service to unacceptable levels. In addition, the proposed project would not change the design of any existing pedestrian or bicycle facilities or create any new safety problems in the area. The proposed project will add a small amount of both pedestrians and bicyclists who will utilize both existing and planned facilities connecting the project site with the community at large. The internal streets will be designed to the City's standard for pedestrian sidewalks.

The *City of Lincoln Bikeway Master Plan* shows the following planned bicycle facilities in the project vicinity:

- Planned Class II bike lane on south side of Nicolaus Road between Waverly Drive and Joiner Parkway.
- Planned Class I multi-use trail on north side of Nicolaus Road between Waverly Drive and Nelson Lane.
- Planned Class I multi-use trail that would extend southerly from Nicolaus Road west of Waverly Drive, easterly along Markham Ravine, and then southerly parallel to Chambers Drive to beyond First Street.
- Planned Class III bike lane connecting Nicolaus Road, through the Glenmoor Subdivision via Abbeyhill Road, through the project site, to Savannah Drive.

The site plan for the proposed project does not specify where bicycle lanes would be constructed on-site. Without measures to ensure that the project is consistent with the *City of Lincoln Bikeway Master Plan*, a potentially significant impact would result.

The proposed project would not interfere with any existing bus routes and would not remove or relocate any existing bus stops. The proposed project also would not conflict with any transit plans or goals of the City of Lincoln and, based on the size of the project, it would be expected to generate only limited transit ridership. The project would be expected to provide a minimal amount of additional ridership for local bus companies.

With implementation of the following mitigation measure, the proposed project would have a *less than significant* impact related to alternative transportation.

Mitigation Measure Trans-1: Prior to approval of improvements plans, the improvement plans shall reflect the following bicycle facility improvements on and adjacent to the project site:

- Construct the segment of the Class II bike lane along the project frontage on the south side of Nicolaus Road. Alternatively, the project shall dedicate the right-of-way and pay the project's fair share towards the Class II bike lane on the south side of Nicolaus Road between Waverly Drive and Joiner Parkway.
- Construct the Class III bike lane connecting Nicolaus Road, through the Glenmoor Subdivision via Abbeyhill Road, through the project site, to Savannah Drive.

XVII. TRIBAL CULTURAL RESOURCES

	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact
Would the project cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code Section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is:				graphically
a) Listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code Section 5020.1(k)?		X		
b) A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1? In applying the criteria set forth in subdivision (c) of Public Resources Code Section 5024.1, the lead agency shall consider the significance of the resources to a California Native American tribe.		X		

Background

Pursuant to Assembly Bill 52 (AB 52), by letter dated December 19, 2016, the NAHC was contacted by Peak & Associates for a check of the Sacred Lands file and a list of Native Americans who may have information or concerns relative to the project site. A reply was received from the NAHC on December 21, 2016, indicating there were no resources listed in the Sacred Lands files. A list of contacts that may have concerns or more information was provided in the response. The individuals and organizations identified by the NAHC were contacted by letter on January 6, 2017. Correspondence requesting information and/or comment and a topographic map showing the project were sent to the United Auburn Indian Community of the Auburn Rancheria (Gene Whitehouse), Shingle Springs Band of Miwok Indians (Nicholas Fonseca), Tsi-Akim Maidu (Grayson Coney), and Tsi-Akim Maidu (Don Ryburg). To date, two replies have been received: United Auburn Indian Community of the Auburn Rancheria (Gene Whitehouse), and Shingle Springs Band of Miwok Indians (Nicholas Fonseca). According to the response letters, neither group is aware of any known tribal cultural resources on the project site.

Methodology to identify cultural and paleontological resources in the project site included a cultural resources record search, archival research, and review of historic maps and aerial photographs in 2016-2017; Sacred Lands file search by the NAHC and related consultation with local Native American groups and individuals undertaken in 2016.2017; initiation by the City in 2015 of SB 18 consultation with listed tribes; notification by the City in 2016 in accordance with AB 52 tribal requests; and pedestrian survey by cultural resources specialists conducted in December 2016.

This impact analysis is based on the cultural resources inventory completed for the project (Peak and Associates, 2017), the review of geologic maps and fossil records, and relevant regulations. The project was analyzed in terms of its potential to impact undocumented and potentially significant cultural resources, including buried human remains and tribal cultural

resources (TCRs), within the project site, and its potential to impact undocumented paleontological resources within the project site.

Responses to Checklist Questions

Responses a-b): Based on the above information, the project site has a low to moderate potential for the discovery of prehistoric, ethnohistoric, or historic archaeological sites that may meet the definition of TCRs. Although no TCRs have been documented in the project site, the project is located in a region where significant cultural resources have been recorded and there remains a potential that undocumented archaeological resources that may meet the TCR definition could be unearthed or otherwise discovered during ground-disturbing and construction activities. Examples of significant archaeological discoveries that may meet the TCR definition would include villages and cemeteries. Due to the possible presence of undocumented TCRs within the project site, construction-related impacts on tribal cultural resources would be potentially significant. With implementation of the following mitigation measure, the proposed project would have a *less than significant* impact related to tribal cultural resources.

Mitigation Measure Tribal-1: If cultural resources are discovered during project-related construction activities, all ground disturbances within a minimum of 50 feet of the find shall be halted until a qualified professional archaeologist can evaluate the discovery, and tribal representatives from the United Auburn Indian Community (UAIC) of the Auburn Rancheria and the Shingle Springs Band of Miwok Indians shall be contacted. The archaeologist, in coordination with the UAIC and Shingle Springs Band of Miwok Indians representatives, shall examine the resources, assess their significance, and recommend appropriate procedures to the lead agency to either further investigate or mitigate adverse impacts. If the find is determined by the lead agency in consultation with the Native American tribe traditionally and culturally affiliated with the geographic area of the project site to be a tribal cultural resource and the discovered archaeological resource cannot be avoided, then applicable mitigation measures for the resource shall be discussed with the geographically affiliated tribe. Applicable mitigation measures that also take into account the cultural values and meaning of the discovered tribal cultural resource, including confidentiality if requested by the tribe, shall be completed (e.g., preservation in place, data recovery program pursuant to PRC §21083.2[i]). During evaluation or mitigative treatment, ground disturbance and construction work could continue on other parts of the project site.

XVIII. UTILITIES AND SERVICE SYSTEMS

Would the project:	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact
a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?			Х	
b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?			Х	
c) Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?		Х		
d) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?			Х	
e) Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the projects projected demand in addition to the providers existing commitments?			Х	
f) Be served by a landfill with sufficient permitted capacity to accommodate the projects solid waste disposal needs?			X	
g) Comply with federal, state, and local statutes and regulations related to solid waste?			X	

Responses to Checklist Questions

Responses a), b) and e): Wastewater generated by the proposed project would be conveyed to the City's Wastewater Treatment and Reclamation Facility (WWTRF) for treatment and disposal. The City's WWTRF is located approximately 2.5 miles southwest of the project site and southeast of the City on Fiddyment Road, between Athens Avenue and Moore Road. The City maintains the collection system facilities that deliver sewage to the WWTRF, which provides secondary and tertiary treatment of municipal wastewater from all parts of the City. Wastewater is mainly collected via a gravity system; however, the system also includes several lift stations. The WWTRF has expansion capacity up to 30 million gallons per day (MGD) for planned buildout and potential regional services. It is currently rated for 4.2 MGD; however, pending approvals, the dry weather capacity WWTRF will be increased to 5.9 MGD. Previous dry weather flows from the Summer of 2015 were 2.7 MGD.

The average dry weather flow (ADWF) from the City of Lincoln at General Plan buildout is estimated at 26.4 MGD. An additional 8 MGD from the Placer Nevada Wastewater Authority (PNWWA) communities is estimated during the same horizon. As shown in the table below, the

total ADWF to be conveyed to and treated by the WWTRF is approximately 34.4 MGD, with a total peak wet weather flow (PWWF) of 120 MGD.

Table 29: Projected WWTRF Flows

	ADWF ⁽¹⁾ (MGD)	PWWF ⁽²⁾ (MGD)
1998 General Plan Buildout	10.97	38.4
City of Lincoln Village Alternatives (New General Plan)	13.51	47.3
Other ⁽³⁾	1.86	6.51
PNWWA (Regional)	8.00	28.0
TOTAL	34.40	120

Notes:

SOURCE: SEWER CONSTRAINTS ANALYSIS AND SEWER FACILITIES COST ESTIMATE (APPENDIX G OF GENERAL PLAN UPDATE EIR), TABLE 3.

As shown in the table below, the total projected ADWF to be conveyed to and treated by the WWTRF from Lincoln is approximately 26.4 MGD at General Plan buildout. This would provide excess capacity of an estimated 8.0 MGD. The total projected PWWF is 92.2 MGD at General Plan buildout, which would result in an excess of 27.8 MGD. Expansion of the WWTRF to provide capacity for General Plan buildout has been previously envisioned for the main WWTRF components, with the exception of the maturation basin and effluent storage basin. A facility plan for the first WWTRF expansion would increase capacity from the current 4.2 MGD to 6.3 or 8.4 MGD.

Table 30: Projected WWRTF Flows⁽¹⁾ from City of Lincoln

VILLAGE	RESIDENTIAL	COMMERCIAL	PUBLIC	INDUSTRIAL	ADWF	PWWF
71221102	EDU (2)	ACRES	ACRES	ACRES	(MGD)	(MGD)
V-1	3,507	20	48	0	1.09	3.81
V-2	3,874	12	0	0	1.08	3.78
V-3	4,841	70	0	0	1.50	5.25
V-4	5,421	12	0	0	1.48	5.18
V-5	5,779	12	0	0	1.59	5.57
V-6	5,083	12	0	0	1.38	4.83
V-7	2,898	5	0	0	0.78	2.73
SUD-A	1,623	1,170	0	142	2.56	8.96
SUD-B	426	413	0	0	0.77	2.70
SUD-C	0	0	0	644	1.29	4.52
Other	286	257	603	387	1.86	6.51
1998 GP	21,846	352	660	1,834	10.97	38.4
Buildout	21,040	332	000	1,034	10.97	30.4
TOTAL	55,587	2,335	1,311	3,007	26.4	92.2

NOTES:

SOURCE: SEWER CONSTRAINTS ANALYSIS AND SEWER FACILITIES COST ESTIMATE (APPENDIX G OF GENERAL PLAN UPDATE EIR), TABLE 4.

⁽¹⁾ AVERAGE DRY WEATHER FLOW, IN MILLION GALLONS PER DAY (MGD).

⁽²⁾ PEAK WET WEATHER FLOW, IN MILLION GALLONS PER DAY (MGD).

⁽³⁾ Area within the sphere of influence but not within a village or the General Plan boundary.

⁽¹⁾ VILLAGE ALTERNATIVES MODEL.

⁽²⁾ EQUIVALENT DWELLING UNITS.

The proposed project includes 8-inch sewer lines in the rights-of-way of the proposed residential roads. Sewer service would be provided by the City of Lincoln. Table 31 summarizes the projected sanitary sewer flow resulting from the proposed project.

Table 31: Proposed Project Sanitary Sewer Generation

Land Use / Unit Count	Flow / Unit	Total Project Flow
81 residential dwelling units	250 gpd/du	20,250 gpd

NOTE: GPD/DU = GALLONS PER DAY PER DWELLING UNIT.

SOURCE: SEWER CONSTRAINTS ANALYSIS AND SEWER FACILITIES COST ESTIMATE (APPENDIX G OF GENERAL PLAN UPDATE EIR), TABLE 2.

Although the project would generate the additional demand for wastewater collection, conveyance, and treatment, the recently completed Chambers Drive and Nicolaus Road Sewer Improvement Project and WWTRF would provide sufficient capacity to serve the project. Conveyance of wastewater to the WWTRF would ensure that wastewater generated by the project meets the Regional Water Quality Control Board's treatment requirements because the WWTRF maintains applicable permits for the treatment of wastewater separate from this project.

Table 32 compares the existing and projected sanitary sewer flow resulting from the proposed project.

Table 32: Existing and Projected Sanitary Sewer Flow

	ADWF ⁽¹⁾ (MGD)	ADWF ⁽¹⁾ (gallons/day)
Existing	2.7	2,700,000
Existing + Approved Projects + Planned Projects ⁽²⁾	0.1	100,000
Proposed Project	0.02025	20,250
TOTAL	2.82025	2,820,250

Notes:

SOURCE: SEWER CONSTRAINTS ANALYSIS AND SEWER FACILITIES COST ESTIMATE (APPENDIX G OF GENERAL PLAN UPDATE EIR), TABLE 2 AND TABLE 4

Assuming 250 gpd for each of the proposed 81 single-family residences, the project would produce 20,250 gallons of wastewater per day. The WWTRF can treat dry weather flows of 4.2 MGD, and currently treats an average daily dry weather flow of approximately 2.7 MGD.⁷ The City's most recent estimates of wastewater generated by existing, approved, and planned projects would increase average daily dry weather flows to approximately 2,800,000 gallons per day (2.8 MGD) at the City WWTRF.⁸ As shown in Table 33, the wastewater generated by the proposed project would increase ADFW to approximately 2,820,250 gallons per day (2.8203 MGD) at the City WWTRF when considering the existing, approved, and planned projects. According to the Background Report prepared for the 2013-2021 Housing Element (City of Lincoln 2013), there is more than adequate capacity at the WWTRF to serve build-out of

_

⁽¹⁾ Average Dry Weather Flow, in million gallons per day (MGD) and gallons per day (gallons/day).

⁽²⁾ EXISTING INCLUDES PENDING AND APPROVED PROJECTS IN THE CITY OF LINCOLN.

⁷ City of Lincoln. Draft Environmental Impact Report – Independence at Lincoln Development Project (page 4.9-14). September 30, 2016.

⁸ Ibid.

anticipated residential land in the city, and the distribution system operates at acceptable levels and has been designed to accommodate expansions and service extensions. The proposed project wastewater would not exceed the current capacity of the WWTRF. The project applicant would be required to pay applicable connection fees. With payment of the applicable connection fees, impacts related to City sewer services will be *less than significant*.

Response d): Potable water for the proposed project would be supplied from the City's municipal water system. The City of Lincoln provides potable water to all residents and commercial customers within the City limits. Key services include: water distribution; water quality maintenance and testing; water leak/break repair; well water site maintenance and distribution; maintaining partnerships with PCWA, NID, and other water distributor/wholesalers; collaboration with the State Water Resources Board and Regional Water Authority on regulations and enforcement; and execution of the approved 2010 Urban Water Management Plan.

Water is provided by PCWA (17 MGD) and four City-owned municipal wells (7 MGD). Water supplied by PCWA comprises the City's base water supply and is derived from PCWA and NID entitlement to surface water fed by the Sierra snowpack (City of Lincoln 2016). Water from PCWA is treated at PCWA's Foothill Water Treatment Plant and is then delivered to the City (Tully & Young 2016). The City's wells are used as back-up water supply (City of Lincoln 2016).

The City has a 2012 contract with PCWA for delivery of treated surface water that currently entitles the City to a maximum daily delivery of 18,501,424.5 gallons of PCWA water and includes opportunities for the City to purchase additional supplies. Current water deliveries are significantly lower than the full entitlement and there is substantial additional, unallocated capacity in PCWA's system (1.6 MGD in 2014). The City does not anticipate a need for more than about 20,000 acre-feet per year of treated surface water from PCWA to meet demands through 2040. The City also has rights to an additional 4.5 MGD of treatment capacity at the PCWA plant that it is not currently using. In addition, there was another 5.6 MGD of capacity available on a first-come-first-served basis as of 2013. This capacity is sufficient to supply water to approximately 4,800 additional dwelling units (Tully & Young 2016).

Groundwater for the City is supplied by wells pumping from the North American Subbasin, which is part of the Sacramento Valley Groundwater Basin. The City currently limits groundwater use during normal years to 10 percent of its buildout demand. The area has currently and historically stable groundwater elevations and reliable water quality. The groundwater pumping system has a combined capacity of 8.5 MGD, or about 75 percent of the current maximum day demand, which is sufficient as an emergency supply for all but the hottest summer irrigation days (Tully & Young 2016: 4-4).

The project site would receive potable water via connections to the existing water system. The project is proposed to be primarily served by 8-inch diameter on-site water mains, connected to the existing 16-inch diameter water main on Nicolaus Road, the existing 12-inch diameter water main located on Abbeyhill Road, the existing 18-inch diameter water main located on Montaro Way, and the existing 8-inch diameter water main located on Savannah Drive. The proposed connections to these existing water mains provides for a looped connection of the project to the City's water distribution system.

Table 34 summarizes the City's estimated existing and planned future water demands, inclusive of non-revenue water needs, for each 5-year increment to 2040. As shown in the table, the estimated City water supplies in 2040 is approximately 20,336 acre-feet (AF).

Catagomy	Estimated Demand (AF/yr)					
Category	Current	2020	2025	2030	2035	2040
Current Customer Use	10,174	10,174	9,645	9,115	8,585	8,055
Projects Underway	0	53	247	324	332	479
Other Proposed Project	0	1,822	3,344	5,616	7,955	10,337
GPU Land Use Growth	0	0	0	0	0	1,224
Independence Project	0	241	241	241	241	241
TOTAL DEMAND	10,174	12,291	13,478	15,296	17,113	20,336

NOTE: SF/YR = ACRE-FEET PER YEAR.

SOURCE: INDEPENDENCE DEVELOPMENT PROJECT SB 610 WATER SUPPLY ASSESSMENT, TABLE 3-2. SEPTEMBER 2016.

Table 35 summarizes the projected water demand resulting from the proposed project. As shown in the table, the estimated water demand for the proposed project would be 37.26 AF per year (AF/yr).

Table 35: Proposed Project Water Demand

Land Use / Unit Count	Demand / Unit	Total Project Demand
81 low density residential dwelling units	0.46 AF/account/yr	37.26 AF/yr

Note: AF/ACCOUNT/YR = ACRE-FEET PER ACCOUNT PER YEAR.

SOURCE: LINCOLN 2015 URBAN WATER MANAGEMENT PLAN, TABLE 4-5.

The proposed project falls within assumed GPU Land Use Growth and the City is not projecting a shortage in its water supplies during either a single-dry or multiple dry year periods.⁹

The City of Lincoln is working closely with the PCWA and the NID to implement short-term and long-range infrastructure projects to meet the City's water demand projections throughout implementation of the City's General Plan, which includes the project. PCWA has reflected the City's growth and water demand projections in its implementation of water infrastructure projects (i.e., transmission mains, water treatment plants, water rights, etc.). To meet the City's growth projections anticipated in the General Plan, PCWA and the City are on-track with implementation of projects to ensure adequate water supplies and distribution infrastructure are commissioned in advance of need.

In a March 2016 letter, PCWA indicated that unused capacity in their existing treatment plants could be used by the City to meet future growth needs. This is estimated to be about 4.5 MGD that the City currently has rights to but is not using. As of this year (2016), an additional 3.86 MGD is available, on a first come first serve basis, in PCWA's existing facilities.¹⁰

PCWA is required to deliver raw water to its treatment plants prior to treating and delivering the water to the City. The PCWA's Ophir Pipeline Project, constructed in 2014, will enable PCWA to deliver an additional 22,000 AF from the American River to its treatment facilities (Tully & Young 2016: 5-12).

It should be noted that there is sufficient capacity in existing PCWA transmission mains to deliver all of the City's current contract water (18.5 MGD), plus at least another 5 MGD of additional capacity. The City's distribution system has a physical limitation to receive water in excess of 17.7 MGD until completion of the Phase 3 Pipeline and Metering Station, which

⁹ City of Lincoln. City of Lincoln 2015 Urban Water Management Plan (page 6-6). Public Review Draft Iune 2016.

¹⁰ City of Lincoln. City of Lincoln 2015 Urban Water Management Plan (page 3-4). Public Review Draft June 2016.

provides a secondary point of connection for the City distribution system to PCWA transmission mains. This project is anticipated to be operating by January 2018, prior to buildout of the project.

Water service would be provided by the City of Lincoln, through its partnership with PCWA. PCWA does not reserve water for specific projects. Commitments for service are made only upon the execution of a pipeline extension or service order agreement to construct any necessary on- or offsite pipelines or other facilities and the payment of all required fees, including the Plant Expansion and Replacement Charges. In Lincoln, payment of such fees occurs in conjunction with building permits.

This water demand analysis demonstrates that adequate water supply would be available to serve the project and other existing and planned future water demands. As a condition of approval, the City will require a final written verification that there is sufficient water supply as required by Government Code Section 66473.7(a)(1). Further, adequate treatment and distribution infrastructure is available or would be available prior to buildout of the project.

The additional water demand (37.26 AFY) of the proposed project would not exceed the City's available water supply. The City's water treatment and conveyance infrastructure is adequate to serve existing demand, in addition to the demand created by the proposed project. This is a *less than significant* impact and no mitigation is required.

Response c): Development of the project site would place impervious surfaces on the approximately 19.7-acre project site. Development of the project site would potentially increase local runoff, and would introduce constituents into storm water that are typically associated with urban runoff. These constituents include heavy metals (such as lead, zinc, and copper) and petroleum hydrocarbons. BMPs will be applied to the proposed site development to limit the concentrations of these constituents in any site runoff that is discharged into downstream facilities to acceptable levels.

The project would be designed and constructed with an on-site storm drainage basin. The water quality basin would be located in the northeastern portion of the project site. The basin area would account for a total surface area of 18,408 square feet (0.42 acres). The construction of the stormwater conveyance and detention system would ensure that the project is consistent with all applicable plans and regulations related to stormwater conveyance and detention as required by the city, and would ensure that offsite, or onsite flooding does not occur during storm events. Permanent onsite storm drainage would be installed to serve the proposed project. The collection system would consist of inlets and underground piping. The potential environmental impacts of construction of the onsite storm drainage system are addressed throughout this Initial Study.

All of the storm drainage facilities required for the proposed project would be located on the project site. As such, there is no potential for the project to result in environmental impacts associated with the construction of off-site drainage facilities. The environmental impacts associated with the construction of onsite drainage facilities fall within the project "footprint" and have been addressed throughout this environmental document.

The following mitigation measure requires the project applicant to install a drainage system that meets this performance standard and, prior to issuance of grading permits, provide a drainage plan and report to the City of Lincoln for review and approval. With the

implementation of the following mitigation measure, drainage impacts would be reduced to *less than significant*.

Mitigation Measure Utilities-1: Prior to the issuance of a building or grading permit, the project applicant shall submit a drainage plan to the City of Lincoln for review and approval. The plan shall include an engineered storm drainage plan that demonstrates attainment of pre-project runoff requirements in accordance with the West Placer Storm Water Quality Design Manual prior to release and describes the volume reduction measures and treatment controls used to reach attainment consistent with the Lincoln Stormwater Post-Construction Ordinance.

Responses f), g): The City's Department of Public Services manages solid waste and green waste collection and disposal. With the exception of "cluster homes," which only have solid waste service because of space limitations, each home within the City is provided with one, 90-gallon can for garbage and recycling, and another 64- or 90-gallon container for green waste material. Garbage is collected weekly and green waste is collected bi-weekly.

Refuse from the project area is transported to the Western Placer Waste Management Authority's (WPWMA's) 316-acre Western Regional Sanitary Landfill (WRSL) adjacent to the intersection of Athens Avenue and Fiddyment Road, west of State Route 65. The WPWMA is a joint powers authority comprised of the cities of Rocklin, Roseville, and Lincoln, and Placer County. Both the WRSL and the associated Material Recovery Facility (MRF) operate under permits issued by the California Integrated Waste Management Board. The MRF separates and recovers waste products for recycling, reuse, or conversion to energy sources. Materials that cannot be recycled are taken to the landfill. The MRF can accommodate over 1,750 tons of garbage per day. Currently, the MRF diverts approximately 40 percent of the material received from going to the landfill, helping Placer County comply with a state-mandated recycling rate.

Total capacity of the WRSL is 36,350,000 cubic yards, and there is 24,836,745 cubic yards of capacity remaining (as of June 3, 2016). The WRSL does not have an average annual capacity, but did received 248,773 tons of solid waste between July 1, 2015 and June 30, 2016. It is projected that the landfill has a lifespan extending to January 2058 (City of Lincoln 2016).

Project construction activities would generate solid waste, including excess construction materials and material removed during site clearing. However, the site is generally vacant, and construction would not require demolition of existing structures or removal of large quantities of waste. It is anticipated that compliance with the construction waste requirements in CALGreen would be sufficient to address the potential for construction of the project to produce excessive quantities of solid waste that could affect the capacity of the local landfill.

During operation of the project, the residences would produce solid waste that would be collected by the City and transferred to the WRSL. Based on a waste generation rate of 4.5 pounds per person per day and 209 residents, the project is expected to produce approximately 343,282.5 pounds (171 tons) of solid waste annually. It is reasonable to conclude that the landfill has sufficient permitted capacity to accommodate the project's solid waste disposal needs in compliance with all applicable laws based on the calculated residential waste generation rate.

Solid waste collection services for the City are funded through an enterprise fund. Costs for operation services (containers, bins, trucks, loaders, and street sweepers) are funded by various fees and charges collected by the City through its utility billing for solid waste collection. As development occurs in the service area, revenue is generated to finance the expansion of operational services through fees generated by new utility customers. All new development

must participate in the funding of needed facilities and equipment based on adopted program standards. These costs are spread over new development based on an equivalent dwelling unit factor such that capital facilities costs are equally borne by residential and nonresidential development. Implementation of the proposed project would have a *less than significant* impact relative to this topic.

XVIX. MANDATORY FINDINGS OF SIGNIFICANCE

	Potentially Significant Impact	Less Than Significant with Mitigation Incorporation	Less Than Significant Impact	No Impact
a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?			X	
b) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?			Х	
c) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?			Х	

Responses to Checklist Questions

Response a): This Initial Study includes an analysis of the project impacts associated with aesthetics, agricultural and forest resources, air quality, biological resources, cultural resources, geology and soils, greenhouse gas emissions, hazards and hazardous materials, hydrology and water quality, land use and planning, mineral resources, noise, population and housing, public services, recreation, transportation and traffic, and utilities and service systems. The analysis covers a broad spectrum of topics relative to the potential for the proposed project to have environmental impacts. This includes the potential for the proposed project to substantially degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory. It was found that the proposed project would have either no impact, a less than significant impact, or a less than significant impact with the implementation of mitigation measures. For the reasons presented throughout this Initial Study, the proposed project would not substantially degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory. With the implementation of mitigation measures presented in this Initial Study, the proposed project would have a less than significant impact relative to this topic.

Response b): This Initial Study includes an analysis of the project impacts associated with aesthetics, agricultural and forest resources, air quality, biological resources, cultural resources, geology and soils, greenhouse gas emissions, hazards and hazardous materials, hydrology and water quality, land use and planning, mineral resources, noise, population and housing, public

services, recreation, transportation/traffic, and utilities and service systems. The analysis covers a broad spectrum of topics relative to the potential for the proposed project to have environmental impacts. It was found that the proposed project would have either no impact, a less than significant impact, or a less than significant impact with the implementation of mitigation measures. These mitigation measures would also function to reduce the project's contribution to cumulative impacts.

The project would increase the population and use of public services and systems; however, it was found that there is adequate capacity to accommodate the project.

There are no significant cumulative or cumulatively considerable effects that are identified associated with the proposed project after the implementation of all mitigation measures presented in this Initial Study. With the implementation of all mitigation measures presented in this Initial Study, the proposed project would have a *less than significant* impact relative to this topic.

Response c): The construction phase could affect surrounding neighbors through increased air emissions, noise, and traffic; however, the construction effects are temporary and are not substantial. The operational phase could also affect surrounding neighbors through increased air emissions, noise, and traffic; however, mitigation measures have been incorporated into the proposed project that would reduce the impacts to a less than significant level. The proposed project would not cause substantial adverse effects on human beings. Implementation of the proposed project would have a *less than significant* impact relative to this topic.

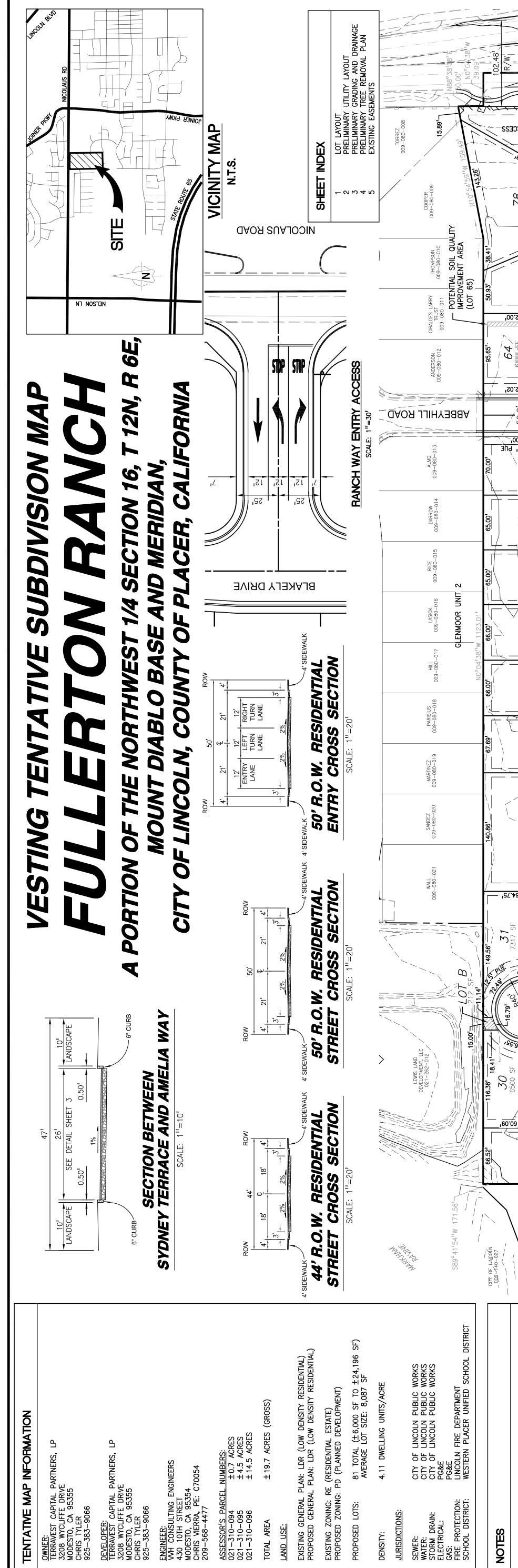
REFERENCES

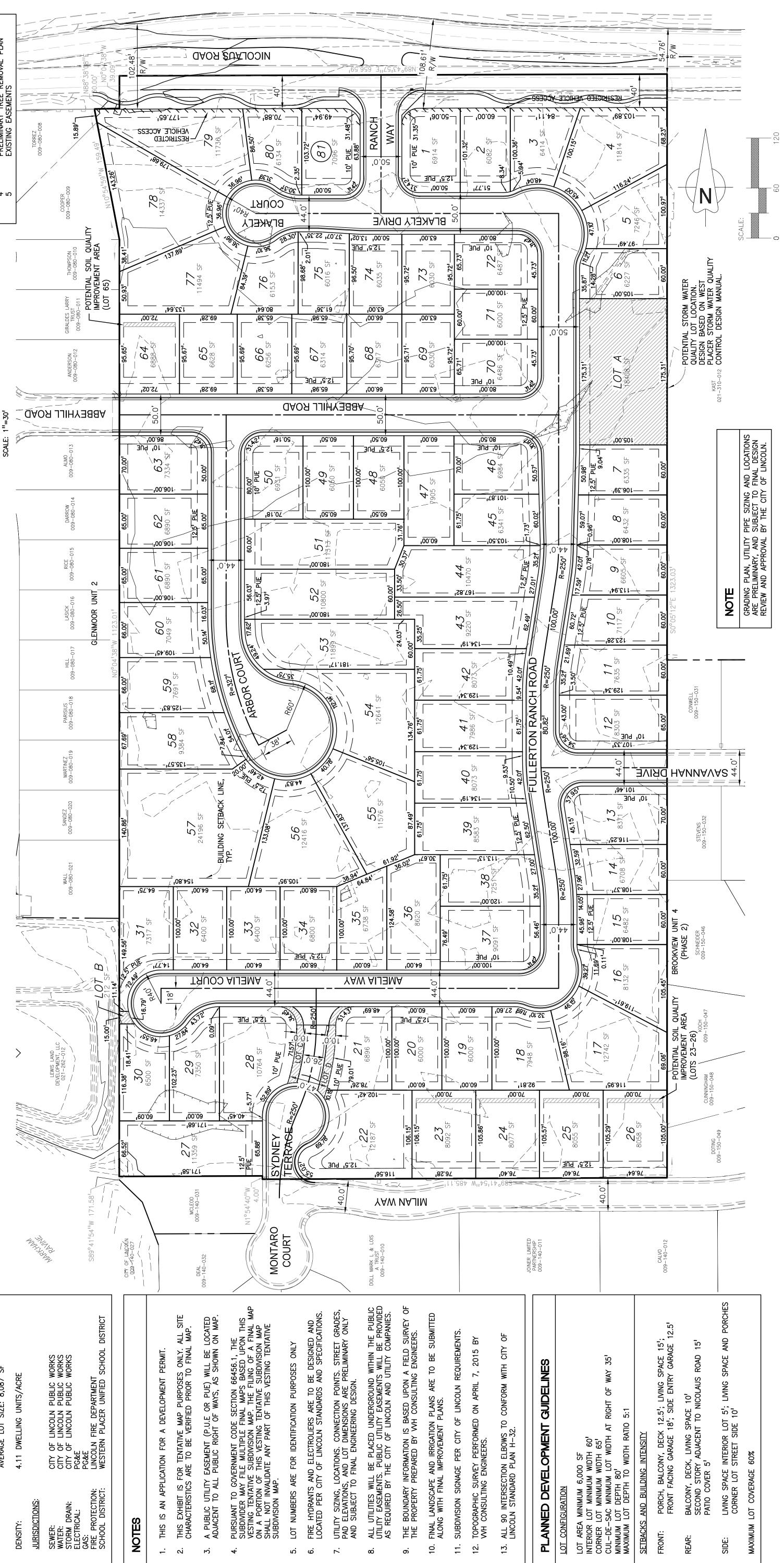
- Army Corps of Engineers. 1987. Army Corps of Engineers Wetland Delineation Manual.
- Barbour and Major 1988. Terrestrial Vegetation of California.
- C Donald Ahrens. 2006. Meteorology Today: An Introduction to Weather, Climate, & the Environment.
- City of Lincoln. City of Lincoln Municipal Code. Online content updated on September 30, 2015.
- City of Lincoln. Draft Environmental Impact Report Independence at Lincoln Development Project. September 30, 2016.
- California Air Pollution Control Officers Association. Quantifying Greenhouse Gas Mitigation Measures. August 2010.
- California Air Resources Board. Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles. October 2000. Available: https://www.arb.ca.gov/diesel/documents/rrpFinal.pdf>.
- California Air Resources Board. 2016. ARB Databases: Aerometric Data Analysis and Management System (ADAM). Available: http://www.arb.ca.gov/html/databases.htm>.
- California Department of Conservation. 2016. California Important Farmland Finder. Available: http://maps.conservation.ca.gov/ciff/ciff.html.
- California Department of Conservation. California Land Conservation Act 2014 Status Report, The Williamson Act. March 2015.
- California Energy Commission. 2005. Global Climate Change: In Support of the 2005 Integrated Energy Policy Report. (CEC-600-2005-007.) Available: http://www.energy.ca.gov/2005publications/CEC-100-2005-007/CEC-100-2005-007-CMF.PDF.
- California Energy Commission. 2006. Inventory of California Greenhouse Gas Emissions and Sinks 1990 to 2004. (CEC-600-2006-013-SF.) Available: http://www.energy.ca.gov/2006publications/CEC-600-2006-013/CEC-600-2006-013-SF.PDF>.
- County of Placer. 2017. Placer County Conservation Plan website. Available: https://www.placer.ca.gov/Departments/CommunityDevelopment/Planning/PCCP.aspx >.
- County of Placer. West Placer Stormwater Quality Design Manual. April 2016.
- Department of the Army, U.S. Army Corps of Engineers, Sacramento District. Preliminary Jurisdictional Determination Form, Sacramento District. Dated July 25, 2016.
- Dudek. Subject: Arborist Report for the Fullerton Ranch Project Site (APNs 021-310-094, 021-310-095, and 021-310-096), City of Lincoln, California. Dated August 15, 2016.

- Fehr and Peers. *Transportation and Circulation Section of the Fullerton Ranch Project IS/MND.* August 2017.
- Foothill Associates. 90-Day Report 2016-2017 Wet-Season Survey for Listed Vernal Pool Branchiopods, Fullerton Ranch, Placer County, California. May 24, 2017.
- Foothill Associates. Delineation of Waters of the United States, +/-20-Acre Whispering Oaks Site, City of Lincoln, Placer County, California. July 12, 2006.
- Foothill Associates. RE: Project Work Status Summary for the Fullerton Ranch Site, City of Lincoln, California. Dated July 21, 2016.
- Foothill Associates. RE: Request for a Preliminary Jurisdictional Determination for a Previously Verified Delineation of Waters of the United States at the Fullerton Ranch Site in the City of Lincoln, Placer County, California. Dated July 15, 2016.
- Foothill Associates. RE: Special-Status Plan Surveys on the Fullerton Ranch Site, within the City of Lincoln, Placer County, California. Dated July 14, 2016.
- Helm Biological Consulting. Dry-Season Sampling for Federally Listed Large Branchiopods at the Fullerton Ranch Project, Lincoln, Placer County, California (USFWS # 2017-TA-0297). November 2016.
- Hickman, James C. 1993. Jepson Manual: Higher Plants of California.
- Intergovernmental Panel on Climate Change. 2007. Climate Change 2007: The Physical Science Basis, Summary for Policy Makers. Available: http://fire.pppl.gov/ipcc_summary_020207.pdf>.
- j.c. brennan & associates. Fullerton Ranch Planned Development, City of Lincoln, California. March 28, 2017.
- North Fork Associates. Wetland Delineation for the +/- 20-Acre Premier Oak Estates Subdivision. May 6, 2004.
- Peak and Associates. *Determination of Eligibility and Effect for the Fullerton Ranch Project Area, City of Lincoln, Placer County, California.* January 2017.
- Placer County Air Pollution Control District. 2016. CEQA Air Quality Handbook.
- Placer County Air Pollution Control District. 2016. Placer County Air Pollution Control District Policy Review of Land Use Projects Under CEQA.
- Placer County Airport Land Use Commission. 2014. Placer County Airport Land Use Compatibility Plan.
- Placer County Airport Land Use Commission. 2017. Placer County Airport Land Use Commission Consistency Determination Case No. 2016/17-7: Fullerton Ranch Subdivision Rezone.
- Sawyer, John and Todd Keeler-Wolf. 1995. A Manual of California Vegetation.
- Skinner, Mark W. and Bruce M. Pavlik, Eds. 2001. California Native Plant Society's Inventory of Rare and Endangered Vascular Plants of California.

- Webb, S., et. al. Transportation Research Board. Airport Cooperative Research Program (ACRP) Report 6, Research Needs Associated with Particulate Emissions at Airports. 2008.
- United States Census Bureau. 2015. Quickfacts Lincoln city, California. Available: https://www.census.gov/quickfacts/table/PST045215/0641474.
- United States Department of Interior, Fish and Wildlife Service letter. Subject: Request for Initiation of Consultation for the Proposed Whispering Oaks Project (Corps File Number 200400843) in Placer County, California. Dated June 13, 2007.
- Wallace-Kuhl & Associates. Preliminary Geotechnical Engineering Report, Nicolaus Road Property, WKA No. 6087.01. July 7, 2004.

Appendix A


Preliminary Project Plans


LINCOLN, CALIFORNIA FULLERTON RANCH TERRAVEST CAPITAL PARTNERS, LP Client/Project

VESTING TENTATIVE SUBDIVISION MAP

The Contractor shall verify and be responsible for all dimensions. DO NOT scale drawing. Any errors or omissions shall be reported to VVHCE without delay. Copyrights to all designs and drawings are the property of VVHCE. Reproduction or use in whole or in part for any purpose other than that authorized in writing by VVHCE is strictly forbidden. This drawing shall not be used for construction until sealed, signed and dated by the Engineer. Description 8744.892.902 7744.832.60S :.I9T Modesto, CA 95354 430 10th Street CONSULTING ENGINEERS

Revision

REAR:

FRONT:

LOT CONFIGURATION

12.

10.

6.

5.

LOT COVERAGE

MAXIMUM

SIDE:

34"x54" SD -(PVC OR RCP) 8" SEWER -(VCP)

24" SD (PVC OR RCP)

42" EX. SD

NOTE

24" SD (PVC OR RCP) 42" EX

MASONRY SOUND WALL/ RETAINING WALL

PAD GRADE PER PLAN

..12.5' PUE

3100.

3/3/16/

CHIEF CO

MASONRY WALL

PAD GRADE PER PLAN

PROPOSED GROUND

Revision

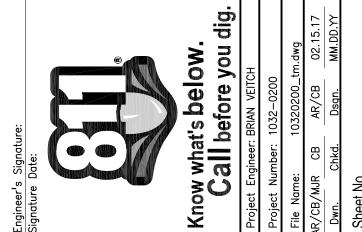
Description

The Contractor shall verify and be responsible for all dimensions. DO NOT scale drawing. Any errors or omissions shall be reported to WHCE. Reproduction Copyrights to all designs and drawings are the property of WHCE. Reproduction or use in whole or in part for any purpose other than that authorized in writing by WHCE is strictly forbidden. This drawing shall not be used for construction until scaled, signed and dated by the Engineer.

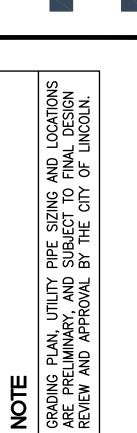
CONSULTING ENGINEERS

430 10th Street Modesto, CA 95354 Tel.: 209.568.4477 Fax: 209.568.4478 LINCOLN, CALIFORNIA

Client/Project
TERRAVEST CAPITAL PARTNERS, LP
VESTING TENTATIVE SUBDIVISION MAP
TULLERTON RANCH

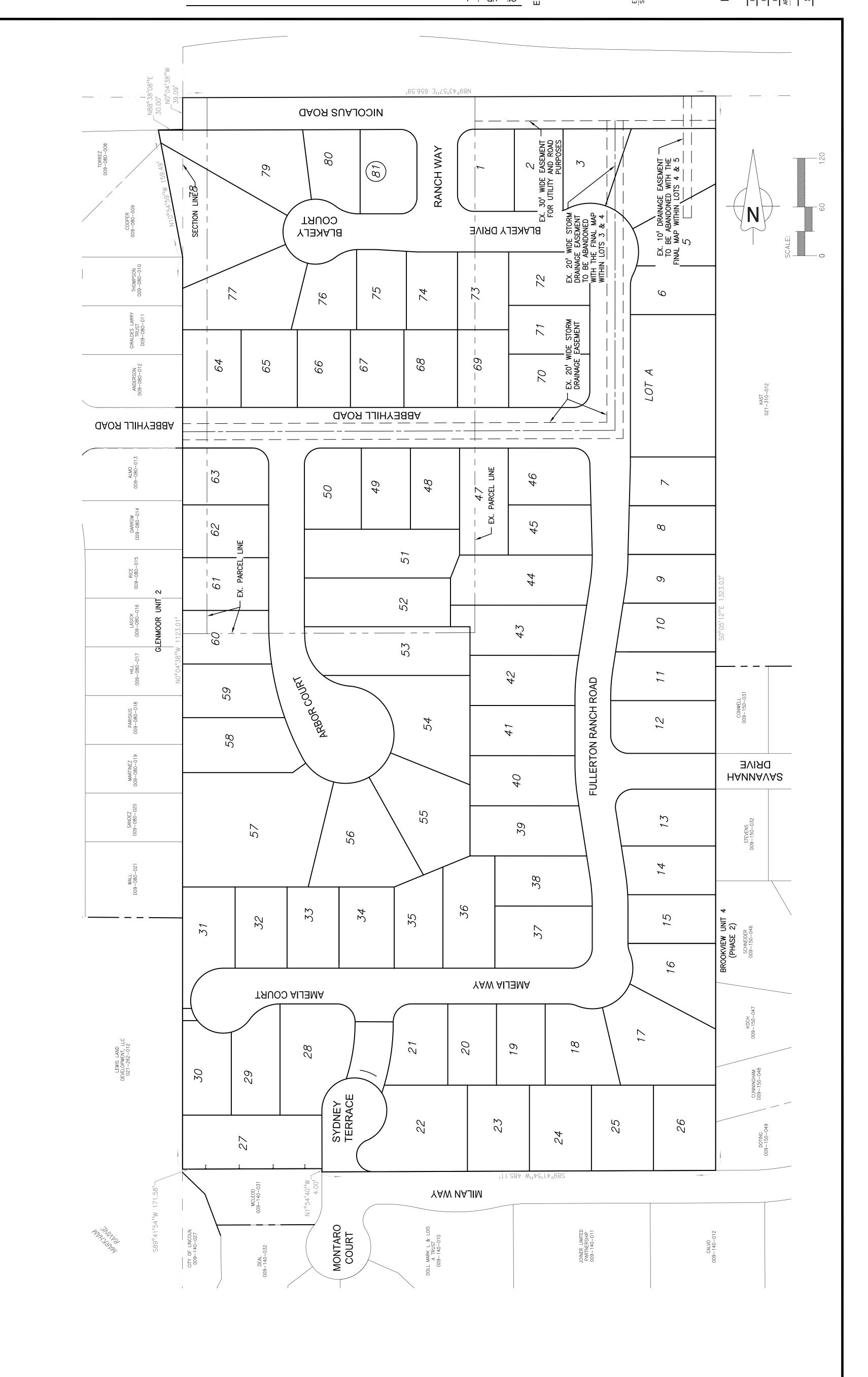

əliT

Sea


Client/Project
TERRAVEST CAPITAL PARTNERS, LP
FULLERTON RANCH
LINCOLN, CALIFORNIA

Revision

Description


5

The Contractor shall verify and be responsible for all dimensions. DO NOT scale drawing. Any errors or omissions shall be reported to WHCE. Reproduction Copyrights to all designs and drawings are the property of WHCE. Reproduction or use in whole or in part for any purpose other than that authorized in writing by WHCE is strictly forbidden. This drawing shall not be used for construction until scaled, signed and dated by the Engineer.

CONSULTING ENGINEERS

430 10th Street Modesto, CA 95354 Tel.: 209.568.4477 Fax: 209.568.4478

Appendix B

Air Quality and Greenhouse Gas Modeling

Fullerton Ranch Project CalEEMod (v.2016) Assumptions

• Air District: Placer County APCD

• Climate Zone: 2

• Land Use Setting: Urban

• Start of Construction: Thursday, May 1, 2018

Operational Year: 2020Utility Company: PG&ECO2 intensity factor: 290

Updated PG&E emission factor for 2020 reflecting RPS reductions per PGE Gas Emission
 Factors: Guidance for PG&E Customers, November 2015:

https://www.pge.com/includes/docs/pdfs/shared/environment/calculator/pge_ghg_emiss ion_factor_info_sheet.pdf

Land Uses:

LAND USE TYPE AND SUBTYPE	UNIT AMOUNT AND METRIC	LOT ACREAGE	SQUARE FOOTAGE	Population
Residential - Single Family Housing	81 DU	19.7		209

- Construction Tab Phasing:
 - o Demolition: 0 days
 - o Site Prep: 4 days
 - 5/1/18 5/4/18
 - Assumed 5 acres prepped per day
 - Grading: 60 days
 - 5/4/18 7/26/18
 - Assumed 1/3 acre graded per day
 - Assumed non-phased grading, all underground utility construction, worst case scenario
 - o Building Construction: 413 days
 - 8/8/18 3/6/20
 - Assumed construction of 1 unit per week
 - Assumed construction 5 days per week
 - o Paving: 10 days
 - 7/26/18 8/8/18
 - Assumed 2 acres paved per day
 - o Architectural Coating: 413 days
 - 10/12/18 5/12/2020
 - Assumed construction of 1 unit per week
 - Assumed construction 5 days per week
- Construction Tab Off-Road Equipment:
 - o Demolition: N/A
 - o Site Prep: 1 dozers, 2 tractors
 - Engineer's estimate
 - o Grading: 2 excavators, 1 graders, 1 dozers, 1 scrapers, 1 backhoes
 - Engineer's estimate
 - O Building Construction: 1 crane (3 hours per day), 1 forklifts, 1 generator sets, 1 backhoes (4 hours per day), 0 welders
 - 1 machine per subdivision, no welding

- o Paving: 1 pavers, 1 paving equipment, 1 rollers
 - 1 machine per subdivision
- o Architectural Coating: 1 compressors (6 hours per day)
 - 1 compressor per subdivision
- Construction Tab Dust From Material Movement:
 - o Grading Total Acres Disturbed: 19.7
 - Site Prep Total Acres Disturbed: 19.7
- Construction Tab Demolition: N/A
- Operational Tab Mobile:
 - Single Family Housing: 9.52 daily trips, per Fehr & Peers Traffic Study
 - o Single Family Housing: trip lengths revised, per Fehr & Peers
 - Annual Project VMT (per Fehr & Peers): 1,292,100
 - Unmitigated Project VMT (per CalEEMod): 2,219,063
 - % change in VMT = 58.2%
 - Calculated Res H-W Trip Length: 6.28855
 - Calculated Res H-S Trip Length: 4.25059
 - Calculated Res H-O Trip Length: 4.36705
- Vegetation Tab
 - o Land Use change: 19.7 grassland acres to 0 acres
- Mitigation Tab:
 - o Construction:
 - Water exposed areas 3 times per day,
 - Unpaved road mitigation 5 MPH.
 - Traffic:
 - Project Setting: Low Density Suburban,
 - Improve Destination Accessibility (1.45 miles to downtown),
 - Improve Walkability Design (5 intersections per 19.7 acres = 160 intersections per square mile),
 - Increase Transit Accessibility (0.6 miles to bus stop at 3rd and Sandra),
 - Increase Density (4.1 dwelling units per acre),
 - Provide Traffic Calming Measures,
 - Improve Pedestrian Network (on- and off-site).
 - o Area:
 - Only Natural Gas Hearths,
 - Low VOC paint (residential interior and exterior and non-res interior and exterior).
 - o Energy:
 - Exceed Title 24 (by 15%),
 - Install efficient lighting (16%),
 - All appliance types should be single family housing.
 - Water:
 - Install all low-flow,
 - Water efficient irrigation (6.1% reduction).

CalEEMod Version: CalEEMod.2016.3.1

Page 1 of 41

Date: 8/8/2017 2:53 PM

Fullerton Ranch Project - Placer County APCD Air District, Annual

Fullerton Ranch Project

Placer County APCD Air District, Annual

1.0 Project Characteristics

1.1 Land Usage

Metric Lot Acreage Floor Surface Area Population	Dwelling Unit 19.70 145,800.00 209
	Dwelling Unit
Size	81.00
Land Uses	Single Family Housing

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	74
	2			Operational real	0202
Cully Company	ic Gas & Fierlic	Collipally			
CO2 Intensity (Ib/MWhr)	290	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Fullerton Ranch Project - Placer County APCD Air District, Annual

Date: 8/8/2017 2:53 PM

Project Characteristics - See assumptions in Appendix B

Land Use - See assumptions in Appendix B

Construction Phase - See assumptions in Appendix B

Off-road Equipment -

Off-road Equipment - See assumptions in Appendix B

Grading - See assumptions in Appendix B

Vehicle Trips - See assumptions in Appendix B

Woodstoves - See assumptions in Appendix B

Energy Use - See assumptions in Appendix B

Land Use Change

Sequestration -

Construction Off-road Equipment Mitigation -

Mobile Land Use Mitigation -

Mobile Commute Mitigation - See assumptions in Appendix B

Area Mitigation -

Energy Mitigation -

Water Mitigation -

Table Name	Column Name	Default Value	New Value
tblAreaMitigation	UseLowVOCPaintParkingCheck	False	True
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	WaterUnpavedRoadVehicleSpeed 40	သ
tblConstructionPhase	NumDays	NumDays 20.00	413.00

Fullerton Ranch Project - Placer County APCD Air District, Annual

413.00	00.00	10.00	4.00	5/12/2020	3/6/2020	7/26/2018	8/8/2018	5/4/2018	10/12/2018	8/8/2018	5/4/2018	7/26/2018	19.70	19.70	19.70	209.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	00.0
300.00	30.00	20.00	10.00	7/13/2020	4/6/2020	7/30/2018	5/25/2020	5/28/2018	5/26/2020	7/31/2018	5/29/2018	4/7/2020	90:00	0.00	26.30	232.00	3.00	2.00	2.00	2.00	3.00	2.00	3.00	2.00	4.00	1.00
NumDays	NumDays	NumDays	NumDays	PhaseEndDate	PhaseEndDate	PhaseEndDate	PhaseEndDate	PhaseEndDate	PhaseStartDate	PhaseStartDate	PhaseStartDate	PhaseStartDate	AcresOfGrading	AcresOfGrading	LotAcreage	Population	OffRoadEquipmentUnitAmount									
tblConstructionPhase	tblGrading	tblGrading	tblLandUse	tblLandUse	tblOffRoadEquipment	tblOffRoadEguipment																				

Fullerton Ranch Project - Placer County APCD Air District, Annual

3.00	290	2020	18.00	20.00	15.00	15.00	4.37	4.25	6.29
7.00	641.35	2018	8.00	15.00	8.00	8.00	7.50	7.30	10.80
UsageHours	CO2IntensityFactor	OperationalYear	WorkerTripNumber	WorkerTripNumber	WorkerTripNumber	WorkerTripNumber	HO_TL	HS_TL	HW_TL
tblOffRoadEquipment	tblProjectCharacteristics	tblProjectCharacteristics	tbITripsAndVMT	tbITripsAndVMT	tbITripsAndVMT	tbITripsAndVMT	tblVehicleTrips	tblVehicleTrips	tbIVehicleTrips

2.0 Emissions Summary

Fullerton Ranch Project - Placer County APCD Air District, Annual

2.1 Overall Construction Unmitigated Construction

		e	. 4		4
C02e		227.1958	247.7144	51.9829	247.7144
N2O		0.0533 0.0000 227.1953	0.0000	0.0000	0.0000
CH4	/yr	0.0533	0.0339	6.5300e- 003	0.0533
Total CO2	MT/yr	225.8618	246.8680	51.8196	246.8680
NBio- CO2		0.0000 225.8618 225.8618	0.0000 246.8680 246.8680	0.0000 51.8196	0.0000 246.8680 246.8680
Bio- CO2		0.0000	0.0000	0.0000	0.000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.2082	0.1003	0.0191	0.2082
Exhaust PM2.5		0.0937	0.0885	0.0167	0.0937
Fugitive PM2.5		0.1145	0.0118	2.4600e- 003	0.1145
PM10 Total		0.3373	0.1357	0.0264	0.3373
Exhaust PM10	tons/yr	0.1003	0.0922	0.0173	0.1003
Fugitive PM10	ton	0.2370	0.0435	9.1100e- 0.0173 0.0264 003	0.2370
805		2.5000e- 003	2.7800e- 003	5.9000e- 004	1.4209 2.7800e- 003
00		1.3342	1.4209	0.3017	1.4209
×ON		2.0377	1.6436 1.4209 2.7800e- 003	0.3154	0.7639 2.0377
ROG		0.3237 2.0377 1.3342 2.5000e- 0.2370 0.1003 0.3373 0.1145	0.7639	0.2471 0.3154 0.3017 5.9000e-	
	Year	2018	2019	2020	Maximum

Mitigated Construction

CO2e		227.1950	247.7142	51.9828	0.0000 247.7142			
N20		0.000.0	0.0000 247.7142	0.0000	0.0000			
CH4	'yr	0.0533	0.0339	6.5300e- 003	0.0533			
Total CO2	MT/yr	225.8616	246.8678	51.8196	246.8678			
NBio- CO2					0.0000 225.8616 225.8616 0.0533 0.0000 227.1950	246.8678 246.8678	51.8196 51.8196 6.5300e- 003	0.0000 246.8678 246.8678
Bio- CO2		0.000.0	0.0000	0.0000	0.0000			
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5			0.1003	0.0191	0.1422			
Exhaust PM2.5		0.1003 0.2070 0.0485 0.0937 0.1422	0.0885	0.0167	0.0937			
Fugitive PM2.5		0.0485	0.0118	2.4600e- 003	0.0485			
PM10 Total		0.2070	0.1357	0.0264	0.2070			
Exhaust PM10	tons/yr	0.1003	0.0922	0.0173	0.1003			
Fugitive PM10	tons	0.1067	0.0435	9.1100e- 003	0.1067			
802		2.5000e- 003	2.7800e- 003	5.9000e- 004	2.0377 1.4209 2.7800e- 003			
CO				1.3342	1.4209	0.3017	1.4209	
×ON		0.3237 2.0377 1.3342 2.5000e- 0.1067 003	1.6436	0.3154	2.0377			
ROG		0.3237	0.7639 1.6436 1.4209 2.7800e- C	0.2471	0.7639			
	Year	2018	2019	2020	Maximum			

Fullerton Ranch Project - Placer County APCD Air District, Annual

CO2e	0.00
N20	0.00
СН4	0.00
Total CO2	0.00
NBio-CO2 Total CO2	0.00
Bio- CO2	0.00
PM2.5 Total	20.15
Exhaust PM2.5	0.00
Fugitive PM2.5	51.27
PM10 Total	26.09
Exhaust PM10	0.00
Fugitive PM10	44.98
802	0.00
00	0.00
NOX	0.00
ROG	0.00
	Percent Reduction

Maximum Mitigated ROG + NOX (tons/quarter)	1.4449	0.4758	0.6391	9985'0	99090	0909'0	0.5928	0.3404	0.0273	1.4449
Maximum Unmitigated ROG + NOX (tons/quarter)	1.4449	0.4758	0.6391	9985'0	99090	0909'0	0.5928	0.3404	0.0273	1,4449
End Date	7-31-2018	10-31-2018	1-31-2019	4-30-2019	7-31-2019	10-31-2019	1-31-2020	4-30-2020	7-31-2020	Highest
Start Date	5-1-2018	8-1-2018	11-1-2018	2-1-2019	5-1-2019	8-1-2019	11-1-2019	2-1-2020	5-1-2020	
Quarter	-	2	ε	4	ટ	9	2	8	6	

Fullerton Ranch Project - Placer County APCD Air District, Annual

2.2 Overall Operational Unmitigated Operational

CO2e		123.6573	236.4384	649.4506	37.8383	12.5175	1,059.902 1	
N2O		6.5800e- 123.6573 003	4.5300e- 003	0.000.0	0.000.0	4.1700e- 003	0.0153	
CH4	/yr	0.0782	0.0123	0.0327	0.9026	0.1725	1.1983	
Total CO2	MT/yr	119.7418	234.7804	648.6329	15.2730	6.9625	1,025.390 6	
NBio- CO2		36.0722 119.7418	234.7804 234.7804	648.6329	0.0000	5.2882	924.7737	
Bio- CO2		83.6696	0.000.0	0.000.0	15.2730	1.6743	100.6169	
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.8830	9.6500e- 003	0.1350	0.000.0	0.000.0	1.0276	
Exhaust PM2.5		0.8830	9.6500e- 003	7.3300e- 003	0.0000	0.0000	0.8999	
Fugitive PM2.5				 	0.1277	 	 	0.1277
PM10 Total		0.8830	9.6500e- 003	0.4823	0.0000	0.0000	1.3749	
Exhaust PM10	tons/yr	0.8830	9.6500e- 003	7.7700e- 003	0.0000	0.0000	0.9004	
Fugitive PM10	ton			0.4746			0.4746	
S02		0.0114	7.6000e- 004	7.0500e- 003			0.0192	
00		0.1062 6.8772 0.0114	0.0508	2.1805			9.1084	
NOx		0.1062	0.0140 0.1194 0.0508 7.6000e-	1.4735			1.6991	
ROG		5.7615	0.0140	0.2244			5.9998	
	Category	Агеа	Energy	Mobile	Waste	Water	Total	

Fullerton Ranch Project - Placer County APCD Air District, Annual

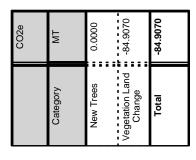
2.2 Overall Operational

Mitigated Operational

CO2e		58.7673	211.5149	611.8862	37.8383	10.2287	930.2354
N2O		1.0500e- 003	4.0600e- 2 003	0.000.0	0.000.0	3.3400e- 003	8.4500e- 9
CH4	yr		0.0114	0.0318	0.9026	0.1380	1.0858
Total CO2	MT/yr	58.4021 2.0600e- 003	210.0198	611.0924	15.2730	5.7829	900.5702
NBio- CO2		58.4021	210.0198 210.0198	611.0924	0.000.0	4.4434	883.9577
Bio- CO2 NBio- CO2 Total CO2		0.0000	0.0000	0.0000	15.2730	1.3394	16.6125
PM2.5 Total		7.3300e- 003	8.3300e- 003	0.1258	0000:0	0.000.0	0.1414
Exhaust PM2.5		7.3300e- 003	8.3300e- 003	6.9100e- 003	0.000.0	0.000.0	0.0226
Fugitive PM2.5			r 	0.1189	r 	r	0.1189
PM10 Total		7.3300e- 003	8.3300e- 003	0.4492	0.0000	0.0000	0.4648
Exhaust PM10	s/yr	7.3300e- 003	8.3300e- 003	7.3200e- 003	0.0000	0.0000	0.0230
Fugitive PM10	tons/yr			0.4418			0.4418
S02		3.5000e- 004	6.6000e- 004	2.0846 6.6400e- 003			7.6500e- 003
00		0.6245					2.7529
NOx		0.0566 0.6245 3.5000e-	0.1030	1.4326			1.5921
ROG		0.6848	0.0121	0.2199			0.9168
	Category	Area	Energy	Mobile	Waste	Water	Total

CO2e	12.23
N20	44.70
CH4	9.39
Total CO2	12.17
Bio- CO2 NBio-CO2 Total CO2	4.41
Bio- CO2	83.49
PM2.5 Total	86.24
Exhaust PM2.5	97.49
Fugitive PM2.5	6.90
PM10 Total	66.19
Exhaust PM10	97.45
Fugitive PM10	06.9
S02	60.18
00	69.78
NOX	6.29
ROG	84.72
	Percent Reduction

CalEEMod Version: CalEEMod.2016.3.1


Page 9 of 41

Date: 8/8/2017 2:53 PM

Fullerton Ranch Project - Placer County APCD Air District, Annual

2.3 Vegetation

Vegetation

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
7	eparation	reparation	5/1/2018	5/4/2018	5	4	
2		ß.	5/4/2018	7/26/2018	5	09	
3	Paving		7/26/2018	8/8/2018	5	10	
4	uction	ng Construction	8/8/2018	3/6/2020	5	413	
5	Architectural Coating	Architectural Coating	10/12/2018	5/12/2020	5	413	

Acres of Grading (Site Preparation Phase): 19.7

Acres of Grading (Grading Phase): 19.7

Acres of Paving: 0

Fullerton Ranch Project - Placer County APCD Air District, Annual

Residential Indoor: 295,245; Residential Outdoor: 98,415; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Site Preparation)		LOAU FACIOI
	Rubber Tired Dozers		8.00	247	0.40
<u>.</u>	Tractors/Loaders/Backhoes	2	8.00	26	0.37
	Excavators	2	8.00	158	0.38
	Graders	 	8.00	187	0.41
	Rubber Tired Dozers		8.00	247	0.40
: :	Scrapers	 	8.00	367	0.48
Grading	Tractors/Loaders/Backhoes		8.00	26	0.37
Paving	Pavers	_	8.00	130	0.42
Paving	Paving Equipment	_	8.00	132	0.36
Paving	Rollers	_	8.00	80	0.38
	Cranes	_	3.00	231	0.29
	Forklifts	_	8.00	68	0.20
	Generator Sets		8.00	84	0.74
	Tractors/Loaders/Backhoes	_	7.00	26	0.37
	Air Compressors		9.00	82	0.48
Building Construction	Welders	0	8.00	46	0.45

Trips and VMT

Page 11 of 41

Date: 8/8/2017 2:53 PM

Fullerton Ranch Project - Placer County APCD Air District, Annual

Phase Name	Offroad Equipment Worker Trip Vendor Trip Hauling Trip Count Number Number	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Hauling Trip Length Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Site Preparation	ε	18.00	00:00	00.0		7.30	20.00	20.00 LD_Mix	HDT_Mix	HHDT
Grading	9	20.00	00.0	0.00	10.80	7.30	! ! !	20.00 LD_Mix	HDT_Mix	HHDT
Paving	(C)	15.00	00.0	0.00	10.80	7.30		20.00 LD_Mix	HDT_Mix	HHDT
Paving	ε 	15.00	00.0	0.00	10.80	7.30	! ! !	20.00 LD_Mix	HDT_Mix	HHDT
Building Construction	1	29.00	00.6	0.00	10.80	7.30	20.00	20.00 LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	6.00	0.00	0.00	10.80	7.30	20.00	20.00 LD_Mix	HDT_Mix	ННОТ

3.1 Mitigation Measures Construction

Water Exposed Area

Water Unpaved Roads

Reduce Vehicle Speed on Unpaved Roads

3.2 Site Preparation - 2018

CH4 N2O CO2e	ارد		8.4000e- 0.0000 2.7166 004	8.4000e- 0.0000 2.7166 004
O2 Total CO2	MT/yr	0.0000	7 2.6957 8.4000e- 004	2.6957
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.000.0	0.0000 2.6957	0.0000 2.6957
PM2.5 Total B		.7500e- 003	.8100e-	5600e- 003
		0.0000	1.8100e- 1 003	1.8100e- 9. 003
Fugitive PM2.5		7.7500e- 003		7.7500e- 003
PM10 Total		0.0225	1.9700e- 003	0.0245
Exhaust PM10	tons/yr	0.0000	1.9700e- 003	1.9700e- 003
Fugitive PM10	tor	0.0225	 - - - -	0.0225
SO2			3.0000e- 005	0.0181 3.0000e- 005
00			0.0181	0.0181
XON			3.4000e- 0.0356 003	0.0356
ROG			3.4000e- 003	3.4000e- 0.0356 003
	Category	Fugitive Dust	Off-Road	Total

Fullerton Ranch Project - Placer County APCD Air District, Annual

3.2 Site Preparation - 2018
Unmitigated Construction Off-Site

CO2e		0.0000	0.0000	0.2600	0.2600
N20		0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	0.000.0	0.0000
CH4	yr	0.0000	0.000.0	1.0000e- 005	1.0000e- 005
Total CO2	MT/yr	0.000.0	0.000.0	0.2599	0.2599
NBio- CO2		0.0000	0.0000	0.2599	0.2599
Bio- CO2		0.0000	0.0000	0.0000	0.0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5			0.0000	8.0000e- 005	8.0000e- 005
Exhaust PM2.5		0.0000 0.0000 0.0000	0.0000	0.0000	0.000
Fugitive PM2.5		0.000.0	0.0000 0.0000	8.0000e- 005	8.0000e- 005
PM10 Total		0.000.0	0.0000	2.8000e- 004	2.8000e- 004
Exhaust PM10	ons/yr	0.0000	0.0000	0.0000	0.0000
Fugitive PM10	tons	0.0000	0.0000	2.8000e- 004	2.8000e- 004
802		0.0000	0.0000	0.0000	0.0000 2.8000e- 004
00		0.0000	0.000 0.0000 0.0000	1.1700e- 003	1.1700e- 003
×ON		0.0000 0.0000 0.0000 0.0000	0.000.0 0.000.0	1.5000e- 1.1000e- 1.1700e- 004 003	1.5000e- 1.1000e- 1.1700e- 004 003
ROG		0.0000	0.0000	1.5000e- 004	1.5000e- 004
	Category	Hauling	Vendor	Worker	Total

			: 1	
CO2e		0.0000	2.7166	2.7166
NZO		0.0000	0.0000	0.000
CH4	/yr	0.000.0	2.6957 8.4000e- 0.0 004	8.4000e- 004
Total CO2	MT/yr	0.000.0	2.6957	2.6957
NBio- CO2		0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 2.6957	2.6957
Bio- CO2		0.0000		0.0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		3.0200e- 003)e- 1.8100e- 003	4.8300e- 003
Exhaust PM2.5		0.0000 8.7700e- 3.0200e- 0.0000 3.0200e- 003 003 003	3100	3100e- 003
Fugitive PM2.5		3.0200e- 003		3.0200e- 003
PM10 Total		8.7700e- 003	1.9700e- 003	0.0107
Exhaust PM10	tons/yr	0.0000	1.9700e- 003	1.9700e- 003
Fugitive PM10	ton	8.7700e- 003		8.7700e- 003
805			3.0000e- 005	0.0181 3.0000e- 8.7700e- 005 003
00			0.0181	0.0181
×ON			0.0356	0.0356
ROG			3.4000e- 0.0356 0.0181 3.0000e- 003 005	3.4000e- 0.0356 003
	Category	Fugitive Dust	Off-Road	Total

Date: 8/8/2017 2:53 PM

Fullerton Ranch Project - Placer County APCD Air District, Annual

3.2 Site Preparation - 2018

Mitigated Construction Off-Site

CO2e		0.0000	0.0000	0.2600	0.2600		
N20		0.0000	0.0000	0.0000	0.0000		
CH4	ýr	0.000.0		1.0000e- 005	1.0000e- 005		
Total CO2	MT/yr	0.000.0	0.0000		0.2599		
NBio- CO2		0.0000 0.0000 0.0000 0.0000		0.2599	0.2599		
Bio- CO2		0.0000	0.0000	0.0000	0.0000		
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0000	0.0000	8.0000e- 005	8.0000e- 005		
Exhaust PM2.5		0.000.0	0.0000	0.0000	0000		
Fugitive PM2.5				0.0000 0.0000 0.0000	0000	0000e-	8.0000e- 005
PM10 Total			0.000.0	0.0000	2.8000e- 8.0 004	2.8000e- 004	
Exhaust PM10	s/yr	0.0000	0.0000	0.0000	0.0000		
Fugitive PM10	tons/yr	0.0000	0.0000	2.8000e- 004	2.8000e- 004		
SO2		0.0000	0.0000 0.0000	0.0000	0.000		
00		0.000.0	0.000.0	1.1700e- 003	1.1700e- 003		
XON		0.0000	0.000 0.0000	1.5000e- 1.1000e- 1.1700e- 0.0000 2.8000e- 004 003 004	1.5000e- 1.1000e- 1.1700e- 0.0000 2.8000e- 004 003		
ROG		0.0000 0.0000 0.0000 0.0000	0.0000	1.5000e- 004	1.5000e- 004		
	Category	Hauling	Vendor	Worker	Total		

3.3 Grading - 2018

	ROG	XON	00	802	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N20	C02e
Category					tons/yr	s/yr							MT/yr	ýr		
₩.					0.1911	0.0000	0.1911	0.1004	0.0000	0.0000 0.1911 0.1004 0.0000 0.1004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000
Off-Road	0.1103 1.2810 0.7190 1.3100e-	1.2810	0.7190	1.3100e- 003		0.0566	0.0566		0.0521	0.0521 0.0521	0.0000	0.0000 119.9349 119.9349 0.0373 0.0000	119.9349	0.0373	0.0000	120.8683
Total	0.1103	1.2810	0.7190	0.1103 1.2810 0.7190 1.3100e- 0.1911 003	0.1911	0.0566	0.2478	0.1004	0.0521	0.1525	0.0000	119.9349 119.9349	119.9349	0.0373	0.0000	120.8683

Fullerton Ranch Project - Placer County APCD Air District, Annual

3.3 Grading - 2018

Unmitigated Construction Off-Site

CO2e		0.0000	0.0000	4.3341	4.3341	
N20		0.0000	0.0000	0.0000	0.0000	
CH4	/yr	0.0000 0.0000 0.0000 0.0000	0.000.0	4.3308 1.3000e- 004	1.3000e- 004	
Total CO2	MT/yr	0.0000	0.0000	4.3308	4.3308	
NBio- CO2		0.0000	0.0000	4.3308	4.3308	
Bio- CO2		0.0000	0.0000	0.0000	0.0000	
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0000	0.0000	1.2800e- 003	1.2800e- 003	
Exhaust PM2.5		0.000.0 0.000.0 0.000.0	:	3.0000e- 005	3.0000e- 005	
Fugitive PM2.5			0.000.0	0.000.0	4.7400e- 1.2500e- 3.0000e- 003 003 005	1.2500e- 003
PM10 Total		0.000.0	0.000.0	4.7400e- 003	4.7400e- 003	
Exhaust PM10	tons/yr	0.0000	0.0000	3.0000e- 005	3.0000e- 005	
Fugitive PM10	ton	0.0000	0.0000	r	4.7100e- 003	
S02		0.0000	0.0000 0.0000 0.0000 0.0000	5.0000e- 005	0.0195 5.0000e- 4.7100e- 005 003	
CO		0.000.0	0.0000	0.0195	0.0195	
XON		0.000.0	0.0000	1.8700e- 003	2.5100e- 1.8700e- 003 003	
ROG		0.0000 0.0000 0.0000 0.0000	0.0000	2.5100e- 1.8700e- 0.0195 5.0000e- 4.7100e- 003 003 003	2.5100e- 003	
	Category	Hauling		Worker	Total	

N20 CO2e		0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 119.9348 119.9348 0.0373 0.0000 120.8682	0.0000 120.8682
CH4	т	0.0000	0.0373 0.0	0.0373 0.0
Total CO2	MT/yr	0.000.0	119.9348 0.0373	119.9348
NBio- CO2		0.0000) 119.9348	0.0000 119.9348 119.9348
Bio- CO2		0.0000	0.0000	0.0000
Exhaust PM2.5 Total Bio-CO2 NBio-CO2 Total CO2 PM2.5		0.0000 0.0745 0.0392 0.0000 0.0392	0.0521 0.0521	0.0913
		0.0000	0.0521	0.0521
Fugitive PM2.5		0.0392		0.0392
PM10 Total		0.0745	0.0566	0.1312
Exhaust PM10	tons/yr	0.0000	0.0566	0.0566
Fugitive PM10	tor	0.0745		0.0745
SO2			1.3100e- 003	0.1103 1.2810 0.7190 1.3100e-
00			0.7190	0.7190
×ON			1.2810	1.2810
ROG			0.1103 1.2810 0.7190 1.3100e- 003	0.1103
	Category		Off-Road	Total

Date: 8/8/2017 2:53 PM Fullerton Ranch Project - Placer County APCD Air District, Annual

3.3 Grading - 2018

Mitigated Construction Off-Site

				:			
CO2e		0.0000	0.0000	4.3341	4.3341		
N20		0.0000	0.0000	0.0000	0.0000		
CH4	/yr	0.000.0	0.000.0	1.3000e- 004	1.3000e- 004		
Total CO2	MT/yr	0.0000	0.0000	4.3308	4.3308		
NBio- CO2				0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	4.3308	4.3308
Bio- CO2		0.0000	0.0000	0.0000	0.000		
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2			0.0000	1.2800e- 003	1.2800e- 003		
Exhaust PM2.5		0.0000	0.0000	000e- 005	000e- 005		
Fugitive PM2.5	s/yr	0.0000	0.0000	1.2500e- 3.0000e- 003 005	1.2500e- 003		
PM10 Total		0.0000	0.0000	4.7400e- 003	4.7400e- 003		
Exhaust PM10		0.0000	0.0000	3.0000e- 005	3.0000e- 005		
Fugitive PM10	tons/yr	0.0000	0.0000	[l .		
SO2		0.0000	0.0000 0.0000 0.0000	5.0000e- 4.7100e 005 003	2.5100e- 1.8700e- 0.0195 5.0000e- 4.7100e 003		
8		0.0000	0.0000	0.0195	0.0195		
×ON		0.0000	0.0000	1.8700e- 003	1.8700e- 003		
ROG		00000 00000 00000 00000	0.0000	2.5100e- 1.8700e- 003 003	2.5100e- 003		
	Category	Hauling	Vendor	Worker	Total		

3.4 Paving - 2018

CO2e		5.2434	0.0000	5.2434
N20		0.0000	0.0000	0.0000
CH4	ýr	1.6200e- 003	0.000.0	9 1.6200e- 003
Total CO2	MT/yr	5.2029	0.0000	5.2029
NBio- CO2		0.0000 5.2029 5.2029 1.6200e- 0.0000	0.0000 0.0000	5.2029
Bio- CO2		0.0000	0.0000	0.0000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		2.2000e- 2.2000e- 003 003	0.0000	2.2000e- 003
Exhaust PM2.5		2.2000e- 003	0.0000	2.2000e- 003
Fugitive PM2.5				
PM10 Total		2.3900e- 003	0.000.0	2.3900e- 003
Exhaust PM10	ns/yr		0.0000	2.3900e- 003 003
Fugitive PM10	ton			
805		6.0000e- 005		6.0000e- 005
00		0.0370		4.1100e- 0.0438 0.0370 6.0000e- 003 005
NOx		0.0438		0.0438
ROG		4.1100e- 0.0438 0.0370 6.0000e- 003 005	0.0000	4.1100e- 003
	Category	Off-Road	Paving	Total

Fullerton Ranch Project - Placer County APCD Air District, Annual

Date: 8/8/2017 2:53 PM

3.4 Paving - 2018
Unmitigated Construction Off-Site

CO2e		000	000	1.0835	1.0835
8		0.00	0.0000		
N20		0.0000	0.0000	0.0000	0.000
CH4	'yr	0.000.0	0.0000	3.0000e- 005	3.0000e- 005
Total CO2	MT/yr	0.000.0	0.000.0	1.0827	1.0827
NBio- CO2		0.0000 0.0000 0.0000 0.0000 0.0000		1.0827	1.0827
Bio- CO2		0.0000	0.0000	0.0000	0.000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.0000	0.0000	5.7000e- 004	5.7000e- 004
Exhaust PM2.5		0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	5.6000e- 1.0000e- 004 005	1.0000e- 005
Fugitive PM2.5		0.000.0	0.0000 0.0000	5.6000e- 004	5.6000e- 004
PM10 Total		0.000.0	0.000.0	2.2000e- 003	2.2000e- 003
Exhaust PM10	s/yr	0.0000	0.0000	1.0000e- 005	1.0000e- 005
Fugitive PM10	tons/yr	0.0000	0.0000	2.1900e- 003	2.1900e- 003
802		0.0000	0.0000	1.0000e- 005	1.0000e- 005
00		0.000.0	0.0000	4.8700e- 003	4.8700e- 003
XON		0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	6.3000e- 4.7000e- 4.8700e- 1.0000e- 2.1900e- 004 004 003 005 003	6.3000e- 4.7000e- 4.8700e- 1.0000e- 2.1900e- 004 004 003 005 003
ROG		0.0000	0.0000	6.3000e- 004	6.3000e- 004
	Category	Hauling	Vendor	Worker	Total

	ROG	×ON	00	805	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N20	CO2e
Category					tons/yr	s/yr							MT/yr	/yr		
	4.1100e- 0.0438 0.0370 6.0000e-	0.0438	0.0370	6.0000e- 005			2.3900e- 003		2.2000e- 003	2.2000e- 003	0.0000	5.2029	0.0000 5.2029 5.2029 1.6200e- 0.0000 5.2434 003	1.6200e- 003	0.000.0	5.2434
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000 0.0000 0.0000	0.0000	0.0000	0.0000
Total	4.1100e- 003	0.0438	0.0438 0.0370 6.0000e- 005	6.0000e- 005		2.3900e- 003	2.3900e- 003		2.2000e- 2. 003	2.2000e- 003	0.0000	5.2029	5.2029	1.6200e- 003	0.0000	5.2434

Fullerton Ranch Project - Placer County APCD Air District, Annual

Date: 8/8/2017 2:53 PM

3.4 Paving - 2018

Mitigated Construction Off-Site

ø.		00	8	32	55
CO2e		00:00	0.0000	1.0835	1.0835
N20		0.0000	0.0000	0.0000	0.0000
CH4	/yr	0.0000	0.000.0	3.0000e- 005	3.0000e- 005
Total CO2	MT/yr	0.000.0	0.000.0	1.0827	1.0827
NBio- CO2		0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	1.0827	1.0827
Bio- CO2		0.0000	0.0000	0.0000	0.000
Exhaust PM2.5 Total Bio-CO2 NBio-CO2 Total CO2 PM2.5		0.0000	0.0000	5.7000e- 004	5.7000e- 004
Exhaust PM2.5		0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	5.6000e- 1.0000e- 004 005	1.0000e- 005
Fugitive PM2.5		0.0000	0.0000 0.0000	5.6000e- 004	5.6000e- 004
PM10 Total		0.000.0	0.0000)e- 2.2000e- 003	2.2000e- 003
Exhaust PM10	ons/yr	0.0000	0.0000	1.0000e- 005	1.0000e- 005
Fugitive PM10	tons	0.0000	0.0000	2.1900e- 003	2.1900e- 003
SO2		0.0000	0.0000	1.0000e- 005	1.0000e- 005
00		0.0000	0.0000	4.8700e- 003	4.8700e- 003
XON		0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	6.3000e- 4.7000e- 4.8700e- 1.0000e- 2.1900e- 004 004 003 005 003	6.3000e- 4.7000e- 4.8700e- 1.0000e- 2.1900e- 004 004 003 005 003
ROG		0.0000	0.0000	6.3000e- 004	6.3000e- 004
	Category	Hauling	Vendor	Worker	Total

3.5 Building Construction - 2018

CO2e		60.1167	60.1167
N20		0.0000	0.0000
CH4	/yr	0.0116	0.0116
Total CO2	MT/yr	59.8268	59.8268
NBio- CO2		0.0000 59.8268 59.8268 0.0116 0.0000 60.1167	59.8268
Bio- CO2		0.0000	0.0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.0327	0.0327
Exhaust PM2.5		0.0327 0.0327	0.0327
Fugitive PM2.5			
PM10 Total		0.0344	0.0344
Exhaust PM10	ns/yr	0.0344	0.0344
Fugitive PM10	toi		
SO2		6.8000e- 004	6.8000e- 004
00		0.4133	0.4133
XON		0.5484	0.5484 0.4133 6.8000e-
ROG		0.0588 0.5484 0.4133 6.8000e-	0.0588
	Category	Off-Road	Total

Fullerton Ranch Project - Placer County APCD Air District, Annual

3.5 Building Construction - 2018 Unmitigated Construction Off-Site

CO2e		0.0000	13.1504	10.8929	24.0434
N20		0.000.0	0.0000	0.0000	0.0000 2
CH4	уг	0.0000 0.0000 0.0000 0.0000	7.2000e- 004		1.0500e- 003
Total CO2	MT/yr	0.000.0	13.1324	10.8848	24.0171
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0000	13.1324 13.1324	10.8848	24.0171
Bio- CO2		0.0000	0.0000	0.0000	0.0000
PM2.5 Total		0.0000	1.3100e- 003	3.2300e- 003	4.5400e- 003
Exhaust PM2.5		0.000.0	4.3000e- 004		5.0000e- 004
Fugitive PM2.5		0.0000 0.0000 0.0000 0.0000	8.8000e- 4.3000e- 004 004	3.1500e- 7.0000e- 003 005	4.0300e- 003
PM10 Total		0.000.0	3.5100e- 003	0.0119	0.0154
Exhaust PM10	ons/yr	0.0000	4.5000e- 004	8.0000e- 005	5.3000e- 004
Fugitive PM10	ton	0.0000	3.0600e- 003	0.0118	0.0149
SO2		0.0000	0.0140 1.4000e- 3.0600e- 004 003	1.2000e- 004	0.0629 2.6000e- 004
00		0.0000	0.0140	0.0489	0.0629
NOX		0.0000 0.0000 0.0000 0.0000	0.0639	6.3000e- 4.7000e- 0.0489 1.2000e- 0.0118 003 003 003	0.0686
ROG		0.0000	2.3500e- 0.0639 0. 003	6.3000e- 003	8.6500e- 003
	Category	Hauling		Worker	Total

CO2e		60.1166	60.1166	
N20		0.000.0	0.0000	
CH4	ʻyr	0.0116	0.0116	
Total CO2	MT/yr	59.8267	59.8267	
NBio- CO2		0.0000 59.8267 59.8267 0.0116 0.0000 60.1166	59.8267	
Bio- CO2		0.0000	0.0000	
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.0327 0.0327	0.0327	
Exhaust PM2.5		0.0327	0.0327	
Fugitive PM2.5				
PM10 Total		0.0344	0.0344	
Exhaust PM10	tons/yr	0.0344	0.0344	
Fugitive PM10		ton	ton	
SO2		6.8000e- 004	6.8000e- 004	
00		0.4133	0.4133	
×ON		0.5484	0.0588 0.5484 0.4133 6.8000e-	
ROG		0.0588 0.5484 0.4133 6.8000e-	0.0588	
	Category	Off-Road	Total	

Fullerton Ranch Project - Placer County APCD Air District, Annual

3.5 Building Construction - 2018
Mitigated Construction Off-Site

CO2e		0.0000	13.1504	10.8929	24.0434			
N20		0.0000	0.0000	0.0000	0.0000			
CH4	'yr	0.000.0	7.2000e- 004	3.3000e- 004	1.0500e- 003			
Total CO2	MΤΛ	MT/y	MT/yr	0.000.0	13.1324	10.8848	24.0171	
NBio- CO2		0.0000 0.0000 0.0000 0.0000 0.0000	13.1324 13.1324 7.2000e- 004	10.8848	0.0000 24.0171 24.0171 1.0500e-			
Bio- CO2		0.0000	0.0000	0.0000	0.0000			
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.0000	1.3100e- 003	3.2300e- 003	4.5400e- 003			
Exhaust PM2.5		0.0000 0.0000 0.0000	3000e- 004	7.0000e- 005	.0000e- 004			
Fugitive PM2.5	s/yr	0.000.0	8.8000e- 4.0 004	3.1500e- 003	4.0300e- 5			
PM10 Total					0.000.0	3.5100e- 003	0.0119	0.0154
Exhaust PM10		0.0000	4.5000e- 004	8.0000e- 005	5.3000e- 004			
Fugitive PM10	tons/yr	0.000.0	3.0600e- 003	0.0118	0.0149			
SO2		0.000.0	1.4000e- 004	1.2000e- 004	0.0629 2.6000e- 004			
00		0.000.0	0.0140	0.0489	0.0629			
×ON		0.0000	0.0639	4.7000e- 003	8.6500e- 0.0686 003			
ROG		0.0000 0.0000 0.0000 0.0000	2.3500e- 0.0639 0.0140 1.4000e- 003 004	6.3000e- 4.7000e- 0.0489 1.2000e- 003 003 004	8.6500e- 003			
	Category			Worker	Total			

3.5 Building Construction - 2019

	ROG	XON	00	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 (Bio- CO2	NBio- CO2	Total CO2	CH4	NZO	CO2e
Category					tons/yr	s/yr							MT/yr	/yr		
Off-Road	0.1301 1.2403 1.0169 1.6900e-	1.2403	1.0169	1.6900e- 003		0.0742 0.0742	0.0742		0.0706	0.0706 0.0706	0.000	0.0000 148.8911 148.8911 0.0284 0.0000 149.6022	148.8911	0.0284	0.000	149.6022
Total	0.1301	0.1301 1.2403	1.0169 1.6900e-	1.6900e- 003		0.0742	0.0742		0.0706	90200		0.0000 148.8911 148.8911 0.0284 0.0000	148.8911	0.0284	0.0000	149.6022

Date: 8/8/2017 2:53 PM Page 20 of 41 CalEEMod Version: CalEEMod.2016.3.1

Fullerton Ranch Project - Placer County APCD Air District, Annual

3.5 Building Construction - 2019 Unmitigated Construction Off-Site

CO2e		0000	32.7195	26.5162	59.2358
ŏ		0.0000			
N20		0.0000	0.0000	0.0000	0.000
CH4	/yr	0.000.0	1.7200e- 003	7.3000e- 004	2.4500e- 003
Total CO2	MT/yr	0.000.0	32.6765	26.4981 7.3000e- 004	59.1746
NBio- CO2		0.0000 0.0000 0.0000	32.6765	26.4981	59.1746
Bio- CO2		0.0000	0.0000	0.0000	0.0000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0000	3.1000e- 003	8.1000e- 003	0.0112
Exhaust PM2.5		0.000.0		1.9000e- 004	1.0700e- 003
Fugitive PM2.5		0.000.0	2.2200e- 003	7.9100e- 003	0.0101
PM10 Total		0.0000 0.0000 0.0000	8.5800e- 003	0.0299	0.0385
Exhaust PM10	tons/yr	0.0000	9.2000e- 004	2.0000e- 004	1.1200e- 003
Fugitive PM10	ton	0.0000	7.6700e- 003	0.0297	0.0374
S02		0.0000	3.4000e- 004	2.9000e- 004	6.3000e- 004
00		0.0000	0.0314	0.1097	0.1617 0.1410 6.3000e-
XON		0.0000	0.1513	0.0104	0.1617
ROG		0.0000 0.0000 0.0000 0.0000	5.2000e- 0.1513 0.0314 3.4000e- 7.6700e- 003 004 003	0.0143	0.0195
	Category	Hauling	:	Worker	Total

CO2e		149.6020	149.6020
N20		0.0000	0.0000 149.6020
CH4	yr	0.0284	
Total CO2	MT/yr	148.8910	148.8910
NBio- CO2		0.0000 148.8910 148.8910 0.0284 0.0000 149.6020	0.0000 148.8910 148.8910 0.0284
Bio- CO2		0.0000	0.0000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2			0.0706
Exhaust PM2.5		0.0706 0.0706	0.0706
Fugitive PM2.5			
PM10 Total		0.0742	0.0742
Exhaust PM10	tons/yr	0.0742	0.0742
Fugitive PM10			
805		1.6900e- 003	1.6900e- 003
00		1.0169	1.0169
×ON		1.2403	1.2403
ROG		0.1301 1.2403 1.0169 1.6900e- 003	0.1301
	Category	Off-Road	Total

Fullerton Ranch Project - Placer County APCD Air District, Annual

3.5 Building Construction - 2019
Mitigated Construction Off-Site

	ROG	XON	8	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total Bio- CO2 NBio- CO2 Total CO2	Bio- CO2	NBio- CO2	Total CO2	CH4	N20	CO2e
Category					ton	ons/yr							MT/yr	ž		
	0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	0.000.0	0.000.0	0.0000	0.0000	0.000.0	0.000 0.0000 0.0000		00000	0.0000	0.0000 0.0000 0.0000 0.0000	0.000.0	0.000.0	0.000.0	0.0000
Vendor	5.2000e- 0.1513 0 003	0.1513	0.0314 3.4000e- 7.6700e- 004 003	3.4000e- 004	7.6700e- 003	i .	8.5800e- 003	2.2200e- 8.8000e- 003 004	8.8000e- 004	3.1000e- 003	0.0000	32.6765	32.6765	1.7200e- 003	0.000.0	32.7195
Worker	0.0143	0.0143 0.0104 0.1097 2.9000e- 004	0.1097	2.9000e- 004	0.0297	2.0000e- 004	0.0299	7.9100e- 003	7.9100e- 1.9000e- 003 004	8.1000e- 003	0.0000	26.4981	26.4981	7.3000e- 004	0.000.0	26.5162
Total	0.0195	0.0195 0.1617 0.1410 6.3000e- 0.0374 0.04	0.1410	6.3000e- 004		1.1200e- 003	0.0385	0.0101	1.0700e- 003	0.0112	0.0000	59.1746	59.1746 2.4500e-		0.000	59.2358

3.5 Building Construction - 2020

CO2e		27.2086	27.2086
N20	//	0.0000 27.2086	0.0000
CH4		5.1300e- 003	5.1300e- 003
Total CO2	MT/yr	27.0802	27.0802
NBio- CO2		0.0000 27.0802 27.0802 5.1300e-	27.0802
Bio- CO2		0.0000	0.0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.0113	0.0113
Exhaust PM2.5	tons/yr	0.0113	0.0113
Fugitive PM2.5			
PM10 Total		0.0118	0.0118
Exhaust PM10		0.0118	0.0118
Fugitive PM10			
SO2		3.1000e- 004	3.1000e- 004
00		0.1842	0.1842
NOx		0.2074	0.2074 0.1842 3.1000e-
ROG		0.0215	0.0215
	Category	Off-Road	Total

Fullerton Ranch Project - Placer County APCD Air District, Annual

3.5 Building Construction - 2020 Unmitigated Construction Off-Site

CO2e		0.0000	5.9697	4.7203	10.6900
N20		0.0000	0.0000	0.0000	0.0000
CH4	/yr	0.000.0	2.9000e- C	1.2000e- 0 004	4.1000e- 0 004
Total CO2	MT/yr	0.000 0.0000 0.0000	5.9624	4.7174	10.6798
NBio- CO2		0.0000 0.0000	5.9624	4.7174	10.6798
Bio- CO2		0.0000	0.0000	0.0000	0.0000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0000	5.2000e- 004	- 1.4900e- 003	2.0100e- 003
Exhaust PM2.5		0.000.0	1.1000e 004	0000e- 005	1000e- 004
Fugitive PM2.5		0.0000 0.0000	1000e- 004	1.4500e- 3.0000e- 003 005	3600e- 003
PM10 Total		0.0000	1.5200e- 003	5.5000e- 1. 003	7.0200e- 1.8
Exhaust PM10	ons/yr	0.0000	1.1000e- 004	4.0000e- 005	1.5000e- 004
Fugitive PM10	tons	0.0000	1.4100e- 003	5.4700e- 003	6.8800e- 003
S02		0.000.0	6.0000e- 1.4100e- 005 003	5.0000e- 5.4700e- 005 003	1.1000e- 6.8800e- 004 003
00		0.000.0	5.0700e- 003	0.0181	0.0231
XON		0.0000 0.0000 0.0000 0.0000	0.0257	1.6900e- 003	0274
ROG		0.0000	8.0000e- 0.0257 5.0700e- 6 004 003	2.4100e- 003	3.2100e- 0. 003
	Category	Hauling	:	Worker	Total

CO2e		2085	2085
00		27.2	27.2085
N20		0.0000	0.0000
CH4	'yr	5.1300e- 003	5.1300e- 003
Total CO2	MT/yr	27.0802	2 27.0802 5.1300e-
NBio- CO2		0.0000 27.0802 27.0802 5.1300e- 0.0000 27.2085	0.0000 27.0802
Bio- CO2		0.0000	0.0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.0113	0.0113
Exhaust PM2.5		0.0113	0.0113
Fugitive PM2.5			
PM10 Total		0.0118	0.0118
Exhaust PM10	s/yr	0.0118 0.0118	0.0118
Fugitive PM10	tons/yr		
802		3.1000e- 004	3.1000e- 004
00		0.1842	0.1842 3.1000e-
×ON		0.2074	0.0215 0.2074
ROG		0.0215 0.2074 0.1842 3.1000e-	0.0215
	Category	Off-Road	Total

Fullerton Ranch Project - Placer County APCD Air District, Annual

3.5 Building Construction - 2020 Mitigated Construction Off-Site

	ROG	× ON	00	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N20	CO2e
Category					tons/yr	s/yr							MT/yr	/yr		
Hauling	0.0000	0.0000	0.000.0	0.0000		0.0000	0.0000	0.000 0.0000 0.0000	0.000.0	00000	0.0000	0.0000 0.0000 0.0000 0.0000	0.000.0	0.000.0	0.0000	0.0000
	8.0000e- 004	0.0257	5.0700e- 003	5.0700e- 6.0000e- 1.4100e- 003 005 003	i.	1.1000e- 004	1.5200e- 003	4.1000e- 1.7	1000e- 004	5.2000e- 004	0.0000	5.9624	5.9624	2.9000e- 004	0.0000	5.9697
Worker	2.4100e- 003	2.4100e- 1.6900e- 003 003	0.0181	0.0181 5.0000e- 5.4700e- 005 003	i. I	4.0000e- 005	5.5000e- 003	1.4500e- 3.0000e- 003 005	3.0000e- 005	1.4900e- 003	0.0000	4.7174	4.7174	1.2000e- 004	0.0000	4.7203
Total	3.2100e- 003	3.2100e- 0.0274 003	0.0231	0.0231 1.1000e- 6.8800e- 004 003		1.5000e- 004	7.0200e- 003	1.8600e- 003	1.4000e- 004	2.0100e- 003	0.0000	10.6798	10.6798	4.1000e- 004	0.000	10.6900

3.6 Architectural Coating - 2018 Unmitigated Construction On-Site

CO2e		0.0000	7.2941	7.2941
N20		0.0000	0.0000	0.000
CH4	'yr	0.000.0	6.9000e- 004	8 6.9000e- 004
Total CO2	MT/yr	0.0000	7.2768	7.2768
NBio- CO2		0.0000	0.0000 7.2768	7.2768
Bio- CO2		0.0000	0.0000	0.0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	4.2900e- 003	4.2900e- 0
Exhaust PM2.5		0.0000	4.2900e- 003	4.2900e- 003
Fugitive PM2.5				
PM10 Total		0.000.0	4.2900e- 003	4.2900e- 003
Exhaust PM10	tons/yr		4.2900e- ⁴	4.2900e- 003
Fugitive PM10	ton			
SO2			8.0000e- 005	8.0000e- 005
00			0.0528	0.0528 8.0000e-
×ON			0.0572	0.1344 0.0572
ROG		0.1259	8.5100e- 0.0572 0.0528 8.0000e- 003 005	0.1344
	Category	βι	Off-Road	Total

Fullerton Ranch Project - Placer County APCD Air District, Annual

3.6 Architectural Coating - 2018
Unmitigated Construction Off-Site

	ROG	XON	00	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total Bio- CO2 NBio- CO2 Total CO2	Bio- CO2	NBio- CO2	Total CO2	CH4	NZO	CO2e
Category					tons/yr	/yr							MT/yr	/yr		
Hauling	0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.0000 0.0000 0.0000 0.0000	0.000.0	0.000	0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	0.000.0		0.0000
Vendor	0.0000	0.0000 0.0000 0.0000	0.0000	0.000.0	0.0000	0.0000	0.000.0	0.0000	0.0000	0.000.0	0.0000	0.0000	†	0.0000	0.0000	0.0000
Worker	7.1000e- 004	7.1000e- 5.3000e- 5.5500e- 1.0000e- 1.3400e- 004 003 005 003	5.5500e- 003	1.0000e- 005	<u></u>	1.0000e- 005	1.3500e- 003	0006- 004	1.0000e- 005	3.7000e- 004	0.0000	1.2343	1.2343	4.0000e- 005	0.0000	1.2352
Total	7.1000e- 004	7.1000e- 5.3000e- 5.5500e- 1.0000e- 1.3400e- 004 004 003	5.5500e- 003	1.0000e- 005		1.0000e- 005	1.3500e- 3.6 003	000e- 004	1.0000e- 005	3.7000e- 004	0.0000	1.2343	1.2343	4.0000e- 005	0.000	1.2352

			•	
CO2e		0.0000	7.2941	7.2941
N20		0.0000	0.0000	0.000
CH4	MT/yr	0.000.0	7.2768 6.9000e- 004	6.9000e- 0 004
Total CO2	M	0.0000	7.2768	7.2768
Bio- CO2 NBio- CO2 Total CO2			7.2768	7.2768
Bio- CO2		0.0000	0.0000	0000
PM2.5 Total		0.0000 0.0000	4.2900e- 003	4.2900e- 003
Exhaust PM2.5		0.0000	4.2900e- 003	4.2900e- 4 003
Fugitive PM2.5				
PM10 Total		0.0000	4.2900e- 003	4.2900e- 003
Exhaust PM10	tons/yr	0.0000	4.2900e- 003	4.2900e- 003
Fugitive PM10	ton			
SO2			8.0000e- 005	0.0528 8.0000e- 005
00			0.0528	0.0528
×ON			0.0572	0.1344 0.0572
ROG		0.1259	8.5100e- 0.0572 0.0528 8.0000e- 003 005	0.1344
	Category	g	Off-Road	Total

Date: 8/8/2017 2:53 PM

Fullerton Ranch Project - Placer County APCD Air District, Annual

3.6 Architectural Coating - 2018
Mitigated Construction Off-Site

e.		00	00	52	25
CO2e		0.000	0.0000	1.2352	1.2352
N20		0.0000	0.0000	0.0000	0.000
CH4	/yr	0.0000	0.000.0	4.0000e- 005	4.0000e- 005
Total CO2	MT/yr	0.000.0	0.000.0	1.2343	1.2343
NBio- CO2		0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	1.2343	1.2343
Bio- CO2		0.0000	0.0000	0.0000	0.0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.0000	0.0000	3.7000e- 004	3.7000e- 004
Exhaust PM2.5		0.0000 0.0000 0.0000 0.0000 0.0000	0.000	3.6000e- 1.0000e- 004 005	1.0000e- 005
Fugitive PM2.5		0.0000	0.0000 0.0000	3.6000e- 004	3.6000e- 004
PM10 Total		0.000.0	0.000.0	1.3500e- 003	1.3500e- 003
Exhaust PM10	ons/yr	0.0000	0.0000	1.0000e- 005	1.0000e- 005
Fugitive PM10	ton	0.0000	0.0000	1.3400e- 003	1.3400e- 003
S02		0.0000	0.0000	1.0000e- 005	1.0000e- 005
00		0.000.0	0.0000	5.5500e- 003	5.5500e- 003
XON		0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	7.1000e- 5.3000e- 5.5500e- 1.0000e- 004 003 005	7.1000e- 5.3000e- 5.5500e- 1.0000e- 1.3400e- 004 004 003 005 005
ROG		0.0000	0.0000	7.1000e- 004	7.1000e- 004
	Category	Hauling	Vendor	Worker	Total

3.6 Architectural Coating - 2019 Unmitigated Construction On-Site

CO2e		0.0000	33.3903	33.3903
N20		0.0000	0.0000 33.3903	0.0000
CH4	'yr	0.000.0	2.8100e- 003	2.8100e- 003
Total CO2	MT/yr	0.000.0	33.3200	33.3200
NBio- CO2		0.0000	0.0000 33.3200 33.3200 2.8100e- 003	0.0000 33.3200 33.3200 2.8100e-
Bio- CO2		0.0000	0.0000	0.0000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0168	0.0168
Exhaust PM2.5		0.0000	0.0168	0.0168
Fugitive PM2.5				
PM10 Total		0.000.0	0.0168	0.0168
Exhaust PM10	ons/yr	0.0000 0.0000	0.0168	0.0168
Fugitive PM10	tons			
SO2			3.9000e- 004	3.9000e- 004
00			0.2403	0.2403
XON			0.0348 0.2395 0.2403 3.9000e- 004	0.6113 0.2395 0.2403 3.9000e-
ROG		0.5765	0.0348	0.6113
	Category	Archit. Coating 0.5765	Off-Road	Total

Fullerton Ranch Project - Placer County APCD Air District, Annual

3.6 Architectural Coating - 2019
Unmitigated Construction Off-Site

	ROG	×ON	00	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total Bio- CO2 NBio- CO2 Total CO2	Bio- CO2	NBio- CO2	Total CO2	CH4	NZO	CO2e
Category					tons/yr	/yr							MT/yr	/yr		
Hauling	0.0000	0.0000 0.0000 0.0000 0.0000	0.0000	0.0000		0.0000	0.0000 0.0000	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.000 0.0000 0.0000	0.000.0	0.0000	0.0000
Vendor	0.0000	0.0000 0.0000 0.0000 0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.0000	0.0000
Worker	2.9600e- 003	2.9600e- 2.1400e- 0.0227 6.0000e- 6.1500e- 003 003 003	0.0227	6.0000e- 005		4.0000e- 6.1900e- 005 003	6.1900e- 003	1.6400e- 003	1.6400e- 4.0000e- 003 005	1.6800e- 003	0.0000	5.4824	5.4824 1.5000e- 004	1.5000e- 004	0.0000	5.4861
Total	2.9600e- 003	2.9600e- 2.1400e- 0.0227 6.0000e- 6.1500e- 003 003	0.0227	6.0000e- 005		4.0000e- 005	6.1900e- 003	1.6400e- 003	4.0000e- 005	1.6800e- 003	0.0000	5.4824	5.4824	1.5000e- 0 004	0.000	5.4861

tal CO2 CH4 N2O CO2e	MT/yr	000000 0000	33.3199 33.3199 2.8100e- 0.0000 33.3903 003	33.3199 2.8100e- 0.0000 33.3903
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4 PM2.5		0.0000 0.0000 0.0	0.0000 33.3199 33.3	20 1 20 20 20 1 20
st PM2.5 Total E		000000	0.0168	20100
Fugitive Exhaus PM2.5 PM2.5		0.000(0.0168	0.0469
PM10 Total		0.0000	0.0168	00.00
Exhaust PM10	tons/yr	0.0000 0.0000	0.0168	00700
Fugitive PM10	tc			
S02			0.2403 3.9000e- 004	
8			0.2403	
NOX			0.0348 0.2395	
ROG		0.5765	0.0348	
	Category	Archit. Coating 0.5765	Off-Road	I-4-F

Fullerton Ranch Project - Placer County APCD Air District, Annual

3.6 Architectural Coating - 2019
Mitigated Construction Off-Site

CO2e		0.0000	0.0000	5.4861	5.4861
N20		0.0000	0.0000	0.0000	0.0000
CH4	ýr	0.000.0	0.000.0	1.5000e- 004	1.5000e- 004
Total CO2	MT/yr	0.000.0	0.000.0	5.4824 1.5000e- 004	5.4824
NBio- CO2		0.0000	0.0000	5.4824	5.4824
Bio- CO2		0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2			00000	1.6800e- 003	1.6800e- 003
Exhaust 1		0.0000 0.0000 0.0000 0.0000	0.000.0	4.0000e- 005	4.0000e- 005
Fugitive PM2.5		0.000.0	0.000 0.0000	1.6400e- 4.0000e- 003 005	1.6400e- 003
PM10 Total		0.0000	0.0000	6.1900e- 003	6.1900e- 003
Exhaust PM10	s/yr	0.0000	0.0000	4.0000e- 005	4.0000e- 005
Fugitive PM10	tons/yr		0.0000		
SO2		0.000.0	0.0000	6.0000e- 005	0.0227 6.0000e- 6.1500e- 005 003
00		0.000.0	0.0000	0.0227	0.0227
XON		0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	2.1400e- 003	2.9600e- 2.1400e- 003 003
ROG		0.0000	0.0000	2.9600e- 2.1400e- 0.0227 6.0000e- 6.1500e- 003 003 003	2.9600e- 003
	Category	Hauling	Vendor	Worker	Total

3.6 Architectural Coating - 2020 Unmitigated Construction On-Site

22 Total CO2 CH4 N2O CO2e	MT/vr	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 12.1280 9.4000e- 0.0000 12.1514
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.0000 0.0000	0.0000 0.0000 0.0000 12.1280
t PM2.5 Total		0.0000	0.0000 0.0000 5.2700e- 5.2700e- 003 003
Fugitive Exhaust PM2.5 PM2.5		0.0000	0.0000 5.2700€
PM10 Total		0.0000 0.0000.0	0.0000 0.0000 5.2700e- 5.2700e-
ive Exhaust	tons/yr	0.0000	0.0000 5.2700e- 003
SO2 Fugitive PM10		ļ	.4000e- 004
00		 	0.2099 0.0115 0.0800 0.0870 1.4000e-
XON			0.0800
ROG		0.2099	0.2099
	Category	g	Archit. Coating Off-Road

Fullerton Ranch Project - Placer County APCD Air District, Annual

3.6 Architectural Coating - 2020
Unmitigated Construction Off-Site

	ROG	×ON	00	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total Bio- CO2 NBio- CO2 Total CO2	Bio- CO2	NBio- CO2	Total CO2	CH4	NZO	CO2e
Category					tons/yr	s/yr							MT/yr	/yr		
Hauling	0.0000	0.0000 0.0000 0.0000 0.0000	0.000.0	0.0000		0.000.0	0.000.0	0.0000 0.0000	0.000.0	0.0000	0.000.0	0.0000 0.0000 0.0000 0.0000	0.000.0	0.000.0	0.0000	0.0000
Vendor	0.0000	0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.0000	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.0000	0.0000
Worker	9.9000e- 004	9.9000e- 6.9000e- 7.4000e- 2.0000e- 2.2400e- 004 004 003 005 003	7.4000e- 003	2.0000e- 005		1.0000e- 2.2500e- 005 003	2.2500e- 003	6.0000e- 004	. 6.0000e- 1.0000e- 004 005	6.1000e- 004	0.0000	1.9317	1.9317	5.0000e- 005	0.0000	1.9329
Total	9.9000e- 004	9.9000e- 6.9000e- 7.4000e- 2.0000e- 2.2400e 004 004 009	7.4000e- 003	2.0000e- 005		1.0000e- 005	2.2500e- 003	000e- 004	1.0000e- 005	6.1000e- 004	0.0000	1.9317	1.9317	5.0000e- C	0.0000	1.9329

ROG	XON	00	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4 PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N20	CO2e
				tons/yr	s/yr							MT/yr	'yr		
					0.000 0.0000	0.000.0		0.000.0	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	0.000.0	0.000.0	0.0000
r	0.0800	0.0115 0.0800 0.0870 1.4000e-	1.4000e- 004		5.2700e- 5.2700e- 003 003	5.2700e- 003		5.2700e- 5.2700e- 003 003	5.2700e- 003	0.0000	12.1279	12.1279 12.1279 9.4000e- 004	9.4000e- 004	0.0000	12.1514
	0.0800	0.2214 0.0800 0.0870 1.4000e- 004	1.4000e- 004		5.2700e- 003	5.2700e- 003		5.2700e- 003	e- 5.2700e- 003	0.0000	0.0000 12.1279	12.1279	9.4000e- 004	0.0000	12.1514

Fullerton Ranch Project - Placer County APCD Air District, Annual

Date: 8/8/2017 2:53 PM

3.6 Architectural Coating - 2020 Mitigated Construction Off-Site

CO2e		0.0000	0.0000	1.9329	1.9329
N20		0.000.0	0.0000	0.0000	0.0000
CH4	/yr	0.000.0	0.000.0	5.0000e- 005	5.0000e- 005
Total CO2	MT/yr	0.0000	0.0000	1.9317	1.9317
NBio- CO2 Total CO2		0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	1.9317	1.9317
Bio- CO2		0.0000	0.0000	0.0000	0.0000
PM2.5 Total Bio- CO2		0.0000	0.0000	6.1000e- 004	6.1000e- 004
Exhaust PM2.5		0.0000	0000	0000e- 005	1.0000e- 005
Fugitive PM2.5		0.000 0.0000 0.0000	000.	0000	6.0000e- 004
PM10 Total		0.000.0	0.000.0	2.2500e- 003	2.2500e- 003
Exhaust PM10	tons/yr	0.0000	0.0000	1.0000e- 005	1.0000e- 005
Fugitive PM10	ton	0.0000	0.0000	2.2400e- 003	2.2400e- 003
SO2		0.0000	0.0000	2.0000e- 005	7.4006e- 2.0000e- 2.2400e- 003 005 003
00		0.0000	0.0000	7.4000e- 003	7.4000e- 003
XON		0.0000	0.0000 0.0000	6.9000e- 004	9.9000e- 004 004
ROG		0.0000 0.0000 0.0000 0.0000	0.0000	9.9000e- 6.9000e- 7.4000e- 2.0000e- 004 004 003 005	9.9000e- 004
	Category		:	Worker	Total

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

Increase Density

Improve Walkability Design

Improve Destination Accessibility

Increase Transit Accessibility

Improve Pedestrian Network

Provide Traffic Calming Measures

Page 30 of 41

Date: 8/8/2017 2:53 PM

Fullerton Ranch Project - Placer County APCD Air District, Annual

CO2e		0.1258 0.0000 611.0924 611.0924 0.0318 0.0000 611.8862	0.0000 649.4506
N2O		0.0000	0.0000
CH4	/yr	0.0318	0.0327
Total CO2	MT/yr	611.0924	648.6329
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4 PM2.5		611.0924	0.0000 648.6329 648.6329 0.0327
Bio- CO2		0.0000	0.0000
PM2.5 Total		0.1258	0.1350
Exhaust PM2.5		7.3200e- 0.4492 0.1189 6.9100e- 003 003	7.7700e- 0.4823 0.1277 7.3300e- 003 0.03
Fugitive PM2.5		0.1189	0.1277
PM10 Total		0.4492	0.4823
Exhaust PM10	tons/yr	7.3200e- 003	7.7700e- 003
Fugitive PM10	ton		•
		6.6400e- 003	7.0500e- 003
CO SO2		2.0846	2.1805
NOx		1.4326	1.4735
ROG		0.2199 1.4326 2.0846 6.6400e- 0.4418 003	0.2244 1.4735 2.1805 7.0500e- 0.4746 003
	Category	Mitigated	Unmitigated

4.2 Trip Summary Information

	Avera	Average Daily Trip Rate	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Single Family Housing	771.12	802.71	698.22	1,276,692	1,188,601
Total	771.12	802.71	698.22	1,276,692	1,188,601

4.3 Trip Type Information

Miles			Trip %			Trip Purpose	%
H-W or C-W H-S or C-C	H-O or C-ľ	H-O or C-NW H-W or C-W H-S or C-C H-O or C-NW	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
6.29 4.25	4.37	42.60	21.00	36.40	98	11	3

4.4 Fleet Mix

	-	-	-	-	-	-	-	-		-	-	•	
0.001333	0.000783	0.006102	0.001229	0.001467	0.045583	0.027831	0.006586	0.132626 0.025790 0.006586 0.027831 0.045583 0.001467 0.001229 0.006102 0.000783 0.001333		0.220156	0.041257 0.2201	0.489257	Single Family Housing
MH	SBUS	MCY	NBUS	OBUS	НН	MHD	LHD2	LHD1	MDV	LDT2	LDT1	LDA	Land Use

5.0 Energy Detail

Historical Energy Use: N

Page 31 of 41

Date: 8/8/2017 2:53 PM

Fullerton Ranch Project - Placer County APCD Air District, Annual

5.1 Mitigation Measures Energy

Exceed Title 24

Install High Efficiency Lighting

Install Energy Efficient Appliances

CO2e		91.5374	97.3502	119.9775	139.0882
N20		0.0000 90.7510 90.7510 9.0800e- 1.8800e- 91.5374 003 003	2.0000e- 003	2.1900e- 003	2.5300e- 003
CH4	/yr	9.0800e- 003	9.6500e- 003	2.2900e- 003	2.6500e- 003
Total CO2	MT/yr	90.7510		119.2688 119.2688 2.2900e-	138.2666 138.2666 2.6500e-
NBio- CO2		90.7510	96.5139 96.5139	119.2688	138.2666
Bio- CO2		0.000	0.0000	0.0000	0.0000
PM2.5 Total		0.0000 0.0000	0.0000	8.3300e- 003	9.6500e- 003
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4 PM2.5		0.0000	0.0000	8.3300e- 003	9.6500e- 003
Fugitive PM2.5					
PM10 Total		0.000.0	0.000.0	8.3300e- 003	9.6500e- 003
Exhaust PM10	tons/yr	0.0000 0.0000	0.000	8.3300e- 003	9.6500e- 003
Fugitive PM10	ton				, · · · · · · · · · · · · · · · ·
802				6.6000e- 004	7.6000e- 004
00				0.0438	0.0508 7.6000e-
XON				0.1030	0.0140 0.1194
ROG				0.0121	0.0140
	Category	Electricity Mitigated	Electricity Unmitigated	NaturalGas Mitigated	NaturalGas Unmitigated

Page 32 of 41

Date: 8/8/2017 2:53 PM

Fullerton Ranch Project - Placer County APCD Air District, Annual

5.2 Energy by Land Use - NaturalGas

Unmitigated

C02e		139.0882	139.0882
N20		2.5300e- 003	2.5300e- 13 003
CH4	/yr	2.6500e- 003	2.6500e- 003
NBio- CO2 Total CO2	MT/yr	138.2666	138.2666 138.2666
NBio- CO2		0.0000 138.2666 138.2666 2.6500e- 2.5300e- 003	138.2666
Bio- CO2		0.0000	0.0000
PM2.5 Total Bio- CO2		9.6500e- 003	9.6500e- 003
Exhaust PM2.5		9.6500e- 003	9.6500e- 003
Fugitive PM2.5			
PM10 Total		9.6500e- i 9.6500e- 003 003	9.6500e- 003
Exhaust PM10	tons/yr	9.6500e- 003	9.6500e- 003
Fugitive PM10	ton		
SO2		7.6000e- 004	7.6000e- 004
00		0.0508	0.0508
XON		0.1194	0.1194
ROG		0.0140	0.0140
NaturalGa s Use	kBTU/yr	2.59102e +006	
	Land Use	Single Family 2.59102e 0.0140 0.1194 0.0508 7.6000e-Housing +006	Total

Mitigated

CO2e		119.9775	119.9775
N20		2.1900e- 003	2.1900e- 003
CH4	/yr	2.2900e- 003	2.2900e- 003
Total CO2	MT/yr	119.2688	119.2688
NBio- CO2		119.2688	119.2688 119.2688 2.2900e-
Bio- CO2		0.0000 119.2688 12.2900e- 2.1900e- 119.9775 003 003	0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		8.3300e- 8.3300e- 003 003	8.3300e- 003
Exhaust PM2.5		8.3300e- 003	8.3300e- 003
Fugitive PM2.5			
PM10 Total		8.3300e- 8.3300e- 003 003	8.3300e- 003 003
Exhaust PM10	ns/yr	8.3300e- 003	8.3300e- 003
Fugitive PM10	ton		
S02		6.6000e- 004	6.6000e- 004
00		0.0438	0.0438
NOX		0.1030	0.1030
ROG		0.0121	0.0121
NaturalGa s Use	kBTU/yr	2.23501e +006	
	Land Use	Single Family 2.23501e 0.0121 0.1030 0.0438 6.6000e- Housing +006 0.04	Total

Page 33 of 41

Date: 8/8/2017 2:53 PM

Fullerton Ranch Project - Placer County APCD Air District, Annual

5.3 Energy by Land Use - Electricity

Unmitigated

	MT/yr	96.5139 9.6500e- 2.0000e- 97.3502 003 003)e- 2.0000e- 97.3502 003
		96.5139 9.6500e	96.5139 9.6500e-
Use	kWh/yr	733713	
	Land Use	Single Family Housing	Total

Mitigated

91.5374	1.8800e- 003	9.0800e- 003	90.7510		Total
91.5374	1.8800e- 003	9.0800e- 003	90.7510	689903	Single Family Housing
	MT/yr	M		kWh/yr	Land Use
CO2e	N2O	CH4	Total CO2	Electricity Use	

6.0 Area Detail

6.1 Mitigation Measures Area

Fullerton Ranch Project - Placer County APCD Air District, Annual

Use Low VOC Paint - Residential Interior

Use Low VOC Paint - Residential Exterior

Use Low VOC Paint - Non-Residential Interior

Use Low VOC Paint - Non-Residential Exterior

Use only Natural Gas Hearths

C02e		58.7673	123.6573
NZO		0.0000 58.4021 58.4021 2.0600e- 1.0500e- 0.003	83.6696 36.0722 119.7418 0.0782 6.5800e- 123.6573
CH4	MT/yr	2.0600e- 003	0.0782
Total CO2	M	58.4021	119.7418
NBio- CO2		58.4021	36.0722
Bio- CO2		0.0000	83.6696
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		7.3300e- 7.3300e- 003 003	0.8830 0.8830
Exhaust PM2.5		7.3300e- 003	0.8830
Fugitive PM2.5			
PM10 Total		7.3300e- 003	0.8830
Exhaust PM10	s/yr	7.3300e- 7.3300e- 003 003	0.8830 0.8830
Fugitive PM10	tons/yr		
SO2		3.5000e- 004	0.0114
00		0.6245	6.8772
XON		0.0566	0.1062
ROG		0.6848 0.0566 0.6245 3.5000e-	5.7615 0.1062 6.8772 0.0114
	Category	Mitigated	Unmitigated

Fullerton Ranch Project - Placer County APCD Air District, Annual

6.2 Area by SubCategory

Unmitigated

CO2e		0.0000	0.0000	122.6509	1.0064	123.6573
NZO		0.0000 0.00000	0.000.0	6.5800e- 1. 003	0.0000	6.5800e- 003
CH4	/yr	0.0000	0.0000	0.0772	9.6000e- 0 004	0.0782
Total CO2	MT/yr	0.0000	0.0000	118.759.	0.9824	119.7418
NBio- CO2		0.0000	0.0000		0.9824	36.0722
Bio- CO2 NBio- CO2 Total CO2		0.0000	0.0000	83.6696	0.000.0	83.6696
PM2.5 Total		0.0000	0.000.0		3.3200e- 003	0.8830
Exhaust PM2.5		0.0000	0.0000	0.8796	3.3200e- 003	0.8830
Fugitive PM2.5			r			
PM10 Total		0.0000	0.0000	0.8796	3.3200e- 003	0.8830
Exhaust PM10	s/yr	0.0000	0.0000	0.8796	3.3200e- 003	0.8830
Fugitive PM10	tons/yr					
802				0.0114	3.0000e- 005	0.0114
00				6.2737	0.6034	6.8772
×ON				0.0993	6.9800e- 003	0.1062
ROG		0.0912	0.5694	5.0824	0.0184	5.7615
	SubCategory	Architectural Coating	Consumer Products	Hearth	Landscaping	Total

Fullerton Ranch Project - Placer County APCD Air District, Annual

Page 36 of 41

Date: 8/8/2017 2:53 PM

6.2 Area by SubCategory

Mitigated

	ROG	×ON	00	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	Bio- CO2 NBio- CO2 Total CO2	Total CO2	CH4	NZO	CO2e
SubCategory					tons/yr	s/yr							MT/yr	/yr		
Architectural Coating	0.0912					0.0000 0.0000	0.0000		0.0000	0.000.0	0.000.0	0.0000 0.0000 0.0000	0.0000	0.0000	0.0000 0.0000	0.0000
Consumer Products	0.5694		[[0.0000	0.0000	 	0.0000	0000.0	0.000.0	0.0000	0.0000	0.0000	0.0000	0.000.0
Hearth	5.8000e- 003	0.0496	0.0211	3.2000e- 004		4.0100e- 003	4.0100e- 003	 	4.0100e- 003	4.0100e- 003	0.000.0	57.4197	57.4197	1.1000e- 003	1.0500e- 003	57.7609
Landscaping	0.0184	6.9800e- 003	0.6034	3.0000e- 005		3.3200e- 003	3.3200e- 003	 	3.3200e- 003	3.3200e- 003	0.000.0	0.9824	0.9824	9.6000e- 004	0.0000	1.0064
Total	0.6848	0.0566	0.6245	3.5000e- 004		7.3300e- 003	7.3300e- 003		7.3300e- 003	7.3300e- 003	0.0000	58.4021	58.4021	2.0600e- 003	1.0500e- 003	58.7673

7.0 Water Detail

7.1 Mitigation Measures Water

Install Low Flow Bathroom Faucet

Install Low Flow Kitchen Faucet

Install Low Flow Toilet

Install Low Flow Shower

Use Water Efficient Irrigation System

Date: 8/8/2017 2:53 PM

Fullerton Ranch Project - Placer County APCD Air District, Annual

	Total CO2	CH4	NZO	CO2e
Category		MT	MT/yr	
Mitigated	5.7829	0.1380	3.3400e- 003	10.2287
Unmitigated	6.9625	0.1725	4.1700e- 003	12.5175

7.2 Water by Land Use

Unmitigated

Date: 8/8/2017 2:53 PM

Fullerton Ranch Project - Placer County APCD Air District, Annual

7.2 Water by Land Use

Mitigated

<u>n</u>	ndoor/Out door Use	Indoor/Out Total CO2 door Use	CH4	N20	CO2e
	Mgal		M	MT/yr	
3.	4.22198 / 3.12415	4.22188 5.7829 0.1380 3.3400e- 10.2287 3.12415 003	0.1380	3.3400e- 003	10.2287
		5.7829	0.1380	3.3400e- 003	10.2287

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	Total CO2	CH4	N2O	CO2e
		MT/yr	/yr	
	15.2730 0.9026 0.0000 37.8383	0.9026	0.0000	37.8383
Unmitigated	15.2730	0.9026	0.0000	37.8383

Page 39 of 41

Date: 8/8/2017 2:53 PM

Fullerton Ranch Project - Placer County APCD Air District, Annual

8.2 Waste by Land Use

Unmitigated

	Waste Disposed	Total CO2	CH4	NZO	C02e
Land Use	tons		M	MT/yr	
Single Family Housing	75.24	15.2730	0.9026	0.0000	37.8383
Total		15.2730	0.9026	0.0000	37.8383

Mitigated

37.8383	0.000	0.9026	15.2730		Total
0.0000 37.8383	0.0000	0.9026	15.2730	75.24	Single Family Housing
	MT/yr	MT		tons	Land Use
CO2e	N20	CH4	Total CO2	Waste Disposed	

9.0 Operational Offroad

Fuel Type
Load Factor
Horse Power
Days/Year
Hours/Day
Number
Equipment Type

Page 40 of 41

Fullerton Ranch Project - Placer County APCD Air District, Annual

Date: 8/8/2017 2:53 PM

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type

Boilers

Fuel Type
Boiler Rating
Heat Input/Year
Heat Input/Day
Number
Equipment Type

User Defined Equipment

Number	
Equipment Type	

11.0 Vegetation

	l otal CO2	CH4	NZO	COZe
Category		M	MT	
Unmitigated	-84.9070 0.0000 0.0000 -84.9070	0.0000	0.0000	-84.9070

gision. Calceiviou.zo.jo.s.i

Fullerton Ranch Project - Placer County APCD Air District, Annual

Page 41 of 41

Date: 8/8/2017 2:53 PM

11.1 Vegetation Land Change

Vegetation Type

		0	
CO2e		0.0000 -84.9070	-84.9070
NZO	МТ	0.0000	0.0000
CH4	N	0.0000	0.0000
Initial/Fina Total CO2		19.7 / 0	-84.9070
Initial/Fina I	Acres	19.7 / 0	
		Grassland	Total

11.2 Net New Trees

Species Class

C02e		0.000 0.0000	0.0000
N2O	Т	0.0000	0.0000
CH4	MT	0.0000 0.0000	0.0000
Number of Total CO2 Trees		0.0000	0.0000
Number of Trees		0	
		Miscellaneous	Total

Page 1 of 35

Date: 8/8/2017 2:52 PM

Fullerton Ranch Project - Placer County APCD Air District, Summer

Fullerton Ranch Project

Placer County APCD Air District, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Single Family Housing	81.00	Dwelling Unit	19.70	145,800.00	209

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	74
	7			Operational real	2020
Utility Company	Pacific Gas & Electric Company	Sompany			
CO2 Intensity (Ib/MWhr)	290	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Fullerton Ranch Project - Placer County APCD Air District, Summer

Date: 8/8/2017 2:52 PM

Project Characteristics - See assumptions in Appendix B

Land Use - See assumptions in Appendix B

Construction Phase - See assumptions in Appendix B

Off-road Equipment -

Off-road Equipment - See assumptions in Appendix B

Grading - See assumptions in Appendix B

Vehicle Trips - See assumptions in Appendix B

Woodstoves - See assumptions in Appendix B

Energy Use - See assumptions in Appendix B

Land Use Change -

Sequestration -

Construction Off-road Equipment Mitigation -

Mobile Land Use Mitigation -

Mobile Commute Mitigation - See assumptions in Appendix B

Area Mitigation -

Energy Mitigation -

Water Mitigation -

New Value	True	5	413.00
Default Value	UseLowVOCPaintParkingCheck False	40	20.00
Column Name	UseLowVOCPaintParkingCheck	WaterUnpavedRoadVehicleSpeed	NumDays
Table Name	tblAreaMitigation	tblConstDustMitigation	tblConstructionPhase

Fullerton Ranch Project - Placer County APCD Air District, Summer

tblConstructionPhase	NumDays	300.00	413.00
tblConstructionPhase	NumDays	30.00	60.00
tblConstructionPhase	NumDays	20.00	10.00
tblConstructionPhase	NumDays	10.00	4.00
tblConstructionPhase	PhaseEndDate	7/13/2020	5/12/2020
tblConstructionPhase	PhaseEndDate	4/6/2020	3/6/2020
tblConstructionPhase	PhaseEndDate	7/30/2018	7/26/2018
tblConstructionPhase	PhaseEndDate	5/25/2020	8/8/2018
tblConstructionPhase	PhaseEndDate	5/28/2018	5/4/2018
tblConstructionPhase	PhaseStartDate	5/26/2020	10/12/2018
tblConstructionPhase	PhaseStartDate	7/31/2018	8/8/2018
tblConstructionPhase	PhaseStartDate	5/29/2018	5/4/2018
tblConstructionPhase	PhaseStartDate	4/7/2020	7/26/2018
tblGrading	AcresOfGrading	90.00	19.70
tblGrading	AcresOfGrading	0.00	19.70
tblLandUse	LotAcreage	26.30	19.70
tblLandUse	Population	232.00	209.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	1.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	1.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	1.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	1.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	1.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	1.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	1.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	1.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	4.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00

Fullerton Ranch Project - Placer County APCD Air District, Summer

3.00	290	2020	18.00	20.00	15.00	15.00	4.37	4.25	6.29
7.00	641.35	2018	8.00	15.00	8.00	8.00	7.50	7.30	10.80
UsageHours	CO2IntensityFactor	OperationalYear	WorkerTripNumber	WorkerTripNumber	WorkerTripNumber	WorkerTripNumber	-11_OH	T_ZH	HW_TL
tblOffRoadEquipment	tblProjectCharacteristics	tblProjectCharacteristics	tbTripsAndVMT	tbITripsAndVMT	tbTripsAndVMT	tbTripsAndVMT	tbIVehicleTrips	tbIVehicleTrips	tbIVehicleTrips

2.0 Emissions Summary

Fullerton Ranch Project - Placer County APCD Air District, Summer

Date: 8/8/2017 2:52 PM

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

CO2e		9.940 3	2.153 1	6.459 4	9.940 5
00		6,269	2,12	2,09(6,269.940 6
NZO		0.0000	ö	0.0000 2,096.459 4	0.0000
CH4	ay	1.8443	0.2858	0.2773	1.8443
Total CO2	lb/day	6,223.834 3	2,115.0077	2,089.526 1	6,223.834 3
Bio- CO2 NBio- CO2 Total CO2		0.0000 6,223.834 6,223.834 1.8443 0.0000 6,269.940 8	0.0000 2,115.007 2,115.0077 0.2858	0.0000 2,089.526 2,089.526	0.0000 6,223.834 6,223.834 1.8443 3
Bio- CO2		0.000.0	0.000.0	0.0000	0.0000
PM2.5 Total		9.9483	0.7720	0.6799	9.9483
Exhaust PM2.5		2.6435	0.6782	0.5861	2.6435
Fugitive PM2.5			0.0938	0.0938	7.3048
PM10 Total		2.8734 20.8009 7.3048	1.0546	0.6101 0.9586	20.8009
Exhaust PM10	day		0.7061	0.6101	2.8734
Fugitive PM10	Ib/day	17.9275		0.3485	0.0619 17.9275
S02		0.0619	0.0216	0.0215	0.0619
CO		34.3944	10.9929	10.7243	34.3944
×ON		60.6242	12.5636 10.9929	5.7248 11.4530 10.7243	6.0549 60.6242 34.3944
ROG		6.0549 60.6242 34.3944 0.0619 17.9275	5.8684	5.7248	6.0549
	Year	2018	2019	2020	Maximum

Mitigated Construction

CO2e		6,269.940 6	0.0000 2,122.153	0.0000 2,096.459 4	0.0000 6,269.940
NZO		0.0000	0.0000	0.0000	
CH4	ау	1.8443	0.2858	0.2773	1.8443
Total CO2	lb/day	6,223.834 3	2,115.0077	2,089.526 1	6,223.834 3
NBio- CO2		0.0000 6,223.834 6,223.834 1.8443 0.0000 6,269.940	0.0000 2,115.0077,2,115.0077 0.2858	0.0000 2,089.526 2,089.526 0.2773	0.0000 6,223.834 6,223.834 1.8443 3
Bio- CO2		0.000.0	0.000.0	0.0000	0.0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		5.5429	0.7720	0.6799	5.5429
Exhaust PM2.5		2.6435	0.6782	0.5861	2.6435
Fugitive PM2.5		2.8994	0.0938	0.0938	2.8994
PM10 Total		10.0555 2.8994	1.0546	0.9586	10.0555
Exhaust PM10	lb/day	2.8734	0.7061	0.6101	2.8734
Fugitive PM10	p/qı	7.1822	0.3485	0.3485	7.1822
S02		0.0619	10.9929 0.0216	0.0215	60.6242 34.3944 0.0619
00		34.3944	10.9929	10.7243	34.3944
×ON		6.0549 60.6242 34.3944 0.0619 7.1822	12.5636	11.4530 10.7243 0.0215	
ROG		6.0549	5.8684	5.7248	6.0549
	Year	2018	2019	2020	Maximum

Fullerton Ranch Project - Placer County APCD Air District, Summer

C02e	00'0
N20	0.00
CH4	0.00
Total CO2	0.00
NBio-CO2 Total CO2	0.00
Bio- CO2	00:0
PM2.5 Total	38.64
Exhaust PM2.5	0.00
Fugitive PM2.5	58.80
PM10 Total	47.10
Exhaust PM10	00:00
Fugitive PM10	69'29
802	00'0
03	0.00
NOX	00'0
ROG	00'0
	Percent Reduction

Date: 8/8/2017 2:52 PM

Fullerton Ranch Project - Placer County APCD Air District, Summer

2.2 Overall Operational Unmitigated Operational

CO2e		3,309.874 5	840.1014	4,391.793 8	8,541.769 7
N2O		0.1769	0.0153		0.1923
CH4	lay	2.0877	0.0160	0.2037	2.3074
Total CO2	lb/day	3,204.954 7	835.1386 835.1386	4,386.700 4,386.700 9	8,426.794 2
Bio- CO2 NBio- CO2 Total CO2		955.4445	835.1386	4,386.700 9	6,177.284 0
Bio- CO2		2,249.510 2			2,249.510 6,177.284 8,426.794 2 2
PM2.5 Total		21.4914 21.4914 2,249.510 955.4445 3,204.954 2.0877 0.1769 3,309.874 5	0.0529	0.8080	22.3523
Exhaust PM2.5		21.4914	0.0529	0.0419	21.5862
Fugitive PM2.5				0.7661	0.7661
PM10 Total		21.4914	0.0529	2.9030	24.4473
Exhaust PM10	lb/day	21.4914 21.4914	0.0529	0.0444	21.5887
Fugitive PM10)/qı			2.8586	2.8586
SO2		0.2776	4.1800e- 003	0.0433	0.3250
00		159.7224	0.2784	12.9484	129.4469 11.4553 172.9492 0.3250
NOx		2.4984	0.6542	1.5841 8.3027	11.4553
ROG		127.7862 2.4984 159.7224 0.2776	0.0766	1.5841	129.4469
	Category	Area	Energy	Mobile	Total

Mitigated Operational

					1	
CO2e		1,565.264 6	724.6715	4,137.022 9	6,426.959 1	
N20		0.0283	0.0132		0.0415	
CH4	я̀х	0.0413	0.0138	0.1972	0.2524	
Total CO2	lb/day	1,555.797 4	720.3906	4,132.092 3		
NBio- CO2		1,555.797 4		4,132.092 4,132.092 3 3	6,408.280 6,408.280 3 3	
Bio- CO2		0.0000	• • • • • • • • • • • • • • • • • • •		0.0000	
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.1346 0.1346 0.0000 1,555.797 1,555.797 0.0413 0.0283 1,565.264 4 4 6	0.0456	0.7527	0.9329	
Exhaust PM2.5		0.1346	0.0456	0.0395	0.2197	
Fugitive PM2.5			 	0.7132	0.7132	
PM10 Total	lb/day	0.1346	0.0456	2.7032	2.8834	
Exhaust PM10		lb/day	0.1346 0.1346	0.0456	0.0418	0.2221
Fugitive PM10					2.6613	2.6613
SO2		8.0700e- 003	3.6000e- 003	8.0835 12.3051 0.0408	0.0524	
00		7.2194	0.2401	12.3051	19.7647	
×ON		3.9657 1.2868 7.2194 8.0700e-	0.5643 0.2401 3.6000e- 003	8.0835	9.9347	
ROG		3.9657	0.0660	1.5580	5.5898	
	Category	Area	: : : :	Mobile	Total	

Page 8 of 35

Fullerton Ranch Project - Placer County APCD Air District, Summer

Date: 8/8/2017 2:52 PM

CO2e	24.76
N20	78.41
СН4	90'68
Total CO2	23.95
Bio- CO2 NBio-CO2 Total CO2	-3.74
Bio- CO2	100.00
PM2.5 Total	95.83
Exhaust PM2.5	98.98
Fugitive PM2.5	06:9
PM10 Total	88.21
Exhaust PM10	98.97
Fugitive PM10	06.9
802	83.87
00	88.57
XON	13.27
ROG	95.68
	Percent Reduction

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
[Site Preparation	Site Preparation		5/4/2018	2	4	
· · · ·	Grading	Grading	 	7/26/2018	2		
- • • •		Paving		8/8/2018	5	10	
	onstruction			3/6/2020		413	
	Architectural Coating	Architectural Coating	10/12/2018	5/12/2020	5	413	

Acres of Grading (Site Preparation Phase): 19.7

Acres of Grading (Grading Phase): 19.7

Acres of Paving: 0

Residential Indoor: 295,245; Residential Outdoor: 98,415; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Fullerton Ranch Project - Placer County APCD Air District, Summer

Site Preparation Rubber Tired Dozers 1 8.00 247; 0.0 Site Preparation Tractors/Loaders/Backhoes 2 8.00 97; 0.0 Grading Excavatiors Craders 1 8.00 187; 0.0 Grading Scrapers Craders 1 8.00 247; 0.0 Grading Scrapers Tractors/Loaders/Backhoes 1 8.00 97; 0.0 Grading Paving Paving Equipment 1 8.00 97; 0.0 Paving Paving Equipment 1 8.00 80 0.0 Paving Paving Equipment 1 8.00 80 0.0 Building Construction Cranes 1 8.00 80 0.0 Building Construction Generator Sets 1 7.00 84 0.0 Architectural Coaling Air Compressors 1 7.00 84 0.0 Architectural Coaling Air Compressors 0 80	Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
anation Tractors/Loaders/Backhoes 2 8.00 97 Excavators 6 Graders 1 8.00 187 Graders 7 8.00 187 Rubber Tired Dozers 1 8.00 367 Crapers Tractors/Loaders/Backhoes 1 8.00 367 Pavers Pavers 1 8.00 80 Construction Cranes 1 8.00 89 Construction Forkfilts 8.00 84 7 Construction Tractors/Loaders/Backhoes 1 8.00 89 Inal Coating Air Compressors 1 6.00 78 Coating Welders 0 80 78	Site Preparation	Rubber Tired Dozers		8.00	247	0.40
Excavations Excavations 2 8.00 158 Graders Graders 1 8.00 247 Rubber Tired Dozers 1 8.00 247 Scrapers 1 8.00 367 Pavers 1 8.00 97 Paving Equipment 1 8.00 132 Paving Equipment 1 8.00 80 Ponstruction Cranes 1 8.00 80 Construction Generator Sets 1 8.00 84 Construction Tractors/Loaders/Backhoes 1 7.00 97 Inal Coating Air Compressors 1 6.00 78 Construction Welders 0 84 60	Site Preparation	Tractors/Loaders/Backhoes	2	8.00	26	0.37
Graders Indicates Indicates	Grading	Excavators	2	8.00	158	0.38
Rubber Tred Dozers 1 8.00 247 Scrapers 1 8.00 367 Pavers 1 8.00 97 Paving Equipment 1 8.00 132 Rollers 8.00 80 132 Construction Cranes 1 8.00 89 Construction Generator Sets 1 8.00 84 Construction Tractors/Loaders/Backhoes 1 7.00 97 Iral Coating Air Compressors 1 6.00 78 Oostruction Welders 76 46		Graders		8.00	187	0.41
Scrapers 1 8.00 367 Tractors/Loaders/Backhoes 1 8.00 97 Pavers Rollers 130 132 Sonstruction Cranes 1 8.00 80 Sonstruction Forklifts 8.00 89 Construction Generator Sets 1 8.00 84 Construction Tractors/Loaders/Backhoes 1 7.00 97 Irial Coating Air Compressors 0 8.00 78 Construction Welders 6.00 76 78	1	Rubber Tired Dozers		8.00	247	0.40
Tractors/Loaders/Backhoes 1 8.00 97 Pavers 1 8.00 132 Paving Equipment 1 8.00 80 Construction Forklifts 8.00 80 Construction Forklifts 8.00 84 Construction Tractors/Loaders/Backhoes 1 8.00 97 Construction Air Compressors 1 6.00 78 Construction Welders 76 76	1	Scrapers		8.00	367	0.48
Pavers Pavers 1 8.00 130 Paving Equipment 1 8.00 132 Rollers 80 80 80 Construction Forklifts 8 80 Construction Generator Sets 1 8.00 84 Construction Tractors/Loaders/Backhoes 1 7.00 97 Construction Air Compressors 1 6.00 78 Construction Welders 9 46		Tractors/Loaders/Backhoes		8.00	26	0.37
Rollers Rollers 1 8.00 132; Construction Cranes 1 8.00 80 Construction Forklifts 1 8.00 89 Construction Generator Sets 1 8.00 84 Construction Tractors/Loaders/Backhoes 1 7.00 97 Stural Coating Air Compressors 1 6.00 78 Construction Welders 0 8.00 46		Pavers		8.00	130	0.42
Construction Cranes 1 8.00 80 Construction Forklifts 1 3.00 231 Construction Generator Sets 1 8.00 89 Construction Tractors/Loaders/Backhoes 1 7.00 97 Stural Coating Air Compressors 1 6.00 78 Construction Welders 0 8.00 46	Paving	Paving Equipment	 	8.00	132	0.36
Forklifts 1 3.00 231 Forklifts 1 8.00 89 Generator Sets 1 8.00 84 Tractors/Loaders/Backhoes 1 7.00 97 Air Compressors 1 6.00 78 Welders 0 8.00 46	Paving	Rollers		8.00	80	0.38
Forklifts 4 8.00 89 Generator Sets 1 8.00 84 Tractors/Loaders/Backhoes 1 7.00 97 Air Compressors 1 6.00 78 Welders 9 46		Cranes		3.00	231	0.29
Generator Sets 4 Tractors/Loaders/Backhoes 7.00 97 Air Compressors 78 Welders 97 Welders 78	Building Construction	Forklifts		8.00	68	0.20
Tractors/Loaders/Backhoes 1 7.00 97 Air Compressors 1 6.00 78 Welders 0 8.00 46		Generator Sets		8.00	84	0.74
Air Compressors 78 Welders 0 8.00 46	1 1 1 1 1 1 1 1 1	Tractors/Loaders/Backhoes	 	7.00	26	0.37
Welders 0 8.00 46		Air Compressors		9.00	82	0.48
		Welders	0	8.00	46	0.45

Trips and VMT

Phase Name	Offroad Equipment Worker Trip Vendor Trip Hauling Trip Count Number Number	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Site Preparation	ε	18.00	00:00	00.0	10.80	7.30		20.00 LD_Mix	HDT_Mix	HHDT
Grading	9	20.00	00.0	00.0	10.80	7.30	! ! !		HDT_Mix	HHDT
Paving	ε 	15.00	00.0	0.00	10.80	7.30	! ! !	Mix	HDT_Mix	HHDT
Paving	ε 	15.00	00.0	0.00	10.80	7.30	! ! !	Mix	:	THE
Building Construction	4	29.00	00.6	0.00	10.80	7.30	: : : : :	_Mix	HDT_Mix	HHDT
Architectural Coating		00.9	0.00	0.00	10.80	7.30		_D_Mix	HDT_Mix	HHDT

Page 10 of 35 CalEEMod Version: CalEEMod.2016.3.1

Fullerton Ranch Project - Placer County APCD Air District, Summer

Date: 8/8/2017 2:52 PM

3.1 Mitigation Measures Construction

Water Exposed Area

Water Unpaved Roads

Reduce Vehicle Speed on Unpaved Roads

3.2 Site Preparation - 2018

Φ													
CO2e		0.0000	1,497.288 4	1,497.288 4									
N20													
CH4	day	day	day			0.4625	0.4625						
Total CO2	lb/day	0.000.0	1,485.725 3	1,485.725 1,485.725 3									
NBio- CO2			1,485.725 1,485.725 0.4625 3	1,485.725 3									
Bio- CO2													
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4 PM2.5		3.8742	0.9045	4.7787									
Exhaust PM2.5	lb/day	0.0000	0.9045	0.9045									
Fugitive PM2.5				0.0000 11.2451 3.8742 0.0000		3.8742							
PM10 Total		11.2451	0.9832	12.2282									
Exhaust PM10		lb/day	lb/day	lb/day	day	day	ау	1 y	ау	day	0.0000	0.9832	0.9832
Fugitive PM10					11.2451		11.2451						
S02				0.0148	0.0148								
00						9.0499	9.0499						
NOX			17.8194 9.0499	1.6983 17.8194 9.0499 0.0148 11.2451									
ROG			1.6983	1.6983									
	Category	Fugitive Dust	Off-Road	Total									

Fullerton Ranch Project - Placer County APCD Air District, Summer

Date: 8/8/2017 2:52 PM

3.2 Site Preparation - 2018
Unmitigated Construction Off-Site

	ROG	×ON	00	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total Bio- CO2 NBio- CO2 Total CO2	Bio- CO2	NBio- CO2	Total CO2	CH4	N20	CO2e
Category					lb/day	lay							lb/day	lay		
Hauling	0.0000	00000 00000 00000 00000 00000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.0000	0.0000 0.0000 0.0000	0.0000		0.0000	0.0000 0.0000	0.000.0		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000.0	0.0000	0.000.0		0.0000	0.0000	0.0000		0.0000
Worker	0.0842	0.0494	0.6530	0.6530 1.5800e- 0.1479 003	0.1479	9.7000e- 004	0.1488	0.0392	9.0000e- 004	0.0401		156.9105	156.9105 156.9105	4.6500e- 003		157.0267
Total	0.0842	0.0842 0.0494 0.6530 1.5800e- 0.1479 003	0.6530	1.5800e- 003	0.1479	9.7000e- 004	0.1488	0.0392	9.0000e- 004	0.0401		156.9105	156.9105 156.9105	4.6500e- 003		157.0267

			' _~	_							
CO2e		0.0000	1,497.288 4	1,497.288 4							
N20			- -								
CH4	lb/day		0.4625	0.4625							
Total CO2		(ab/dl	lb/day	lb/day	lb/day	lb/day	lb/day	lb/day	lb/da 0.0000	0.000.0	1,485.725 3
NBio- CO2			0.0000 1,485.725 1,485.725 0.4625 3	0.0000 1,485.725 1,485.725 3							
Bio- CO2			0.0000	0.0000							
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4 PM2.5		1.5109	0.9045	2.4155							
Exhaust PM2.5		0.0000 4.3856 1.5109 0.0000 1.5109	0.9045	0.9045							
Fugitive PM2.5	lb/day	1.5109		1.5109							
PM10 Total		lb/day	4.3856	0.9832	5.3687						
Exhaust PM10			lb/day	0.0000	0.9832	0.9832					
Fugitive PM10				p/qı	/qı)/qI)/ql	p/qı	/qı	4.3856	
802			0.0148	0.0148							
00			9.0499	9.0499							
×ON			1.6983 17.8194 9.0499	1.6983 17.8194 9.0499							
ROG			1.6983	1.6983							
	Category	Fugitive Dust	Off-Road	Total							

Date: 8/8/2017 2:52 PM Fullerton Ranch Project - Placer County APCD Air District, Summer

Mitigated Construction Off-Site 3.2 Site Preparation - 2018

	ROG	×ON	8	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	NZO	CO2e
Category					lb/day	lay							lb/day	ау		
Hauling	0.0000	0.0000 0.0000 0.0000 0.0000	0.000.0	0.000.0	l	0.0000 0.0000 0.0000 0.0000 0.0000	0.000.0	0.0000	0.0000	00000		0.0000 0.0000 0.0000	0.000.0	0.000.0		0.0000
Vendor	0.0000	0.0000 0.0000 0.0000 0.0000	0.0000	0.000	0.0000	0.0000	0.000.0	0.0000	0.0000	00000		0.0000	0.000.0	0.0000	• • • • • • • • • • • • • • • • • • •	0.0000
Worker	0.0842	0.0494	0.6530 1.5800e- 0.1479 003	1.5800e- 003	0.1479	9.7000e- 004	0.1488	0.0392	9.0000e- 004	0.0401		156.9105	156.9105 156.9105	4.6500e- 003		157.0267
Total	0.0842	0.0842 0.0494 0.6530 1.5800e- 0.1479 0.0842	0.6530	1.5800e- 003	0.1479	9.7000e- 004	0.1488	0.0392	9.0000e- 004	0.0401		156.9105	156.9105 156.9105	4.6500e- 003		157.0267

3.3 Grading - 2018

	ROG	X O N	8	802	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total Bio- CO2	Bio- CO2	NBio- CO2 Total CO2	Total CO2	CH4	N20	CO2e
Category					lb/day	day							lb/day	lay		
[6.3703	0.0000	6.3703	0.0000 6.3703 3.3478 0.0000	0.0000	3.3478			0.000.0			0.000
Off-Road	3.6771 42.7005 23.9659 0.0438	42.7005	23.9659	0.0438		1.8882	1.8882		1.7371 1.7371	1.7371		4,406.853 6	4,406.853 4,406.853 1.3719 6 6	1.3719		4,441.151 4
Total	3.6771	3.6771 42.7005 23.9659 0.0438	23.9659	0.0438	6.3703	1.8882	8.2584	3.3478	1.7371	5.0849		4,406.853 6	4,406.853 4,406.853 1.3719 6 6	1.3719		4,441.151 4

Date: 8/8/2017 2:52 PM Fullerton Ranch Project - Placer County APCD Air District, Summer

Unmitigated Construction Off-Site 3.3 Grading - 2018

CO2e		0.0000	0.0000	174.4741	174.4741						
N20											
CH4	lb/day	lb/day	lb/day	lb/day	lb/day	lb/day	lb/day	0.000.0	0.0000	5.1700e- 003	5.1700e- 003
Total CO2								0.0000 0.0000 0.00000	0.0000	174.3450	
NBio- CO2		0.0000	0.0000	174.3450 174.3450	174.3450 174.3450						
Bio- CO2											
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.0000	0000:0	0.0446	0.0446						
Exhaust PM2.5	lb/day		0.0000 0.0000 0.0000 0.0000	0.0000	9.9000e- 004	9.9000e- 004					
Fugitive PM2.5				0.000.0	0.0000	0.0436 9.9000e- 004	0.0436				
PM10 Total		0.0000	0.0000	0.1654	0.1654						
Exhaust PM10		0.0000	0.0000	1.0800e- 003	1.0800e- 003						
Fugitive PM10		0.0000	0.0000	0.1643	0.1643						
SO2		0.000.0	0.0000	1.7500e- 003	0.7255 1.7500e- 003						
00		0.000.0	0.0000	0.7255	0.7255						
×ON		0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0549 0.7255 1.7500e- 0.1643 003	0.0549						
ROG		0.0000	0.0000	0.0935	0.0935						
	Category	Hauling	Vendor	Worker	Total						

4,441.151		1.3719	4,406.853 6	0.0000 4,406.853 4,406.853 1.3719 6 6	0.0000	3.0428	1.7371	4.3726 1.3057	4.3726	1.8882	2.4844	3.6771 42.7005 23.9659 0.0438 2.4844	23.9659	42.7005	3771
4,441.151	<u> </u>	1.3719	4,406.853 6	0.0000 4,406.853 4,406.853 1.3719 6 6		1.7371 1.7371	1.7371		1.8882	1.8882		3.6771 42.7005 23.9659 0.0438	23.9659	·	42.7005
0.0000			0.000.0			1.3057	0.0000 2.4844 1.3057 0.0000	1.3057	2.4844	0.0000	2.4844				
		lay	lb/day							day	lb/day				
CO2e	N20	CH4	Total CO2	NBio- CO2	Bio- CO2	Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	Exhaust PM2.5	Fugitive PM2.5	PM10 Total	Exhaust PM10	Fugitive PM10	SO2	00		NOX

Fullerton Ranch Project - Placer County APCD Air District, Summer

Date: 8/8/2017 2:52 PM

3.3 Grading - 2018

Mitigated Construction Off-Site

CO2e		0.0000	0.0000	174.4741	174.4741
N20					
CH4	ау	0.000.0	0.000.0	5.1700e- 003	5.1700e- 003
Total CO2	lb/day	0.0000 0.0000 0.0000	0.000.0	174.3450 174.3450	174.3450 174.3450 5.1700e-
NBio- CO2		0.0000	0.0000	174.3450	174.3450
Bio- CO2					
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.0000	0.0000	0.0446	0.0446
Exhaust PM2.5		0.0000 0.0000 0.0000 0.0000	+	9.9000e- 004	9.9000e- 004
Fugitive PM2.5		0.000.0	0.0000 0.0000 0.0000	0.0436	0.0436
PM10 Total		0.0000	0.0000	0.1654	
Exhaust PM10	lb/day	0.0000	0.0000	1.0800e- 003	1.0800e- 003
Fugitive PM10)/q	0.0000	0.0000	0.1643	0.1643
SO2		0.000.0	0.0000	0.7255 1.7500e- 003	1.7500e- 003
00		0.000.0	0.000.0	0.7255	0.7255
XON		0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0549	0.0935 0.0549 0.7255 1.7500e-
ROG		0.0000	0.0000	0.0935	0.0935
	Category	Hauling	Vendor	Worker	Total

3.4 Paving - 2018

		<u> </u>	•	-
CO2e		1,155.971 6	0.0000	1,155.971 6
N20				
CH4	ay	0.3571		0.3571
Total CO2	lb/day	1,147.044 4	0.0000	1,147.044 1,147.044 0.3571 4 4
NBio- CO2		1,147.044 1,147.044 0.3571 4 4	0.0000	1,147.044 4
Bio- CO2 NBio- CO2 Total CO2 CH4				
PM2.5 Total		0.4398	0.0000	0.4398
Exhaust PM2.5		0.4398 0.4398	0.0000	0.4398
Fugitive PM2.5				
PM10 Total		0.4781	0.000.0	0.4781
Exhaust PM10	day	0.4781 0.4781	0.0000	0.4781
Fugitive PM10	lb/day			
S02		0.0114		0.0114
00		7.3982		7.3982
×ON		0.8219 8.7605 7.3982 0.0114		8.7605
ROG		0.8219	0.0000	0.8219
	Category	Off-Road	Paving	Total

Fullerton Ranch Project - Placer County APCD Air District, Summer

Date: 8/8/2017 2:52 PM

3.4 Paving - 2018
Unmitigated Construction Off-Site

	ROG	×ON	00	802	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N20	CO2e
Category					lb/day	tay							lb/day	day		
Hauling	0.0000 0.0000 0.0000 0.0000	0.000.0	0.000.0	0.0000		0.0000	0.000.0	0.0000 0.0000 0.0000	0.0000	0.0000		0.0000	0.0000 0.0000 0.0000	0.000.0		0.0000
Vendor	0.0000	0.0000 0.0000 0.0000 0.0000	0.000.0	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.000.0	0.000.0	-	0.0000
Worker	0.1403	0.0823 1.0883 2.6300e- 0.4606 003	1.0883	2.6300e- 003		1.6200e- 003	0.4622	0.1179 1.4900e- 003	1.4900e- 003	0.1194		261.5175	261.5175 261.5175 7.7500e- 003	7.7500e- 003		261.7112
Total	0.1403	0.1403 0.0823 1.0883 2.6300e- 003	1.0883	2.6300e- 003	0.4606	1.6200e- 003	0.4622	0.1179	1.4900e- 0 003	0.1194		261.5175	261.5175 261.5175	7.7500e- 003		261.7112

1,155.971 6		0.3571	1,147.044 4	0.0000 1,147.044 1,147.044 0.3571	0.0000	0.4398	0.4398		0.4781	0.4781		0.0114	7.3982	0.8219 8.7605 7.3982 0.0114	0.8219	Total
0.0000			0.0000			0.0000	0.0000 0.0000		0.0000	0.0000					0.0000	Paving
1,155.971 6		0.3571	1,147.044 4	1,147.044 1,147.044 4 4	0.0000	0.4398 0.4398 0.0000 1,147.044 1,147.044 0.3571 4 4	0.4398		0.4781	0.4781 0.4781		0.0114	8.7605 7.3982	8.7605	0.8219 8.7605 7.3982 0.0114	Off-Road
		ау	lb/day							b/day	/ql					Category
CO2e	N20	CH4	Total CO2	NBio- CO2	Bio- CO2	Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	Exhaust PM2.5	Fugitive PM2.5	PM10 Total	Exhaust PM10	Fugitive PM10	S02	00	XON	ROG	

Page 16 of 35

Date: 8/8/2017 2:52 PM

Fullerton Ranch Project - Placer County APCD Air District, Summer

Mitigated Construction Off-Site 3.4 Paving - 2018

	ROG	×ON	8	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	Bio- CO2 NBio- CO2 Total CO2	Total CO2	CH4	N20	CO2e
Category					lb/day	lay							lb/day	ay		
Hauling	0.0000	0.0000 0.0000 0.0000 0.0000	0.000.0	0.000.0		0.0000 0.0000 0.0000 0.0000	0.000.0	0.0000	0.0000	0.0000		0.0000 0.0000 0.0000	0.000.0	0.000.0		0.0000
Vendor	0.0000	0.0000 0.0000 0.0000 0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.000.0	0.0000	• • • • • • • • • • • • • • • • • • •	0.0000
Worker	0.1403	0.0823	1.0883	1.0883 2.6300e- 0.4606 003	0.4606	1.6200e- 003	0.4622	0.1179	1.4900e- 003	0.1194		261.5175 261.5175	261.5175	7.7500e- 003	}	261.7112
Total	0.1403	0.1403 0.0823 1.0883 2.6300e- 0.4606 003	1.0883	2.6300e- 003	0.4606	1.6200e- 003	0.4622	0.1179	1.4900e- 003	0.1194		261.5175 261.5175	261.5175	7.7500e- 003		261.7112

3.5 Building Construction - 2018

CO2e		1,274.370 5	1,274.370 5
N20			
CH4	ау	0.2458	0.2458
Total CO2	lb/day	1,268.225 3	1,268.225 3
NBio- CO2		1,268.225 1,268.225 0.2458 3 3	1,268.225 1,268.225 0.2458 3 3
Bio- CO2			
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4 PM2.5		0.6294	0.6294
Exhaust PM2.5		0.6294 0.6294	0.6294
Fugitive PM2.5			
PM10 Total		0.6614	0.6614
Exhaust PM10	lb/day	0.6614 0.6614	0.6614
Fugitive PM10)/qI		
SO2		0.0130	0.0130
00		7.9488	7.9488
NOx		1.1304 10.5467 7.9488 0.0130	1,1304 10.5467 7.9488 0.0130
ROG		1.1304	1.1304
	Category	Off-Road	Total

Fullerton Ranch Project - Placer County APCD Air District, Summer

3.5 Building Construction - 2018 Unmitigated Construction Off-Site

CO2e		0.0000	282.6544	252.9875	535.6419		
N20							
CH4	ау	ув	ıy	0.000.0	0.0145	7.4900e- 003	0.0220
Total CO2	lb/day	0.000 0.0000	282.2921	252.8002	535.0923		
NBio- CO2		0.0000	282.2921 282.2921	252.8002	535.0923		
Bio- CO2							
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0000	0.0258	0.0646	0.0904		
Exhaust PM2.5		0.000.0	8.2000e- 003	1.4400e- 003	9.6400e- 003		
Fugitive PM2.5				0.0000 0.0000 0.0000	0.0176	0.0632	0.0807
PM10 Total		0.0000	0.0695	0.2398	0.3093		
Exhaust PM10	lay	0.0000	8.5700e- 003	1.5600e- 003	0.0101		
Fugitive PM10	lb/day	0.0000	0.0610	0.2382	0.2992		
SO2		0.0000	2.7000e- 003	1.0520 2.5400e- 0.2382 003	5.2400e- 0.3 003		
00			0.0000	0.2460	1.0520	1.2980	
NOX				0.0000 0.0000 0.0000 0.0000	0.0443 1.2070 0.2460 2.7000e- 003	0.1356 0.0796	1.2865
ROG		0.0000	0.0443	0.1356	0.1798		
	Category	Hauling	Vendor	Worker	Total		

N2O CO2e		1,274.370 5	1,274.370 5
CH4	ay	0.2458	0.2458
Total CO2	lb/day	1,268.225 3	0.0000 1,268.225 1,268.225 0.2458 3
NBio- CO2		1,268.225 3	1,268.225 3
Bio- CO2		0.0000	0.0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4 PM2.5		0.6294 0.6294 0.0000 1,268.225 1,268.225 0.2458	0.6294
Exhaust PM2.5		0.6294	0.6294
Fugitive PM2.5			
PM10 Total		0.6614 0.6614	0.6614
Exhaust PM10	b/day	0.6614	0.6614
Fugitive PM10	'qı		
SO2		0.0130	0.0130
00		7.9488	7.9488
XON		10.5467	1.1304 10.5467 7.9488 0.0130
ROG		1.1304 10.5467 7.9488 0.0130	1.1304
	Category	Off-Road	Total

Date: 8/8/2017 2:52 PM Fullerton Ranch Project - Placer County APCD Air District, Summer

3.5 Building Construction - 2018 Mitigated Construction Off-Site

8	Fugitive Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N20	CO2e
lb/day	1							lb/day	ау		
00000 00000 00000 000000 000000	0.0000	0.0000	0.0000 0.00000	0.0000	0.0000		0.0000	0.0000 0.00000	0.0000		0.0000
	8.5700e- 003	- 0.0695	0.0176	8.2000e- 003	0.0258		282.2921	282.2921 282.2921	0.0145		282.6544
0.0796 1.0520 2.5400e- 0.2382 003	1.5600e-	0.2398	0.0632	1.4400e- 003	0.0646		252.8002	252.8002 252.8002 7.4900e-	7.4900e- 003		252.9875
0.1798 1.2865 1.2980 5.2400e- 0.2992 003	0.0101	0.3093	0.0807	9.6400e- 003	0.0904		535.0923	535.0923 535.0923	0.0220		535.6419

3.5 Building Construction - 2019

CO2e		1,263.664 5	1,263.664 5	
N20				
CH4	ay	0.2403	0.2403	
Total CO2	lb/day	1,257.658 1	1,257.658	
NBio- CO2		1,257.658 1,257.658 0.2403	1,257.658 1,257.658	
Bio- CO2				
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.5411	0.5411	
Exhaust PM2.5		0.5411 0.5411	0.5411	
Fugitive PM2.5				
PM10 Total	ау	lb/day	0.5685	0.5685
Exhaust PM10			day	0.5685
Fugitive PM10)/qI			
S02		0.0130	0.0130	
00		7.7920	7.7920	
XON		9.5040	9.5040	
ROG		0.9967 9.5040 7.7920 0.0130	2966.0	
	Category	Off-Road	Total	

Fullerton Ranch Project - Placer County APCD Air District, Summer

3.5 Building Construction - 2019
Unmitigated Construction Off-Site

CO2e		000	2628	4092	6720	
00		0.0000	280.2628	245.4092	525.6720	
N2O						
CH4	ау	0.000.0	0.0137	6.6600e- 003	0.0204	
Total CO2	lb/day	0.0000 0.0000 0.00000	279.9192	245.2426	525.1618	
NBio- CO2		0.0000	279.9192	245.2426	525.1618	
Bio- CO2			 			
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0000	0.0242	0.0646	0.0888	
Exhaust PM2.5			0.000.0 0.000.0 0.000.0	6.6500e- 003	1.4300e- 003	8.0800e- 003
Fugitive PM2.5		0.0000	0.0176	0.0632	0.0807	
PM10 Total		0.0000	0.0679	0.2398	0.3077	
Exhaust PM10	lb/day	0.0000	6.9500e- 003	1.5500e- 003	8.5000e- 003	
Fugitive PM10	o/ql	0.000.0	0.0610	0.2382	0.2992	
S02		0.000.0	2.6800e- 003	2.4600e- 003	5.1400e- 003	
00		0.000.0	0.2190	0.9451	1.1641	
×ON		0.0000	0.0390 1.1398 0.2190 2.6800e- 003	0.0699 0.9451 2.4600e- 0.2382 003	0.1619 1.2097 1.1641 5.1400e-	
ROG		0.000.0 0.000.0 0.000.0 0.000.0	0.0390	0.1229	0.1619	
	Category	Hauling	Vendor	Worker	Total	

CO2e		1,263.664 5	1,263.664 5
N2O			
CH4	ay	0.2403	0.2403
Total CO2	lb/day	1,257.658	1,257.658
NBio- CO2		1,257.658	0.0000 1,257.658 1,257.658
Bio- CO2		0.0000	0.0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.5411 0.5411 0.0000 1,257.658 1,257.658 0.2403	0.5411 0.5411
Exhaust PM2.5		0.5411	0.5411
Fugitive PM2.5			
PM10 Total		0.5685	0.5685
Exhaust PM10	day	0.5685 0.5685	0.5685
Fugitive PM10	lb/day		
SO2		0.0130	0.0130
00		7.7920	7.7920
NOx		9.5040	0.9967 9.5040
ROG		0.9967 9.5040 7.7920 0.0130	0.9967
	Category	Off-Road	Total

Page 20 of 35 CalEEMod Version: CalEEMod.2016.3.1

Date: 8/8/2017 2:52 PM

Fullerton Ranch Project - Placer County APCD Air District, Summer

3.5 Building Construction - 2019
Mitigated Construction Off-Site

	ROG	×ON	8	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	Exhaust PMZ.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N20	CO2e
Category					lb/day	lay							lb/day	ay		
Hauling	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.0000 0.0000 0.0000	0.000.0	0.000.0	0.0000	0.0000		0.0000	0.0000 0.0000 0.00000	0.000.0		0.0000
Vendor	0.0390	1.1398	0.2190	0.2190 2.6800e- 0.0610 003	0.0610	6.9500e- 003	0.0679	0.0176	6.6500e- 003	0.0242		279.9192 279.9192		0.0137	• • • • • • • • • • • • • • • • • • •	280.2628
Worker	0.1229	0.0699	0.9451	0.9451 2.4600e- 0.2382 003	i	1.5500e- 003	0.2398	0.0632	1.4300e- 003	0.0646		245.2426 245.2426	245.2426	6.6600e- 003		245.4092
Total	0.1619	0.1619 1.2097 1.1641 5.1400e- 0.2992 003	1.1641	5.1400e- 003	0.2992	8.5000e- 003	0.3077	0.0807	8.0800e- 003	0.0888		525.1618	525.1618 525.1618	0.0204		525.6720

3.5 Building Construction - 2020 Unmitigated Construction On-Site

CO2e		1,249.680	1,249.680
N20			
CH4	lay	0.2358	0.2358
Total CO2	lb/day	1,243.784 0	1,243.784 1,243.784 0.2358 0 0
NBio- CO2		1,243.784 1,243.784 0.2358 0 0	1,243.784 0
Bio- CO2			
Exhaust PM2.5 Total Bio-CO2 NBio-CO2 Total CO2 PM2.5		0.4690	0.4690
Exhaust PM2.5		0.4690 0.4690	0.4690
Fugitive PM2.5			
PM10 Total		0.4927	0.4927
Exhaust PM10	lb/day	0.4927 0.4927	0.4927
Fugitive PM10)/q		
SO2		0.0130	0.0130
00		7.6738	7.6738
XON		8.6399	0.8964 8.6399 7.6738
ROG		0.8964 8.6399 7.6738 0.0130	0.8964
	Category	Off-Road	Total

Date: 8/8/2017 2:52 PM Page 21 of 35 CalEEMod Version: CalEEMod.2016.3.1

Fullerton Ranch Project - Placer County APCD Air District, Summer

3.5 Building Construction - 2020 Unmitigated Construction Off-Site

CO2e		0.0000	278.0787	237.5579	515.6366		
N20							
CH4	ау	0.000.0	0.0127	5.8300e- 003	0.0185		
Total CO2	lb/day	0.000 0.0000	277.7622	237.4121	515.1743		
NBio- CO2		0.0000	277.7622 277.7622	237.4121 237.4121	515.1743 515.1743		
Bio- CO2							
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0000	0.0220	0.0646	0.0866		
Exhaust PM2.5		0.000.0	4.4200e- 003	1.3900e- 003	5.8100e- 003		
Fugitive PM2.5		0.0000 0.0000 0.0000	0.0176	0.0632	0.0807		
PM10 Total		0.0000	0.0656	0.2397	0.3053		
Exhaust PM10	lay	0.0000	4.6200e- 003	1.5100e- 003	6.1300e- 003		
Fugitive PM10	lb/day	0.0000	0.0610	0.2382	0.2992		
SO2		0.0000	2.6500e- 003	0.8510 2.3800e- 0.2382 003	5.0300e- 0.3 003		
00		0.0000	0.1921	0.8510	1.0430		
NOX				0.0000 0.0000 0.0000 0.0000	0.0324 1.0545 0.1921 2.6500e-	0.1126 0.0619	1.1164 1.0430
ROG		0.0000	0.0324	0.1126	0.1450		
	Category	Hauling	Vendor	Worker	Total		

CO2e		1,249.680	1,249.680 1	
N20				
CH4	ау	0.2358	0.2358	
Total CO2	lb/day	1,243.784 0	1,243.784 0	
NBio- CO2		1,243.784 0	0.0000 1,243.784 1,243.784 0.2358 0 0	
Bio- CO2		0.0000	0.0000	
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.4690 0.4690 0.0000 1,243.784 1,243.784 0.2358 0 0	0.4690	
Exhaust PM2.5		0.4690	0.4690	
Fugitive PM2.5				
PM10 Total		0.4927	0.4927	
Exhaust PM10	lb/day	0.4927 0.4927	0.4927	
Fugitive PM10	/qı			
SO2		0.0130	0.0130	
00		7.6738	7.6738	
XON		8.6399	0.8964 8.6399	
ROG		0.8964 8.6399 7.6738 0.0130	0.8964	
	Category	Off-Road	Total	

Date: 8/8/2017 2:52 PM Page 22 of 35 CalEEMod Version: CalEEMod.2016.3.1

Fullerton Ranch Project - Placer County APCD Air District, Summer

3.5 Building Construction - 2020 Mitigated Construction Off-Site

	ROG	×ŎN	8	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	Bio-CO2	NBio- CO2	Total CO2	CH4	N20	CO2e
Category					lb/day	day							lb/day	ay		
Hauling	0.0000	0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	i	0.0000 0.0000 0.0000 0.0000	0.000.0	0.0000	0.0000	0.0000		0.0000 0.0000 0.0000	0.000.0	0.000.0		0.0000
Vendor	0.0324	1.0545 0.1921 2.6500e- 0.0610 003	0.1921	2.6500e- 003	0.0610	4.6200e- 003	0.0656	0.0176 4.4200e- 003	4.4200e- 003	0.0220		277.7622 277.7622	277.7622	0.0127	• • • • • • • • • • • • • • • • • • •	278.0787
Worker	0.1126	0.0619	0.8510 2.3800e- 003	2.3800e- 003	0.2382	1.5100e- 003	0.2397	0.0632	1.3900e- 003	0.0646	_	237.4121 237.4121		5.8300e- 003		237.5579
Total	0.1450	0.1450 1.1164 1.0430 5.0300e- 0.2992 003	1.0430	5.0300e- 003	0.2992	6.1300e- 003	0.3053	0.0807	5.8100e- 003	0.0866		515.1743	515.1743 515.1743	0.0185		515.6366

3.6 Architectural Coating - 2018 Unmitigated Construction On-Site

4)		0	12	7
CO2e		0.0000	282.1171	282.1171
N20				
CH4	day		0.0267	0.0267
Total CO2	lb/day	0.000.0	281.4485	281.4485 281.4485
NBio- CO2			281.4485 281.4485 0.0267	281.4485
Bio- CO2				
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.0000	0.1506	0.1506
			0.1506	0.1506
Fugitive PM2.5				
PM10 Total		0.0000	0.1506	0.1506
Exhaust PM10	lb/day	0.000.0 0.000.0	0.1506	0.1506
Fugitive PM10	/qı			
SO2			2.9700e- 003	2.9700e- 003
00			1.8542	1.8542
×ON			2.0058	4.7166 2.0058 1.8542 2.9700e-
ROG		4.4180	0.2986 2.0058 1.8542 2.9700e- 003	4.7166
	Category	D D	Off-Road	Total

Page 23 of 35 CalEEMod Version: CalEEMod.2016.3.1

Date: 8/8/2017 2:52 PM

Fullerton Ranch Project - Placer County APCD Air District, Summer

3.6 Architectural Coating - 2018
Unmitigated Construction Off-Site

CO2e		0.0000	0.0000	52.3422	52.3422
N20					
CH4	ау	0.000.0	0.0000	1.5500e- 003	1.5500e- 003
Total CO2	lb/day	0.0000 0.0000	0.0000	52.3035	52.3035
NBio- CO2		0.0000	0.0000	52.3035	52.3035
Bio- CO2					
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4 PM2.5		0.0000	0.0000	0.0134	0.0134
Exhaust PM2.5		0.0000	0.0000	3.0000e- 004	3.0000e- 004
Fugitive PM2.5		0.0000 0.0000 0.0000	0.000.0	0.0131	0.0131
PM10 Total		0.000.0	0.000.0	0.0496	0.0496
Exhaust PM10	b/day	0.0000	0.0000	3.2000e- 004	3.2000e- 004
Fugitive PM10)/q	0.0000	0.0000	0.0493	0.0493
S02		0.0000	0.0000	5.3000e- 004	5.3000e- 004
00		0.000.0	0.000.0	0.2177	0.2177
XON		0.000.0	0.0000 0.0000 0.0000 0.0000	0.0281 0.0165 0.2177 5.3000e-	0.0281 0.0165 0.2177 5.3000e-
ROG		0.0000 0.0000 0.0000 0.0000	0.0000	0.0281	0.0281
	Category	Hauling	Vendor	Worker	Total

N20 C02e		0.0000	282.1171	282.1171
	ау		0.0267	0.0267
Total CO2	lb/day	0.0000	281.4485	281.4485
Bio- CO2 NBio- CO2 Total CO2 CH4			0.0000 281.4485 281.4485	0.0000 281.4485 281.4485
Bio- CO2		-	0.0000	0.0000
PM2.5 Total		0.0000	0.1506	0.1506
Exhaust PM2.5		0.0000 0.0000	0.1506	0.1506
Fugitive PM2.5				
PM10 Total		0.0000	0.1506	0.1506
Exhaust PM10	b/day	0.000 0.0000	0.1506	0.1506
Fugitive PM10	/qı			
SO2			2.9700e- 003	1.8542 2.9700e- 003
00			1.8542	1.8542
XON			0.2986 2.0058 1.8542 2.9700e- 003	4.7166 2.0058
ROG		4.4180	0.2986	4.7166
	Category	Archit. Coating 4.4180	Off-Road	Total

Page 24 of 35 CalEEMod Version: CalEEMod.2016.3.1

Date: 8/8/2017 2:52 PM

Fullerton Ranch Project - Placer County APCD Air District, Summer

3.6 Architectural Coating - 2018
Mitigated Construction Off-Site

	ROG	×ON	00	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N20	CO2e
Category					lb/day	lay							lb/day	lay		
Hauling	0.0000	0.0000 0.0000 0.0000 0.0000	0.000.0	0.000.0		0.0000	0.000.0	0.0000		0.000		0.0000 0.0000 0.0000	0.000.0	0.000.0		0.0000
Vendor	0.0000	0.0000 0.0000 0.0000 0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.0000	0.0000			0.0000	0.000.0	0.000.0	,	0.0000
Worker	0.0281	0.0165	0.2177	0.2177 5.3000e- 004	0.0493	3.2000e- 004	0.0496	0.0131	3.0000e- 004	0.0134		52.3035	52.3035	1.5500e- 003		52.3422
Total	0.0281	0.0281 0.0165 0.2177 5.3000e- 0.0493	0.2177	5.3000e- 004		3.2000e- 004	0.0496	0.0131	3.0000e- 004	0.0134		52.3035	52.3035	1.5500e- 003		52.3422

3.6 Architectural Coating - 2019 Unmitigated Construction On-Site

CO2e		0.0000	282.0423	282.0423
N20				
CH4	ау		0.0238	0.0238
Total CO2	lb/day	0.000.0	281.4481	281.4481
NBio- CO2			281.4481 281.4481 0.0238	281.4481 281.4481
Bio- CO2				
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0000	0.1288	0.1288
Exhaust PM2.5		0.0000 0.0000	0.1288	0.1288
Fugitive PM2.5				
PM10 Total		0.0000	0.1288	0.1288
Exhaust PM10	lb/day	0.000.0 0.000.0	0.1288	0.1288
Fugitive PM10	/qI			
805			2.9700e- 003	2.9700e- 003
00			1.8413	1.8413
XON			1.8354	4.6844 1.8354 1.8413 2.9700e-
ROG		4.4180	0.2664 1.8354 1.8413 2.9700e-	4.6844
	Category	g	Off-Road	Total

Page 25 of 35 CalEEMod Version: CalEEMod.2016.3.1

Date: 8/8/2017 2:52 PM

Fullerton Ranch Project - Placer County APCD Air District, Summer

3.6 Architectural Coating - 2019
Unmitigated Construction Off-Site

		000000	000000	3 50.7743	3 50.7743
otal CO2 CH4	lb/day	0.000.0 0.000.0	0.0000 0.0000	50.7398 1.3800e- 003	50.7398 1.3800e-
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0000	0.0000		50.7398 5
Bio- CO2		 		.	
PM2.5 Total		0.0000	0.0000	0.0134	0.0134
Exhaust PM2.5		0.0000	0.0000	2.9000e- 004	2.9000e- 004
Fugitive PM2.5		0.0000	0.0000	0.0131	0.0131
PM10 Total		0.0000	0.0000	0.0496	0.0496
Exhaust PM10	lb/day	0.0000	0.0000	3.2000e- 004	3.2000e- 004
Fugitive PM10	/qı	0.0000	0.0000	0.0493	0.0493
S02		0.0000	0.0000	0.1955 5.1000e- 0.0493 004	5.1000e- 004
8		0.0000	0.0000	0.1955	0.1955
NOx		0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0254 0.0145	0.0254 0.0145 0.1955 5.1000e- 0.0493 0.0493
ROG		0.0000	0.0000	0.0254	0.0254
	Category	Hauling	Vendor	Worker	Total

	ROG	XON	00	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N20	CO2e
Category					lb/day	day							lb/day	lay		
D	4.4180					0.0000 0.0000	0.0000		0.0000	0.0000 0.0000			0.0000			0.0000
Off-Road	0.2664 1.8354 1.8413 2.9700e-	1.8354	1.8413	2.9700e- 003		0.1288	0.1288		0.1288	0.1288	0.0000	0.0000 281.4481 281.4481 0.0238	281.4481	0.0238		282.0423
Total	4.6844	4.6844 1.8354 1.8413 2.9700e-	1.8413	2.9700e- 003		0.1288	0.1288		0.1288	0.1288	0.0000	0.0000 281.4481 281.4481	281.4481	0.0238		282.0423

Page 26 of 35 CalEEMod Version: CalEEMod.2016.3.1

Date: 8/8/2017 2:52 PM

Fullerton Ranch Project - Placer County APCD Air District, Summer

3.6 Architectural Coating - 2019
Mitigated Construction Off-Site

2e		00	00	743	743
CO2e		0.0000	0.0000	50.7743	50.7743
N20					
CH4	ay	0.0000	0.0000	1.3800e- 003	1.3800e- 003
Total CO2	lb/day	0.000.0	0.000.0	50.7398	50.7398
NBio- CO2		0.0000 0.0000 0.0000	0.0000	50.7398	50.7398
Bio- CO2					
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.0000	0.0000	0.0134	0.0134
Exhaust PM2.5		0.0000 0.0000 0.0000 0.0000	0.0000	2.9000e- 004	2.9000e- 004
Fugitive PM2.5		0.000.0	0.0000 0.0000	0.0131	0.0131
PM10 Total		0.000.0	0.000.0	0.0496	0.0496
Exhaust PM10	lb/day	0.0000	0.0000	3.2000e- 004	3.2000e- 004
Fugitive PM10	o/qı	0.0000	0.0000	0.0493	0.0493
SO2		0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.1955 5.1000e- 004	0.0254 0.0145 0.1955 5.1000e-
00		0.000.0	0.0000	0.1955	0.1955
×ON		0.000.0	0.0000	0.0254 0.0145	0.0145
ROG		0.0000	0.0000	0.0254	0.0254
	Category	Hauling	Vendor	Worker	Total

3.6 Architectural Coating - 2020 Unmitigated Construction On-Site

CO2e		0.0000	281.9928	281.9928
N20				
CH4	ау		0.0218	0.0218
Total CO2	lb/day	0.000.0	281.4481	281.4481
NBio- CO2			281.4481 281.4481 0.0218	281.4481 281.4481
Bio- CO2				
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0000	0.1109	0.1109
Exhaust PM2.5		0.0000 0.0000	0.1109	0.1109
Fugitive PM2.5				
PM10 Total		0.0000	0.1109 0.1109	0.1109
Exhaust PM10	lb/day	0.0000 0.0000	0.1109	0.1109
Fugitive PM10	/qI			
805			2.9700e- 003	2.9700e- 003
00			1.8314	1.8314
XON			1.6838	4.6601 1.6838 1.8314 2.9700e-
ROG		4.4180	0.2422 1.6838 1.8314 2.9700e- 003	4.6601
	Category	g	Off-Road	Total

Date: 8/8/2017 2:52 PM Page 27 of 35 CalEEMod Version: CalEEMod.2016.3.1

Fullerton Ranch Project - Placer County APCD Air District, Summer

3.6 Architectural Coating - 2020 Unmitigated Construction Off-Site

	ROG	×ON	00	802	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total Bio- CO2 NBio- CO2 Total CO2	Bio- CO2	NBio- CO2	Total CO2	CH4	NZO	CO2e
Category					lb/day	lay							lb/day	lay		
Hauling	0.0000	00000 00000 00000 00000 00000	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.0000 0.0000	0.000.0	0000.0		0.0000	0.000.0	0.000.0		0.0000
Vendor	0.0000	0.0000	0.000.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.000.0		0.0000
Worker	0.0233	0.0128	0.1761	0.1761 4.9000e- 0.0493 004	0.0493	3.1000e- 004	0.0496	0.0131	2.9000e- 004	0.0134		49.1198	49.1198	1.2100e- 003		49.1499
Total	0.0233	0.0233 0.0128 0.1761 4.9000e- 0.0493 0.0493	0.1761	4.9000e- 004	0.0493	3.1000e- 004	0.0496	0.0131	2.9000e- 0 004	0.0134		49.1198	49.1198	1.2100e- 003		49.1499

CO2e		0.0000	281.9928	281.9928
N20				
CH4	ay		0.0218	0.0218
Total CO2	lb/day	0.000.0	281.4481	281.4481
NBio- CO2			0.0000 281.4481 281.4481 0.0218	0.0000 281.4481 281.4481
Bio- CO2			0.0000	0.0000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0000	0.1109	0.1109
Exhaust PM2.5		0.0000 0.0000	0.1109	0.1109
Fugitive PM2.5				
PM10 Total		0.000.0	0.1109 0.1109	0.1109
Exhaust PM10	lb/day	0.000.0 0.000.0	0.1109	0.1109
Fugitive PM10)/q			
802			2.9700e- 003	2.9700e- 003
co			1.8314	1.8314
×ON			1.6838	4.6601 1.6838 1.8314 2.9700e-
ROG		4.4180	0.2422 1.6838 1.8314 2.9700e- 003	4.6601
	Category	g	Off-Road	Total

Fullerton Ranch Project - Placer County APCD Air District, Summer

Date: 8/8/2017 2:52 PM

3.6 Architectural Coating - 2020 Mitigated Construction Off-Site

CO2e		0.0000	0.0000	49.1499	49.1499
N20					
CH4	я̀у	0.000.0	0.000.0	1.2100e- 003	1.2100e- 003
Total CO2	lb/day	0.000 0.0000	0.0000	49.1198	49.1198
NBio- CO2		0.0000	0.0000	49.1198	49.1198
Bio- CO2			<u> </u>		
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		00000	0000.0	0.0134	0.0134
Exhaust PM2.5		0.000.0	0.0000	2.9000e- 004	2.9000e- 004
Fugitive PM2.5		0.000.0	0.0000	0.0131	0.0131
PM10 Total		0.0000 0.0000 0.0000	0.000.0	0.0496	0.0496
Exhaust PM10	lb/day	0.0000	0.0000	3.1000e- 004	3.1000e- 004
Fugitive PM10	p/qI	0.0000	0.0000	0.0493	0.0493
SO2		0.000.0	0.0000	4.9000e- 004	4.9000e- 004
00		0.000.0	0.000.0	0.1761	0.1761
×ON		0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0233 0.0128 0.1761 4.9000e- 0.0493 004	0.0128
ROG		0.0000	0.0000	0.0233	0.0233
	Category	Hauling	Vendor	Worker	Total

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

Increase Density

Improve Walkability Design

Improve Destination Accessibility

Increase Transit Accessibility

Improve Pedestrian Network

Provide Traffic Calming Measures

Page 29 of 35

Date: 8/8/2017 2:52 PM

Fullerton Ranch Project - Placer County APCD Air District, Summer

CO2e		4,137.022 9	4,391.793 8
N20			
CH4	ay	0.1972	0.2037
Total CO2	lb/day	4,132.092 3	4,386.700 9
NBio- CO2		4,132.092 4,132.092 0.1972 3 3	4,386.700 4,386.700 0.2037 9 9
Bio- CO2			
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4		0.7527	0.8080
Exhaust PM2.5		0.0418 2.7032 0.7132 0.0395 0.7527	
Fugitive PM2.5		0.7132	0.0444 2.9030 0.7661 0.0419
PM10 Total		2.7032	2.9030
Exhaust PM10	b/day	0.0418	0.0444
Fugitive PM10	o/qı	2.6613	2.8586
S02		0.0408	0.0433
00		1.5580 8.0835 12.3051 0.0408 2.6613	1.5841 8.3027 12.9484 0.0433 2.8586
NOx		8.0835	8.3027
ROG		1.5580	1.5841
	Category	Mitigated	Unmitigated

4.2 Trip Summary Information

	Aver	Average Daily Trip Rate	ıte	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Single Family Housing	771.12	802.71	698.22	1,276,692	1,188,601
Total	771.12	802.71	698.22	1,276,692	1,188,601

4.3 Trip Type Information

3	11	98	36.40	21.00	42.60	4.37	4.25	6.29	Single Family Housing
Pass-by	Diverted	Primary	H-O or C-NW H-W or C-W H-S or C-C H-O or C-NW	H-S or C-C	H-W or C-W	H-O or C-NW	H-W or C-W H-S or C-C	H-W or C-W	
%	Trip Purpose %			Trip %			Miles		

4.4 Fleet Mix

	•	•	-	•	-	-	-	•	•	-	-		
0.001333	0.000783	0.025790 0.006586 0.027831 0.045583 0.001467 0.001229 0.006102 0.000783	0.001229	0.001467	0.045583	0.027831	0.006586	0.025790	0.132626	0.220156	0.041257 0.22015	0.489257	Single Family Housing
MH	SBUS	MCY	UBUS	OBUS	НН	MHD	LHD2	LHD1	MDV	LDT2	LDT1	LDA	Land Use

5.0 Energy Detail

Historical Energy Use: N

Fullerton Ranch Project - Placer County APCD Air District, Summer

Date: 8/8/2017 2:52 PM

5.1 Mitigation Measures Energy

Exceed Title 24

Install High Efficiency Lighting

Install Energy Efficient Appliances

CO2e		724.6715	840.1014
N20		720.3906 720.3906 0.0138 0.0132 724.6715	835.1386 835.1386 0.0160 0.0153 840.1014
CH4	ау	0.0138	0.0160
Total CO2	lb/day	720.3906	835.1386
NBio- CO2		720.3906	835.1386
Bio- CO2			
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 (0.0456	0.0529
Exhaust PM2.5		0.0456	0.0529
Fugitive PM2.5			
PM10 Total		0.0456	0.0529
Exhaust PM10	b/day	0.0456	0.0529
Fugitive PM10)/q		
802		3.6000e- 003	4.1800e- 003
00		0.2401	0.2784
×ON		0.0660 0.5643 0.2401 3.6000e-	0.0766 0.6542 0.2784 4.1800e-
ROG		0990.0	0.0766
	Category	NaturalGas Mitigated	NaturalGas Unmitigated

Page 31 of 35

Date: 8/8/2017 2:52 PM

Fullerton Ranch Project - Placer County APCD Air District, Summer

5.2 Energy by Land Use - NaturalGas

Unmitigated

CO2e		840.1014	840.1014
N20		835.1386 835.1386 0.0160 0.0153 840.1014	0.0153
CH4	lb/day	0.0160	0.0160
Total CO2)/q	835.1386	835.1386 835.1386
Bio- CO2 NBio- CO2 Total CO2		835.1386	835.1386
Bio- CO2		1-8-8-8-8	
PM2.5 Total		0.0529	0.0529
Exhaust PM2.5		0.0529	0.0529
Fugitive PM2.5			
PM10 Total		0.0529	0.0529
Exhaust PM10	lb/day	0.0529	0.0529
Fugitive PM10	/qı		
805		4.1800e- 003	4.1800e- 003
00		0.2784	0.2784 4.1800e-
XON		0.6542	0.6542
ROG		0.0766	9920'0
NaturalGa s Use	kBTU/yr	7098.68	
	Land Use	Single Family 7098.68 0.0766 0.6542 0.2784 4.1800e- Housing 003	Total

Mitigated

CO2e		724.6715	0.0132 724.6715
N20		0.0132	
CH4	lay	0.0138	0.0138
Total CO2	lb/day	720.3906	720.3906 720.3906
NBio- CO2		720.3906 720.3906 0.0138 0.0132 724.6715	720.3906
Bio- CO2			
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.0456 0.0456	0.0456
Exhaust PM2.5		0.0456	0.0456
Fugitive PM2.5			
PM10 Total		0.0456	0.0456
Exhaust PM10	lb/day	0.0456 0.0456	0.0456
Fugitive PM10	/qı		
805		3.6000e- 003	3.6000e- 003
00		0.2401	0.2401
XON		0.5643	0.5643
ROG		0.0660	0990'0
NaturalGa s Use	kBTU/yr	6.12332	
	Land Use	Single Family 6.12332 0.0660 0.5643 0.2401 3.6000e- Housing 003	Total

6.0 Area Detail

6.1 Mitigation Measures Area

Fullerton Ranch Project - Placer County APCD Air District, Summer

Use Low VOC Paint - Residential Interior

Use Low VOC Paint - Residential Exterior

Use Low VOC Paint - Non-Residential Interior

Use Low VOC Paint - Non-Residential Exterior

Use only Natural Gas Hearths

CO2e		1,565.264 6	3,309.874 5
NZO		0.0283	0.1769
CH4	lay	0.0413	2.0877
Total CO2	lb/day	1,555.797 4	3,204.954 7
NBio- CO2		1,555.797 4	955.4445
Bio- CO2		0.000.0	2,249.510 2
Fugitive Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4 PM2.5		0.1346 0.1346 0.0000 1,555.797 1,555.797 0.0413 0.0283 1,565.264 4 4 6	21.4914 21.4914 2,249.510 955.4445 3,204.954 2.0877 0.1769 3,309.874 2.0877 5.4914 5.445 3,309.874
Exhaust PM2.5		0.1346	21.4914
Fugitive PM2.5			
PM10 Total		0.1346 0.1346	21.4914 21.4914
Exhaust PM10	lb/day	0.1346	21.4914
Fugitive PM10			
802		8.0700e- 003	0.2776
00		7.2194	159.7224
×ON		1.2868	2.4984
ROG		3.9657 1.2868 7.2194 8.0700e-	127.7862
	Category	Mitigated	Unmitigated 127.7862 2.4984 159.7224 0.2776

Fullerton Ranch Project - Placer County APCD Air District, Summer

6.2 Area by SubCategory

Unmitigated

				φ	_	4
CO2e		0.0000	0.0000	3,297.548 5	12.3261	3,309.874 5
NZO				0.1769		0.1769
CH4	lb/day			2.0759	0.0117	2.0877
Total CO2	o/ql	0.0000	0.0000	3,192.922 0	12.0327	955.4445 3,204.954
NBio- CO2				943.4118	12.0327	955.4445
Bio- CO2				2,249.510 943.4118 3,192.922 2 0		2,249.510 2
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.0000	0.0000		0.0369	21.4914
Exhaust PM2.5		0.000.0	0.000.0	21.4545	0.0369	21.4914
Fugitive PM2.5						
PM10 Total		0.0000	0.0000	21.4545	0.0369	21.4914
Exhaust PM10	lb/day	0.0000	0.0000	21.4545	0.0369	21.4914
Fugitive PM10	/qı					
805				0.2772	3.5000e- 004	0.2776
00				153.0176	6.7048	2.4984 159.7224
×ON				2.4208	0.0776	
ROG		0.4999	3.1201	123.9620	0.2042	127.7862
	SubCategory	Architectural Coating	Consumer Products	Hearth	Landscaping	Total

Page 34 of 35

Date: 8/8/2017 2:52 PM

Fullerton Ranch Project - Placer County APCD Air District, Summer

6.2 Area by SubCategory

Mitigated

			_		_	
C02e		0.0000	0.0000	1,552.938 5	12.3261	1,565.264 6
N20				0.0283		0.0283
CH4	ay			0.0296	0.0117	0.0413
Total CO2	lb/day	0.000.0	0.0000	1,543.764 7	12.0327	1,555.797 5
NBio- CO2			 	0.0000 1,543.764 1,543.764 7	12.0327	1,555.797 5
Bio- CO2			· · · · · · · · · · · · · · · · · · ·	0.0000	· · · · · · · · · · · · · · · · · · ·	0.0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.0000	0.0000	0.0978	0.0369	0.1346
Exhaust PM2.5		0.000.0	0.0000	0.0978	0.0369	0.1346
Fugitive PM2.5			 	r 	 	
PM10 Total		0.000.0	0.0000	0.0978	0.0369	0.1346
Exhaust PM10	b/day	0.0000 0.0000	0.0000	0.0978	0.0369	0.1346
Fugitive PM10)/q					
S02				7.7200e- 003	3.5000e- 004	8.0700e- 003
00				0.5146	6.7048	7.2194
×ON				1.2093	0.0776	1.2868
ROG		0.4999	3.1201	0.1415	0.2042	3.9657
	SubCategory	Architectural Coating	Consumer Products	Hearth	Landscaping	Total

7.0 Water Detail

7.1 Mitigation Measures Water

Install Low Flow Bathroom Faucet

Install Low Flow Kitchen Faucet

Install Low Flow Toilet

Install Low Flow Shower

Use Water Efficient Irrigation System

8.0 Waste Detail

8.1 Mitigation Measures Waste

Page 35 of 35

Date: 8/8/2017 2:52 PM

Fullerton Ranch Project - Placer County APCD Air District, Summer

9.0 Operational Offroad

Fuel Type	
Load Factor	
Horse Power	
Days/Year	
Hours/Day	
Number	
Equipment Type	

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type Number Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type

Boilers

۲	Nimbe
5	

User Defined Equipment

Number	
Equipment Type	

11.0 Vegetation

Page 1 of 35

Date: 8/8/2017 2:51 PM

Fullerton Ranch Project - Placer County APCD Air District, Winter

Fullerton Ranch Project

Placer County APCD Air District, Winter

1.0 Project Characteristics

1.1 Land Usage

1.2 Other Project Characteristics

Urbanization Climate Zone	Urban 2	Wind Speed (m/s)	2.2	Precipitation Freq (Days) Operational Year	74
Utility Company	Pacific Gas & Electric Company	mpany			
CO2 Intensity (Ib/MWhr)	290	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/Mwhr)	900.0

1.3 User Entered Comments & Non-Default Data

Fullerton Ranch Project - Placer County APCD Air District, Winter

Page 2 of 35

Date: 8/8/2017 2:51 PM

Project Characteristics - See assumptions in Appendix B

Land Use - See assumptions in Appendix B

Construction Phase - See assumptions in Appendix B

Off-road Equipment -

Off-road Equipment - See assumptions in Appendix B

Grading - See assumptions in Appendix B

Vehicle Trips - See assumptions in Appendix B

Woodstoves - See assumptions in Appendix B

Energy Use - See assumptions in Appendix B

Land Use Change

Sequestration -

Construction Off-road Equipment Mitigation -

Mobile Land Use Mitigation -

Mobile Commute Mitigation - See assumptions in Appendix B

Area Mitigation -

Energy Mitigation -

Water Mitigation -

New Value	True	S	413.00
Default Value	False	WaterUnpavedRoadVehicleSpeed	20.00
Column Name	UseLowVOCPaintParkingCheck	WaterUnpavedRoadVehicleSpeed	NumDays
Table Name	tblAreaMitigation	tblConstDustMitigation	tblConstructionPhase

Fullerton Ranch Project - Placer County APCD Air District, Winter

413.00	00.09	10.00	4.00	5/12/2020	3/6/2020	7/26/2018	8/8/2018	5/4/2018	10/12/2018	8/8/2018	5/4/2018	7/26/2018	19.70	19.70	19.70	209.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	0.00
300.00	30.00	20.00	10.00	7/13/2020	4/6/2020	7/30/2018	5/25/2020	5/28/2018	5/26/2020	7/31/2018	5/29/2018	4/7/2020	90.00	0.00	26.30	232.00	3.00	2.00	2.00	2.00	3.00	2.00	3.00	2.00	4.00	1.00
NumDays	NumDays	NumDays	NumDays	PhaseEndDate	PhaseEndDate	PhaseEndDate	PhaseEndDate	PhaseEndDate	PhaseStartDate	PhaseStartDate	PhaseStartDate	PhaseStartDate	AcresOfGrading	AcresOfGrading	LotAcreage	Population	OffRoadEquipmentUnitAmount									
tblConstructionPhase	tblGrading	tblGrading	tblLandUse	tblLandUse	tblOffRoadEquipment																					

Fullerton Ranch Project - Placer County APCD Air District, Winter

3.00	290	2020	18.00	20.00	15.00	15.00	4.37	4.25	6.29
7.00	641.35	2018	8.00	15.00	8.00	8.00	7.50	7.30	10.80
UsageHours	CO2IntensityFactor	OperationalYear	WorkerTripNumber	WorkerTripNumber	WorkerTripNumber	WorkerTripNumber	HO_TL	_	HW_TL
tblOffRoadEquipment	tblProjectCharacteristics	tblProjectCharacteristics	tbITripsAndVMT	tblTripsAndVMT	tbITripsAndVMT	tbITripsAndVMT	tblVehicleTrips	tblVehicleTrips	tblVehicleTrips

2.0 Emissions Summary

Fullerton Ranch Project - Placer County APCD Air District, Winter

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

CO2e		6,233.612 9	2,080.416	2,055.725 7	6,233.612
N20		0.0000 6,187.525 6,187.525 1.8435 0.0000 6,233.612 2 2	0.0000 2,080.416	0.0000 2,055.725 7	0.0000 6,233.612
CH4	ау	1.8435	0.2869	0.2784	1.8435
Total CO2	lb/day	6,187.525 2	2,073.243 9	2,048.767 0	6,187.525 2
Bio- CO2 NBio- CO2 Total CO2		6,187.525 2	0.0000 2,073.243 2,073.243 9 9	0.0000 2,048.767 2,048.767 0 0	0.0000 6,187.525 6,187.525 2 2
Bio- CO2		0.000.0	0.0000	0.0000	0.0000
PM2.5 Total		9.9483	0.7722	0.6800	9.9483
Exhaust PM2.5		2.6435		0.5862	2.6435
Fugitive PM2.5			0.0938	0.0938	7.3048
PM10 Total		2.8734 20.8009 7.3048	1.0547	0.6103 0.9587	20.8009
Exhaust PM10	day	2.8734	0.7063	0.6103	2.8734
Fugitive PM10	lb/day	17.9275		0.3485	17.9275
802		0.0615	12.6001 10.9277 0.0212	0.0211	0.0615 17.9275
00		34.2724	10.9277	5.7223 11.4828 10.6581	6.0523 60.6508 34.2724
×ON		60.6508	12.6001	11.4828	60.6508
ROG		6.0523 60.6508 34.2724 0.0615 17.9275	5.8658	5.7223	6.0523
	Year	2018	2019	2020	Maximum

Mitigated Construction

C02e		6,233.612 9	2,080.416 4	2,055.725 7	0.0000 6,233.612
N20		0.0000	0.0000	0.0000	0.0000
CH4	ау	1.8435	0.2869	0.2784	1.8435
Total CO2	lb/day	6,187.525 2	2,073.243 9	2,048.767 0	6,187.525 2
Bio- CO2 NBio- CO2 Total CO2		0.0000 6,187.525 6,187.525 1.8435 0.0000 6,233.612 2	0.0000 2,073.243 2,073.243 9 9	0.0000 2,048.767 2,048.767 0.2784 0 0	0.0000 6,187.525 6,187.525 1.8435 2 2
Bio- CO2		0.000.0	0.0000	0.000.0	0.0000
PM2.5 Total		5.5429	0.7722	0.6800	5.5429
Exhaust PM2.5		2.6435	0.6784	0.5862	2.6435
Fugitive PM2.5		2.8994	0.0938	0.0938	2.8994
PM10 Total	ау	10.0555	1.0547	0.9587	10.0555
Exhaust PM10		2.8734	0.7063	0.6103	2.8734
Fugitive PM10	lb/day	7.1822	0.3485	0.3485	7.1822
S02		0.0615	0.0212	0.0211	0.0615
00		34.2724	10.9277	10.6581	34.2724
×ON		6.0523 60.6508 34.2724 0.0615 7.1822	12.6001 10.9277 0.0212	11.4828 10.6581 0.0211	6.0523 60.6508 34.2724 0.0615 7.1822
ROG		6.0523	5.8658	5.7223	6.0523
	Year	2018	2019	2020	Maximum

Fullerton Ranch Project - Placer County APCD Air District, Winter

	ROG	XON	00	802	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	Bio- CO2 NBio-CO2 Total CO2	Total CO2	CH4	N20	CO2e
Percent teduction	00:0	00.0	0.00	0.00	69'22	0.00	47.10	58.80	0.00	38.64	0.00	0.00	0.00	0.00	0.00	0.00

Fullerton Ranch Project - Placer County APCD Air District, Winter

2.2 Overall Operational Unmitigated Operational

CO2e		3,309.874 5	840.1014	4,029.069 0	8,179.045 0			
N20		0.1769	0.0153		0.1923			
CH4	lay	2.0877	0.0160	0.2180	2.3216			
Total CO2	lb/day	3,204.954 7	835.1386 835.1386	4,023.620 4,023.620 1	8,063.713 4			
Bio- CO2 NBio- CO2 Total CO2		955.4445	835.1386	4,023.620 1	5,814.203 2			
Bio- CO2		21.4914 21.4914 2,249.510 955.4445 3,204.954 2.0877 0.1769 3,309.874 5			2,249.510 5,814.203 8,063.713 2 2 4			
PM2.5 Total		21.4914	0.0529	0.8089	22.3532			
Exhaust PM2.5		21.4914	0.0529	0.0428	21.5871			
Fugitive PM2.5				0.7661				
PM10 Total		21.4914 21.4914	0.0529	2.9040	24.4483 0.7661			
Exhaust PM10	lb/day	21.4914	0.0529	0.0454	21.5897			
Fugitive PM10)/qI			2.8586	2.8586			
802		0.2776	4.1800e- 003	0.0397	0.3215			
00		159.7224	0.2784 4.1800e- 003	13.3853	129.1153 11.7043 173.3862 0.3215			
NOx					2.4984	0.6542	8.5518	11.7043
ROG		127.7862 2.4984 159.7224 0.2776	0.0766	1.2526	129.1153			
	Category	Area		Mobile	Total			

Mitigated Operational

		_			_					
CO2e		1,565.264 6	724.6715	3,794.177 0	0.0415 6,084.113					
NZO		0.0283	0.0132		0.0415					
CH4	ау	0.0413	0.0138	0.2120	0.2671					
Total CO2	lb/day	1,555.797 4	720.3906 720.3906 0.0138	3,788.878 4	6,065.066 4					
NBio- CO2		1,555.797 4	720.3906	3,788.878 3,788.878 4 4	0.0000 6,065.066 6,065.066 4 4					
Bio- CO2		0.000.0			0.0000					
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.1346 0.1346 0.0000 1,555.797 1,555.797 0.0413 0.0283 1,565.264 4 4 6	0.0456	0.7536	0.9339					
Exhaust PM2.5		0.1346	0.0456	0.0404	0.2207					
Fugitive PM2.5			r 	0.7132	0.7132					
PM10 Total	ау	0.1346	0.0456	2.7041 0.7132	2.8844					
Exhaust PM10		0.1346 0.1346	0.0456	0.0428	0.2231					
Fugitive PM10	lb/day			2.6613	2.6613					
S02		8.0700e- 003	3.6000e- 003	0.0374	0.0491					
00							7.2194	0.2401	12.8401	20.2997
×ON						3.9657 1.2868 7.2194 8.0700e-	0.5643 0.2401 3.6000e- 003	8.3078	10.1589 20.2997 0.0491	
ROG		3.9657	0.0660	1.2269	5.2586					
	Category	Area	Energy	Mobile	Total					

Page 8 of 35

Date: 8/8/2017 2:51 PM

Fullerton Ranch Project - Placer County APCD Air District, Winter

C02e	25.61
N20	78.41
CH4	05.88
Total CO2	24.79
Bio- CO2 NBio-CO2 Total CO2	-4.31
Bio- CO2	100.00
PM2.5 Total	95.82
Exhaust PM2.5	86.86
Fugitive PM2.5	06:9
PM10 Total	88.20
Exhaust PM10	98.97
Fugitive PM10	06.9
802	84.74
00	88.29
NOX	13.20
ROG	95.93
	Percent Reduction

3.0 Construction Detail

Construction Phase

	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
Site Pre	Site Preparation	oaration		5/4/2018		4	
Grading				7/26/2018	5	09	
Paving			i ! !	8/8/2018	2	10	
Building	Construction	Construction		3/6/2020	5	413	
Archite	Architectural Coating	Architectural Coating	10/12/2018	5/12/2020	5	413	

Acres of Grading (Site Preparation Phase): 19.7

Acres of Grading (Grading Phase): 19.7

Acres of Paving: 0

Residential Indoor: 295,245; Residential Outdoor: 98,415; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Fullerton Ranch Project - Placer County APCD Air District, Winter

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Site Preparation	Rubber Tired Dozers	7	8.00	247	0.40
Site Preparation	Tractors/Loaders/Backhoes	2	8.00	26	0.37
Grading	Excavators	2	8.00	158	0.38
Grading	Graders		8.00	187	0.41
Grading	Rubber Tired Dozers		8.00	247	0.40
Grading	Scrapers		8.00	367	0.48
Grading	Tractors/Loaders/Backhoes		8.00	26	0.37
Paving	Pavers		8.00	130	0.42
Paving	Paving Equipment		8.00	132	0.36
Paving	Rollers		8.00	80	0.38
Building Construction	Cranes		3.00	231	0.29
Building Construction	Forklifts		8.00	68	0.20
Building Construction	Generator Sets		8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes		7.00	26	0.37
Architectural Coating	Air Compressors		90.9	78	0.48
Building Construction	Welders	0	8.00	46	0.45

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Vendor Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Site Preparation	ε	18.00	00.00	00.0	10.80	7.30	20.00	20.00 LD_Mix	HDT_Mix	HHDT
Grading	 	20.00	00.0	0		7.30	! ! !	20.00 LD_Mix	HDT_Mix	HHDT
Paving	С	15.00	00.00	00.00	10.80	7.30	20.00 LD	20.00 LD_Mix	HDT_Mix	HHDT
Paving	С	15.00	00.00	00.00		7.30		20.00 LD_Mix	HDT_Mix	HHDT
Building Construction	4	29.00	9.00		7	7.30	20.00	20.00 LD_Mix	HDT_Mix	ННОТ
Architectural Coating	1	9.00	0.00	0.00	10.80	7.30	20.00	20.00 LD_Mix	HDT_Mix	ННОТ

Page 10 of 35 CalEEMod Version: CalEEMod.2016.3.1

Fullerton Ranch Project - Placer County APCD Air District, Winter

Date: 8/8/2017 2:51 PM

3.1 Mitigation Measures Construction

Water Exposed Area

Water Unpaved Roads

Reduce Vehicle Speed on Unpaved Roads

3.2 Site Preparation - 2018

CO2e		0.0000	1,497.288 4	1,497.288 4
N20				
CH4	ay		0.4625	0.4625
Total CO2	lb/day	0.000.0	1,485.725 3	1,485.725 3
NBio- CO2			1,485.725 1,485.725 0.4625 3 3	1,485.725 1,485.725 0.4625 3 3
Bio- CO2				
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		3.8742	0.9045	4.7787
Exhaust PM2.5			0.9045	0.9045
Fugitive PM2.5		0.0000 11.2451 3.8742 0.0000		
PM10 Total		11.2451	0.9832	0.9832 12.2282 3.8742
Exhaust PM10	łay	0.0000	0.9832	0.9832
Fugitive PM10	lb/day	11.2451		11.2451
S02			0.0148	0.0148
00			9.0499	9.0499
×ON			1.6983 17.8194 9.0499 0.0148	1.6983 17.8194 9.0499 0.0148 11.2451
ROG			1.6983	1.6983
	Category	Fugitive Dust	Off-Road	Total

Fullerton Ranch Project - Placer County APCD Air District, Winter

3.2 Site Preparation - 2018
Unmitigated Construction Off-Site

CO2e		0.0000	0.0000	139.8188	139.8188
N20					-
CH4	ау	0.000.0	0.000.0	4.3000e- 003	4.3000e- 003
Total CO2	lb/day	0.0000 0.0000	0.0000	139.7114 139.7114 4.3000e- 003	139.7114 139.7114
NBio- CO2		0.0000	0.0000	139.7114	139.7114
Bio- CO2					
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0000	0.0000	0.0401	0.0401
Exhaust PM2.5		0.0000	0.0000	9.0000e- 004	9.0000e- 004
Fugitive PM2.5		0.0000 0.0000 0.0000	0.000.0	0.0392	0.0392
PM10 Total			0.000.0	0.1488	0.1488
Exhaust PM10	lb/day	0.0000	0.0000	9.7000e- 004	9.7000e- 004
Fugitive PM10)/qI	0.0000	0.0000	0.1479	0.1479
SO2		0.0000	0.0000	0.5952 1.4000e- 0.1479 003	1.4000e- 003
00		0.0000	0.0000	0.5952	0.5952
XON		00000 00000 00000 00000 00000	0.0000 0.0000 0.0000 0.0000	0.0816 0.0620	0.0816 0.0620 0.5952 1.4000e- 0.1479
ROG		0.0000	0.0000	0.0816	0.0816
	Category	Hauling	Vendor	Worker	Total

			' <u>~</u>	_
CO2e		0.0000	1,497.288 4	1,497.288 4
N20			- -	
CH4	эу		0.4625	0.4625
Total CO2	lb/day	0.000.0	1,485.725 3	1,485.725 3
NBio- CO2			0.0000 1,485,725 1,485,725 0.4625 3	0.0000 1,485.725 1,485.725 3
Bio- CO2			0.0000	0.0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4 PM2.5		1.5109	0.9045	2.4155
Exhaust PM2.5		0.0000 4.3856 1.5109 0.0000 1.5109	0.9045	0.9045
Fugitive PM2.5		1.5109		1.5109
PM10 Total		4.3856	0.9832	5.3687
Exhaust PM10	b/day	0.0000	0.9832	0.9832
Fugitive PM10)/qI	4.3856		4.3856
802			0.0148	0.0148
00			9.0499	9.0499
×ON			1.6983 17.8194 9.0499	1.6983 17.8194 9.0499
ROG			1.6983	1.6983
	Category	Fugitive Dust	Off-Road	Total

Fullerton Ranch Project - Placer County APCD Air District, Winter

3.2 Site Preparation - 2018

Mitigated Construction Off-Site

ROG	XON	00	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	NZO	CO2e
)/q	lb/day							lb/day	ay		
00	0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000 0.0000 0.0000 0.0000	0.000.0	0.000.0	0.0000	0.0000		0.0000 0.0000 0.0000	0.000.0	0.000.0		0.0000
8	0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.000.0	•	0.0000
19	0.0816 0.0620		0.5952 1.4000e- 0.1479 003	0.1479	9.7000e- 004	0.1488	0.0392	9.0000e- 004	0.0401		139.7114	139.7114 139.7114 4.3000e- 003	4.3000e- 003		139.8188
<u> </u>	0.0816 0.0620 0.5952 1.4000e- 0.1479 003	0.5952	1.4000e- 003	0.1479	9.7000e- 004	0.1488	0.0392	9.0000e- 004	0.0401		139.7114	139.7114 139.7114	4.3000e- 003		139.8188

3.3 Grading - 2018

	ROG	×ON	00	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	NZO	CO2e
Category					lb/day	day							lb/day	lay		
Fugitive Dust					6.3703	0.0000	6.3703	0.0000 6.3703 3.3478 0.0000 3.3478	0.0000	3.3478			0.0000			0.0000
Off-Road	3.6771	3.6771 42.7005 23.9659 0.0438	23.9659	0.0438		1.8882	1.8882		1.7371 1.7371	1.7371		4,406.853 6	4,406.853 4,406.853 1.3719 6 6	1.3719		4,441.151 4
Total	3.6771	3.6771 42.7005 23.9659 0.0438	23.9659	0.0438	6.3703	1.8882	8.2584	3.3478	1.7371	5.0849		4,406.853 6	4,406.853 4,406.853 6 6	1.3719		4,441.151 4

Fullerton Ranch Project - Placer County APCD Air District, Winter

3.3 Grading - 2018
Unmitigated Construction Off-Site

	ROG	×ON	00	802	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total Bio- CO2 NBio- CO2 Total CO2	Bio- CO2	NBio- CO2	Total CO2	CH4	N20	CO2e
Category					lb/day	lay							lb/day	day		
Hauling	0.0000	0.0000 0.0000 0.0000 0.0000	0.000.0	0.0000	0.0000	0.0000	0.0000	0.000 0.0000 0.0000	0.0000	0.000		0.0000	0.0000 0.0000 0.0000	0.0000		0.0000
Vendor	0.0000	0.0000 0.0000 0.0000 0.0000	0.000.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000.0		0.0000	0.0000	0.000.0		0.0000
Worker	0.0907	0.0907 0.0689 0.6614 1.5600e- 0.1643	0.6614	1.5600e- 003	0.1643	1.0800e- 003	0.1654	0.0436	9.9000e- 004	0.0446		155.2349 155.2349	155.2349	4.7700e- 003		155.3542
Total	0.0907	0.0907 0.0689 0.6614 1.5600e-	0.6614	1.5600e- 003	0.1643	1.0800e- 003	0.1654	0.0436	9.9000e- 004	0.0446		155.2349	155.2349	4.7700e- 003		155.3542

	ROG	ŏ Z	8	802	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total Bio- CO2	Bio- CO2	NBio- CO2 Total CO2	Total CO2	CH4	N20	CO2e
Category					lb/day	day							lb/day	ау		
					2.4844	0.0000	2.4844	0.0000 2.4844 1.3057 0.0000 1.3057	0.0000	1.3057			0.000.0			0.0000
Off-Road	3.6771	3.6771 42.7005 23.9659 0.0438	23.9659	0.0438	 	1.8882	1.8882		1.7371	1.7371 1.7371	0.0000	4,406.853 6	0.0000 4,406.853 4,406.853 1.3719 6 6	1.3719		4,441.151
Total	3.6771	42.7005	23.9659	3.6771 42.7005 23.9659 0.0438 2.4844	2.4844	1.8882	4.3726 1.3057	1.3057	1.7371	3.0428	0.0000	4,406.853 6	0.0000 4,406.853 4,406.853 1.3719 6 6	1.3719		4,441.151 4

Page 14 of 35 CalEEMod Version: CalEEMod.2016.3.1

Fullerton Ranch Project - Placer County APCD Air District, Winter

Date: 8/8/2017 2:51 PM

3.3 Grading - 2018

Mitigated Construction Off-Site

				2	2
CO2e		0.0000	0.0000	155.3542	155.3542
N20					
CH4	ау	0.000.0	0.000.0	4.7700e- 003	4.7700e- 003
Total CO2	lb/day	0.000.0	0.000.0	155.2349 155.2349	155.2349 155.2349
NBio- CO2		0.0000 0.0000 0.0000	0.0000	155.2349	155.2349
Bio- CO2					
Exhaust PMZ.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.0000	0.0000	0.0446	0.0446
Exhaust PM2.5		0.0000 0.0000 0.0000 0.0000	0.000.0	9.9000e- 004	9.9000e- 004
Fugitive PM2.5		0.000.0	0.0000	0.0436	0.0436
PM10 Total		0.000.0	0.000.0	0.1654	0.1654
Exhaust PM10	lb/day	0.0000	0.0000	1.0800e- 003	1.0800e- 003
Fugitive PM10)/q	I	0.0000	0.1643	0.1643
SO2		0.000.0	0.0000	0.6614 1.5600e- 0.1643 003	1.5600e- 003
00		0.000.0	0.000.0	0.6614	0.6614
XON		0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0689	0.0907 0.0689 0.6614 1.5600e- 0.1643 0.063
ROG		0.0000	0.0000	0.0907	0.0907
	Category	Hauling	Vendor	Worker	Total

3.4 Paving - 2018

	ROG	XON	00	802	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N20	CO2e
Category					lb/day	day							lb/day	ay		
Off-Road	0.8219	8.7605	0.8219 8.7605 7.3982 0.0114	0.0114		0.4781 0.4781	0.4781			0.4398		1,147.044 4	1,147.044 1,147.044 0.3571 4 4	0.3571		1,155.971 6
Paving	0.0000					0.0000	0.000.0		0.0000	0.0000		0.0000	0.0000			0.0000
Total	0.8219	8.7605	8.7605 7.3982 0.0114	0.0114		0.4781	0.4781		0.4398	0.4398		1,147.044 4	1,147.044 1,147.044 0.3571 4 4	0.3571		1,155.971 6

Fullerton Ranch Project - Placer County APCD Air District, Winter

3.4 Paving - 2018 Unmitigated Construction Off-Site

ROG NOx		00	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total Bio- CO2 NBio- CO2 Total CO2	Bio- CO2	NBio- CO2	Total CO2	CH4	NZO	CO2e
lb/day	lb/day	lb/day	lb/day	lay								lb/day	ay		
					0.0000	0.0000	0.000.0	0.0000 0.0000 0.0000	0.0000		0.0000	0.000.0 0.000.0 0.000.0	0.000.0		0.0000
0.0000 0.0000				٥	0.000.0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
0.1360 0.1033 0.9921 2.3400e- 0.4606 1				_	1.6200e- 003	0.4622	0.1179	1.4900e- 003	0.1194		232.8524	232.8524 232.8524 7.1600e- 003	7.1600e- 003		233.0314
0.1360 0.1033 0.9921 2.3400e- 0.4606 1.0				-	1.6200e- 003	0.4622	0.1179	1.4900e- 003	0.1194		232.8524	232.8524 232.8524	7.1600e- 003		233.0314

CH4 N2O CO2e		0.3571 1,155.971 6	0.0000	0.3571 1,155.971
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4 PM2.5	lb/day	0.4398 0.4398 0.0000 1,147.044 1,147.044 0.3571 4 4	0.000	1,147.044 4
NBio- CO2		1,147.044 4	0.0000	0.0000 1,147.044 1,147.044
Bio- CO2		0.0000		0.0000
PM2.5 Total		0.4398	0.0000	0.4398
Exhaust PM2.5		0.4398	0.0000	0.4398
Fugitive PM2.5		 	 -	
PM10 Total		0.4781	0.0000	0.4781
Exhaust PM10	b/day	0.4781 0.4781	0.0000	0.4781
Fugitive PM10	ସ	 		
S02		0.0114		0.0114
00		7.3982		7.3982
NOX		8.7605		0.8219 8.7605 7.3982 0.0114
ROG		0.8219 8.7605 7.3982 0.0114	0.0000	0.8219
	Category	Off-Road	Paving	Total

.1 Page 16 of 35 Fullerton Ranch Project - Placer County APCD Air District, Winter

3.4 Paving - 2018

Mitigated Construction Off-Site

C02e		0.0000	0.0000	233.0314	233.0314
N20					
CH4	ау	0.000.0	0.000.0	7.1600e- 003	7.1600e- 003
Total CO2	lb/day	0.0000 0.0000 0.0000	0.0000 0.0000	232.8524 232.8524 7.1600e- 003	232.8524 232.8524 7.1600e-
NBio- CO2		0.0000	0.0000	232.8524	232.8524
Bio- CO2					
Exhaust PM2.5 Total Bio-CO2 NBio-CO2 Total CO2 PM2.5	lb/day	0.0000	0.0000	0.1194	0.1194
Exhaust PM2.5		0.0000 0.0000 0.0000 0.0000	0.0000	1.4900e- 003	1.4900e- 003
Fugitive PM2.5		0.000.0	0.000.0	0.1179	0.1179
PM10 Total		0.000.0	0.0000	0.4622	0.4622
Exhaust PM10		0.0000	0.0000	1.6200e- 003	1.6200e- 003
Fugitive PM10		0.0000	0.0000	0.4606	0.4606
SO2		0.000.0	0.0000 0.0000	2.3400e- 003	2.3400e- 003
00		0.000.0	0.000.0	0.9921	0.9921
XON		0.000.0	0.0000 0.0000 0.0000	0.1033	0.1360 0.1033 0.9921 2.3400e- 0.4606 0.3
ROG		0.0000 0.0000 0.0000 0.0000	0.0000	0.1360	0.1360
	Category	Hauling	Vendor	Worker	Total

3.5 Building Construction - 2018

		0	9
CO2e		1,274.370 5	1,274.370 5
N20			
CH4	ay	0.2458	0.2458
Total CO2	lb/day	1,268.225 3	1,268.225 3
NBio- CO2		1,268.225 1,268.225 0.2458 3	1,268.225 1,268.225 3 3
Bio- CO2			
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.6294	0.6294
Exhaust PM2.5		0.6294 0.6294	0.6294
Fugitive PM2.5	lb/day		
PM10 Total		0.6614	0.6614
Exhaust PM10		0.6614 0.6614	0.6614
Fugitive PM10			
SO2		0.0130	0.0130
00		7.9488	7.9488
XON		1.1304 10.5467 7.9488 0.0130	1.1304 10.5467 7.9488
ROG		1.1304	1.1304
	Category	Off-Road	Total

Fullerton Ranch Project - Placer County APCD Air District, Winter

3.5 Building Construction - 2018
Unmitigated Construction Off-Site

CO2e		0.0000	273.3975	225.2636	498.6611
N20					
CH4	ay	0.000.0	0.0163	6.9200e- 003	0.0232
Total CO2	lb/day	0.000 0.0000	272.9902 272.9902	225.0906	498.0809
NBio- CO2		0.0000	272.9902	225.0906	498.0809
Bio- CO2					
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2	lb/day	0.0000	0.0259	0.0646	0.0906
Exhaust PM2.5		0.000.0	8.3800e- 003	1.4400e- 003	9.8200e- 003
Fugitive PM2.5		0.0000 0.0000 0.0000	0.0176	0.0632	0.0807
PM10 Total		0.0000	0.0697	0.2398	0.3095
Exhaust PM10		0.0000	8.7600e- 003	1.5600e- 003	0.0103
Fugitive PM10		0.0000	0.0610	0.2382	0.2992
S02		0.000.0	0.2952 2.6100e- 003	0.9590 2.2600e- 0.2382 003	4.8700e- 003
00		0.000.0	0.2952	0.9590	1.2542
NOX		0.0000 0.0000 0.0000 0.0000	0.0466 1.2252	0.1315 0.0999	0.1781 1.3251 1.2542 4.8700e-
ROG		0.0000	0.0466	0.1315	0.1781
	Category	Hauling	Vendor	Worker	Total

CO2e		1,274.370 5	1,274.370 5
N20			
CH4	ay	0.2458	0.2458
Total CO2	lb/day	1,268.225 3	1,268.225 3
NBio- CO2		0.0000 1,268.225 1,268.225 0.2458 3	0.0000 1,268.225 1,268.225 0.2458 3
Bio- CO2		0.000.0	0.0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	lb/day	0.6294	0.6294
Exhaust PM2.5		0.6294	0.6294
Fugitive PM2.5			
PM10 Total		0.6614	0.6614
Exhaust PM10		0.6614 0.6614	0.6614
Fugitive PM10			
S02		0.0130	0.0130
00		7.9488	7.9488
×ON		10.5467	1.1304 10.5467 7.9488
ROG		1.1304 10.5467 7.9488 0.0130	1.1304
	Category	Off-Road	Total

Fullerton Ranch Project - Placer County APCD Air District, Winter

Date: 8/8/2017 2:51 PM

3.5 Building Construction - 2018

Mitigated Construction Off-Site

	ROG	×ON	8	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N20	CO2e
Category					lb/day	lay							lb/day	ay		
Hauling	0.0000	0.0000 0.0000 0.0000 0.0000	0.000.0	0.0000		0.0000	0.000.0	0.000 0.0000 0.0000	0.0000	0.0000		0.0000	0.0000 0.0000 0.00000	0.000.0		0.0000
Vendor	0.0466	1.2252	0.2952	2.6100e- 003	0.0610	8.7600e- 003	0.0697	0.0176	8.3800e- 003	0.0259		272.9902 272.9902		0.0163	 	273.3975
Worker	0.1315	0.0999	0.9590	0.9590 2.2600e- 0.2382 003	i	1.5600e- 003	0.2398	0.0632	1.4400e- 003	0.0646		225.0906 225.0906	225.0906	6.9200e- 003		225.2636
Total	0.1781	0.1781 1.3251 1.2542 4.8700e-	1.2542	4.8700e- 003	0.2992	0.0103	0.3095	0.0807	9.8200e- 003	9060.0		498.0809 498.0809		0.0232		498.6611

3.5 Building Construction - 2019

Unmitigated Construction On-Site

CO2e		1,263.664 5	1,263.664 5
N20			
CH4	эу	0.2403	0.2403
Total CO2	lb/day	1,257.658	1,257.658
NBio- CO2		1,257.658 1,257.658 0.2403	1,257.658 1,257.658 0.2403
Bio- CO2			
Fugitive Exhaust PMZ.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4 PM2.5		0.5411	0.5411
Exhaust PM2.5		0.5411 0.5411	0.5411
Fugitive PM2.5			
PM10 Total		0.5685	0.5685
Exhaust PM10	lay	0.5685 0.5685	0.5685
Fugitive PM10	lb/day		
SO2		0.0130	0.0130
00		7.7920	7.7920
NOX		9.5040	9.5040 7.7920 0.0130
ROG		0.9967 9.5040 7.7920 0.0130	0.9967
	Category	Off-Road	Total

Fullerton Ranch Project - Placer County APCD Air District, Winter

3.5 Building Construction - 2019
Unmitigated Construction Off-Site

2e		00	081	926	980
CO2e		0.0000	271.008′	218.4956	489.5036
N20					
CH4	lay	0.0000	0.0155	6.1100e- 003	0.0216
Total CO2	lb/day	0.0000 0.0000 0.00000	270.6207 270.6207	218.3427	488.9635
NBio- CO2		0.0000	270.6207	218.3427 218.3427	488.9635 488.9635
Bio- CO2					
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0000	0.0244	0.0646	0.0890
Exhaust PM2.5		0.0000 0.0000 0.0000	6.8100e- 003	1.4300e- 003	8.2400e- 003
Fugitive PM2.5		0.000.0	0.0176	0.0632	0.0807
PM10 Total			0.0681	0.2398	0.3079
Exhaust PM10	lb/day	0.0000	7.1200e- 003	1.5500e- 003	8.6700e- 003
Fugitive PM10)/q	0.0000		0.2382	0.2992
805		0.0000	2.5900e- 003	0.8536 2.1900e- 0.2382 003	4.7800e- 003
CO		0.000.0	0.2642	0.8536	1.1178
×ON		0.0000 0.0000 0.0000 0.0000	0.0411 1.1548 0.2642 2.5900e- 0.0610 003	0.1190 0.0877	0.1601 1.2426 1.1178 4.7800e-
ROG		0.0000	0.0411	0.1190	0.1601
	Category	Hauling	Vendor	Worker	Total

Mitigated Construction On-Site

CO2e		1,263.664 5	1,263.664 5
N20			
CH4	ay	0.2403	0.2403
Total CO2	lb/day	1,257.658	1,257.658 1
NBio- CO2		0.0000 1,257.658 1,257.658 0.2403	0.0000 1,257.658 1,257.658 0.2403
Bio- CO2		0.0000	0.0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4 PM2.5		0.5411 0.5411	0.5411
Exhaust PM2.5		0.5411	0.5411
Fugitive PM2.5			
PM10 Total		0.5685	0.5685
Exhaust PM10	lb/day	0.5685	0.5685
Fugitive PM10)/q		
802		0.0130	0.0130
00		7.7920	7.7920
×ON		9.5040	0.9967 9.5040
ROG		0.9967 9.5040 7.7920 0.0130	0.9967
	Category	Off-Road	Total

Date: 8/8/2017 2:51 PM Page 20 of 35 CalEEMod Version: CalEEMod.2016.3.1

Fullerton Ranch Project - Placer County APCD Air District, Winter

3.5 Building Construction - 2019
Mitigated Construction Off-Site

CO2e		0.0000	271.0081	218.4956	489.5036
N20			• • • • • • • • • • • • • • • • • • •		7
CH4	ау	0.0000	0.0155	6.1100e- 003	0.0216
Total CO2	lb/day	0.000 0.000.0	270.6207	218.3427	488.9635
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0000	270.6207	218.3427	488.9635
Bio- CO2		1-8-8-8-8	; ; ; ; ; ; ;	; ; ; ; ; ;	
PM2.5 Total		0.0000	0.0244	0.0646	0680'0
Exhaust PM2.5		0.0000	6.8100e- 003	1.4300e- 003	8.2400e- 003
Fugitive PM2.5		0.0000 0.0000 0.0000	0.0176	0.0632	2080'0
PM10 Total		0.0000	0.0681	0.2398	6208.0
Exhaust PM10	lb/day	0.0000	7.1200e- 003	1.5500e- 003	8.6700e- 003
Fugitive PM10	/qı	0.0000	0.0610	0.2382	0.2992
805		0.0000	2.5900e- 003	2.1900e- 003	4.7800e- 003
00		0.0000 0.0000 0.0000 0.0000	0.2642 2.5900e- 003	0.8536 2.1900e- 003	0.1601 1.2426 1.1178 4.7800e- 0.2992 00.3
NOx		0.0000	0.0411 1.1548	0.1190 0.0877	1.2426
ROG		0.0000	0.0411	0.1190	0.1601
	Category	Hauling	Vendor	Worker	Total

3.5 Building Construction - 2020 Unmitigated Construction On-Site

CO2e		1,249.680	1,249.680 1	
N20				
CH4	ay.	0.2358	0.2358	
Total CO2	lb/day	1,243.784 0	1,243.784 0	
VBio- CO2		1,243.784 1,243.784 0.2358 0 0	1,243.784 1,243.784 0.2358 0 0	
Bio- CO2				
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 C		0.4690	0.4690	
Exhaust PM2.5		0.4690 0.4690	0.4690	
Fugitive PM2.5				
PM10 Total		0.4927	0.4927	
Exhaust PM10	lb/day	0.4927 0.4927	0.4927	
Fugitive PM10)/q			
S02		0.0130	0.0130	
00		7.6738	7.6738	
×ON		8.6399	0.8964 8.6399	
ROG		0.8964 8.6399 7.6738 0.0130	0.8964	
	Category	Off-Road	Total	

Fullerton Ranch Project - Placer County APCD Air District, Winter

3.5 Building Construction - 2020 Unmitigated Construction Off-Site

	ROG	×ON	00	802	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	Bio- CO2 NBio- CO2 Total CO2	Total CO2	CH4	NZO	CO2e
Category					lb/day	lay							lb/day	lay		
Hauling	0.0000	0.0000 0.0000 0.0000 0.0000	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.0000 0.0000	0.000.0	0.0000		0.0000	0.0000 0.00000 0.00000	0.000.0		0.0000
Vendor	0.0343	0.0343 1.0654 0.2328 2.5700e- 0.0610 003	0.2328	2.5700e- 003	0.0610	4.7500e- 003	0.0657	0.0176	4.5400e- 003	0.0221		268.4463	268.4463 268.4463	0.0143	r 	268.8042
Worker	0.1089	0.0776 0.7623 2.1200e- 0.2382 003	0.7623	2.1200e- 003		1.5100e- 003	0.2397	0.0632	1.3900e- 003	0.0646		211.3592	211.3592 211.3592	5.3000e- 003		211.4917
Total	0.1432	0.1432 1.1430 0.9952 4.6900e-	0.9952	4.6900e- 003	0.2992	6.2600e- 003	0.3055	0.0807	5.9300e- 003	0.0867		479.8055	479.8055	0.0196		480.2959

Mitigated Construction On-Site

CO2e		1,249.680 1	1,249.680 1
N20			
CH4	ay	0.2358	0.2358
Total CO2	lb/day	1,243.784 0	1,243.784 0
NBio- CO2		0.0000 1,243.784 1,243.784 0.2358 0 0	0.0000 1,243.784 1,243.784 0.2358
Bio- CO2		0.0000	0.0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.4690	0.4690
Exhaust PM2.5		0.4690 0.4690	0.4690
Fugitive PM2.5			
PM10 Total		0.4927	0.4927
Exhaust PM10	lb/day	0.4927 0.4927	0.4927
Fugitive PM10	/qı		
SO2		0.0130	0.0130
00		7.6738	7.6738
XON		8.6399	0.8964 8.6399
ROG		0.8964 8.6399 7.6738 0.0130	0.8964
	Category	Off-Road	Total

Date: 8/8/2017 2:51 PM Page 22 of 35 CalEEMod Version: CalEEMod.2016.3.1

Fullerton Ranch Project - Placer County APCD Air District, Winter

3.5 Building Construction - 2020 Mitigated Construction Off-Site

ROG NOx	00 ×	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total Bio-CO2 NBio-CO2 Total CO2 PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
)/ql	lb/day							lb/day	ay		
000	000.0	0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.000.0	0.0000 0.0000 0.0000	0.000.0	00000		0.0000	0.0000 0.0000 0.00000	0.000.0		0.0000
0.	232	1.0654 0.2328 2.5700e- 0.0610 003	0.0610	4.7500e- 003	0.0657	0.0176	4.5400e- 003	0.0221		268.4463	268.4463	0.0143		268.8042
0.0776 0.	762	0.7623 2.1200e- 0.2382 003	0.2382	1.5100e- 003	0.2397	0.0632	1.3900e- 003	0.0646		211.3592	211.3592	5.3000e- 003		211.4917
061	995	0.1432 1.1430 0.9952 4.6900e-	0.2992	6.2600e- 003	0.3055	0.0807	5.9300e- 003	0.0867		479.8055	479.8055	0.0196		480.2959

3.6 Architectural Coating - 2018 Unmitigated Construction On-Site

CO2e		0.0000	282.1171	282.1171
N20				
CH4	ау		0.0267	0.0267
Total CO2	lb/day	0.000.0	281.4485	281.4485
NBio- CO2			281.4485 281.4485 0.0267	281.4485 281.4485
Bio- CO2				
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0000	0.1506	0.1506
Exhaust PM2.5		0.0000 0.0000	0.1506	0.1506
Fugitive PM2.5				
PM10 Total		0.0000	0.1506	0.1506
Exhaust PM10	lb/day	0.000.0 0.000.0	0.1506	0.1506
Fugitive PM10)/qI			
802			2.9700e- 003	2.9700e- 003
00			1.8542	1.8542
XON			0.2986 2.0058 1.8542 2.9700e-	4.7166 2.0058 1.8542 2.9700e-
ROG		4.4180	0.2986	4.7166
	Category	Archit. Coating 4.4180	Off-Road	Total

Date: 8/8/2017 2:51 PM Page 23 of 35 CalEEMod Version: CalEEMod.2016.3.1

Fullerton Ranch Project - Placer County APCD Air District, Winter

3.6 Architectural Coating - 2018
Unmitigated Construction Off-Site

	ROG	XON	00	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total Bio- CO2 NBio- CO2 Total CO2	Bio- CO2	NBio- CO2	Total CO2	CH4	N20	CO2e
					lb/day	day							lb/day	lay		
Hauling	0.0000	00000 00000 00000 00000 00000	0.000.0	0.000.0	0.000.0	0.0000	0.000.0	0.0000 0.0000	0.000.0	0.0000		0.0000	0.0000	0.000.0		0.0000
	0.0000	0.0000 0.0000 0.0000 0.0000	0.0000	0.000.0	0.000.0	0.0000	0.0000	0.0000	0.0000	0.0000		F	0.000.0	0.000.0		0.0000
	0.0272	0.0207 0.1984 4.7000e- 0.0493 004	0.1984	4.7000e- 004	0.0493	3.2000e- 004	0.0496	0.0131	3.0000e- 004	0.0134		46.5705	46.5705 1.4300e- 003	1.4300e- 003		46.6063
	0.0272	0.0272 0.0207 0.1984 4.7000e- 0.0493	0.1984	4.7000e- 004		3.2000e- 004	0.0496	0.0131	3.0000e- 004	0.0134		46.5705	46.5705	1.4300e- 003		46.6063

Mitigated Construction On-Site

NZO COZE		0.0000	282.1171	282.1171
CH4	ау		0.0267	0.0267
Total CO2	lb/day		281.4485	281.4485
NBio- CO2			0.0000 281.4485 281.4485	0.0000 281.4485 281.4485
Bio- CO2		1 - 0 - 0 - 0 - 0	0.0000	0.0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4 PM2.5		0.0000	0.1506	0.1506
Exhaust PM2.5		0.0000 0.0000	0.1506	0.1506
Fugitive PM2.5				
PM10 Total		0.0000	0.1506	0.1506
Exhaust PM10	b/day	0.0000 0.0000	0.1506	0.1506
Fugitive PM10	/qı			
s02			1.8542 2.9700e- 003	1.8542 2.9700e- 003
00			1.8542	1.8542
XON			0.2986 2.0058	4.7166 2.0058
ROG		4.4180	0.2986	4.7166
	Category	Archit. Coating 4.4180	Off-Road	Total

Date: 8/8/2017 2:51 PM Page 24 of 35 CalEEMod Version: CalEEMod.2016.3.1

Fullerton Ranch Project - Placer County APCD Air District, Winter

3.6 Architectural Coating - 2018

Mitigated Construction Off-Site

				,	
CO2e		0.0000	0.0000	46.6063	46.6063
N20		-			
CH4	ay	0.000.0	0.000.0	1.4300e- 003	1.4300e- 003
Total CO2	lb/day	0.0000 0.00000 0.00000	0.0000	46.5705 1.4300e- 003	46.5705
NBio- CO2		0.0000	0.0000	46.5705	46.5705
Bio- CO2					
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.0000	0000:0	0.0134	0.0134
Exhaust PM2.5		0.0000 0.0000 0.0000 0.0000	0.0000	3.0000e- 004	3.0000e- 004
Fugitive PM2.5		0.000.0	0.0000	0.0131	0.0131
PM10 Total		0.000.0	0.000.0	0.0496	0.0496
Exhaust PM10	lb/day	0.0000	0.0000	3.2000e- 004	3.2000e- 004
Fugitive PM10)/q	0.0000	0.0000	0.0493	0.0493
S02		0.000.0	0.0000	4.7000e- 004	4.7000e- 004
00		0.000.0	0.000.0	0.1984	0.1984
XON		0.0000	0.0000 0.0000 0.0000 0.0000	0.0207 0.1984 4.7000e- 004	0.0272 0.0207 0.1984 4.7000e-
ROG		0.0000 0.0000 0.0000 0.0000	0.0000	0.0272	0.0272
	Category		Vendor	Worker	Total

3.6 Architectural Coating - 2019 Unmitigated Construction On-Site

CO2e		0.0000	282.0423	282.0423
N20				
CH4	ау		0.0238	0.0238
Total CO2	lb/day	0.000.0	281.4481	281.4481
NBio- CO2			281.4481 281.4481 0.0238	281.4481 281.4481
Bio- CO2				
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0000	0.1288	0.1288
Exhaust PM2.5		0.0000 0.0000	0.1288	0.1288
Fugitive PM2.5				
PM10 Total		0.0000	0.1288	0.1288
Exhaust PM10	lb/day	0.000.0 0.000.0	0.1288	0.1288
Fugitive PM10	/qI			
2O5			2.9700e- 003	2.9700e- 003
00			1.8413	1.8413
XON			1.8354	4.6844 1.8354 1.8413 2.9700e-
ROG		4.4180	0.2664 1.8354 1.8413 2.9700e- 003	4.6844
	Category	g g	Off-Road	Total

Date: 8/8/2017 2:51 PM Page 25 of 35 CalEEMod Version: CalEEMod.2016.3.1

Fullerton Ranch Project - Placer County APCD Air District, Winter

3.6 Architectural Coating - 2019
Unmitigated Construction Off-Site

ROG NOx		8	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total Bio- CO2 NBio- CO2 Total CO2	Bio- CO2	NBio- CO2	Total CO2	CH4	N20	CO2e
lb/day	lb/day	lb/day	lb/day	ay								lb/day	lay		
0.000.0 0.000.0 0.000.0 0.000.0	0.0000 0.0000	0.0000 0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.000.0 0.000.0	0.000.0		0.0000
					0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.000.0		0.0000
0.0246 0.0182 0.1766 4.5000e- 0.0493 3				(1)	3.2000e- 004	0.0496	0.0131	2.9000e- 004	0.0134		45.1744	45.1744 45.1744 1.2600e-	1.2600e- 003		45.2060
0.0246 0.0182 0.1766 4.5000e- 0.0493 3.3 004				3.	3.2000e- 004	0.0496	0.0131	2.9000e- 0 004	0.0134		45.1744	45.1744	1.2600e- 003		45.2060

Mitigated Construction On-Site

otal CO2 CH4 N2O CO2e	lb/day	0.0000	31.4481 0.0238 282.0423	11.4481 0.0238 282.0423
Bio- CO2 NBio- CO2 Total CO2	_	 	0.0000 281.4481 281.4481	0.0000 281.4481 281.4481
Bio- CO2			0.0000	0.000
PM2.5 Total		0.0000	0.1288	0.1288
Exhaust PM2.5		0.0000 0.0000	0.1288	0.1288
Fugitive PM2.5		<u> </u>		
PM10 Total		0.0000	0.1288	0.1288
Exhaust PM10	b/day	0.000.0 0.000.0	0.1288	0.1288
Fugitive PM10	/qı	<u> </u>		
802			2.9700e- 003	2.9700e- 003
00			1.8413	1.8413
XON			1.8354	4.6844 1.8354 1.8413 2.9700e-
ROG		4.4180	0.2664 1.8354 1.8413 2.9700e- 003	4.6844
	Category	g	Off-Road	Total

Page 26 of 35 CalEEMod Version: CalEEMod.2016.3.1

Date: 8/8/2017 2:51 PM

Fullerton Ranch Project - Placer County APCD Air District, Winter

3.6 Architectural Coating - 2019
Mitigated Construction Off-Site

CO2e		0.0000	0.0000	45.2060	45.2060
N20					
CH4	ау	0.000.0	0.000.0	1.2600e- 003	1.2600e- 003
Total CO2	lb/day	0.000.0	0.000.0	45.1744 45.1744 1.2600e- 003	45.1744 45.1744
NBio- CO2		0.0000 0.0000 0.0000	0.0000	45.1744	45.1744
Bio- CO2			 		
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.0000	0.0000	0.0134	0.0134
Exhaust PM2.5		0.0000 0.0000 0.0000 0.0000	0.000.0	2.9000e- 004	2.9000e- 004
Fugitive PM2.5		0.0000	0.0000 0.0000	0.0131	0.0131
PM10 Total		0.0000	0.000.0	0.0496	0.0496
Exhaust PM10	lb/day	0.0000	0.0000	3.2000e- 004	3.2000e- 004
Fugitive PM10	o/qı	0.0000	0.0000	0.0493	0.0493
SO2		0.000.0	0.0000	4.5000e- 004	4.5000e- 004
00		0.000.0	0.000.0	0.1766	0.1766
XON		0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	0.0246 0.0182 0.1766 4.5000e- 004	0.0246 0.0182 0.1766 4.5000e-
ROG		0.0000	0.0000	0.0246	0.0246
	Category	Hauling	Vendor	Worker	Total

3.6 Architectural Coating - 2020 Unmitigated Construction On-Site

CO2e		0.0000	281.9928	281.9928
		ō · • • • •	281	281
N20				
CH4	lb/day		0.0218	0.0218
Total CO2	/qı	0.000.0	281.4481	281.4481
NBio- CO2			281.4481 281.4481 0.0218	281.4481 281.4481
Bio- CO2				
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.0000	0.1109	0.1109
Exhaust PM2.5		0.0000 0.0000	0.1109	0.1109
Fugitive PM2.5				
PM10 Total		0.0000	0.1109	0.1109
Exhaust PM10	lb/day	0.0000 0.0000	0.1109 0.1109	0.1109
Fugitive PM10)/qI			
SO2			2.9700e- 003	2.9700e- 003
00			1.8314	1.8314
XON			1.6838	4.6601 1.6838 1.8314 2.9700e-
ROG		4.4180	0.2422 1.6838 1.8314 2.9700e- 003	4.6601
	Category	D	Off-Road	Total

Fullerton Ranch Project - Placer County APCD Air District, Winter

3.6 Architectural Coating - 2020 Unmitigated Construction Off-Site

CO2e		0.0000	0.0000	43.7569	43.7569
N20					
CH4	ay	0.000.0	0.000.0	1.1000e- 003	1.1000e- 003
Total CO2	lb/day	0.0000 0.0000	0.0000	43.7295 1.1000e- 003	43.7295
NBio- CO2		0.0000	0.0000	43.7295	43.7295
Bio- CO2					
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0000	0.0000	0.0134	0.0134
Exhaust PM2.5		0.000.0	0.0000	1 2.9000e- 004	2.9000e- 004
Fugitive PM2.5		0.000 0.0000 0.0000	0.0000	0.0131	0.0131
PM10 Total		0.0000	0.0000	0.0496	0.0496
Exhaust PM10	lb/day	0.0000	0.0000	3.1000e- 004	3.1000e- 004
Fugitive PM10	o/ql	0.000.0	0.0000	0.0493	0.0493
SO2		0.000.0	0.0000	4.4000e- 004	4.4000e- 004
00		0.000.0	0.000.0	0.1577	0.1577
XON		0.000.0	0.0000 0.0000 0.0000 0.0000	0.0161 0.1577 4.4000e- 0.0493 004	0.0225 0.0161 0.1577 4.4000e-
ROG		0.0000 0.0000 0.0000 0.0000	0.0000	0.0225	0.0225
	Category	Hauling	Vendor	Worker	Total

Mitigated Construction On-Site

PM2.5	lb/day	0.0000	0.0000 281.4481 281.4481 0.0218 281.9928	0.0000 281.4481 281.4481 0.0218 281.9928
Bio- CO2		1-8-8-8-8		
PM2.5 Tota		0.0000	0.1109	0.1109
		0.0000 0.0000	0.1109	0.1109
Fugitive PM2.5			 	
PM10 Total		0.0000	0.1109 0.1109	0.1109
Exhaust PM10	b/day	0.0000 0.0000	0.1109	0.1109
Fugitive PM10	'qı	ļ		
802			2.9700e- 003	2.9700e- 003
8			1.8314	1.8314
XON			0.2422 1.6838 1.8314 2.9700e- 003	4.6601 1.6838 1.8314 2.9700e-
ROG		4.4180	0.2422	4.6601
	Category	Archit. Coating 4.4180	Off-Road	Total

Fullerton Ranch Project - Placer County APCD Air District, Winter

Date: 8/8/2017 2:51 PM

3.6 Architectural Coating - 2020 Mitigated Construction Off-Site

CO2e		0.0000	0.0000	43.7569	43.7569
N20					
CH4	3 <i>y</i>	0.000.0	0.000.0	1.1000e- 003	1.1000e- 003
Total CO2	lb/day	0.000 0.000.0	0.0000	43.7295	43.7295
NBio- CO2		0.0000	0.0000	43.7295	43.7295
Bio- CO2					
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0000	0.0000	0.0134	0.0134
Exhaust PM2.5		0.000.0	0.0000	2.9000e- 004	2.9000e- 004
Fugitive PM2.5		0.000.0		0.0131	0.0131
PM10 Total		0.0000	0.000.0	0.0496	0.0496
Exhaust PM10	b/day	0.0000	0.0000	3.1000e- 004	3.1000e- 004
Fugitive PM10	p/qI	0.0000	0.0000	0.0493	0.0493
SO2		0.0000	0.0000 0.0000	4.4000e- 004	4.4000e- 004
00		0.0000	0.0000	0.1577	0.1577 4.4000e-
NOX		0.0000 0.0000 0.0000 0.0000	0.000 0.0000 0.0000	0.0225 0.0161 0.1577 4.4000e- 0.0493 004	0.0161
ROG		0.0000	0.0000	0.0225	0.0225
	Category	Hauling	Vendor	Worker	Total

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

Increase Density

Improve Walkability Design

Improve Destination Accessibility

Increase Transit Accessibility

Improve Pedestrian Network

Provide Traffic Calming Measures

Page 29 of 35

Date: 8/8/2017 2:51 PM

Fullerton Ranch Project - Placer County APCD Air District, Winter

CO2e		3,794.177 0	4,029.069 0
N20			
CH4	ay	0.2120	0.2180
Total CO2	lb/day	3,788.878 4	4,023.620 1
NBio- CO2		3,788.878 3,788.878 0.2120 4 4	4,023.620 4,023.620 0.2180 1
Bio- CO2			L
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4 PM2.5		0.7536	0.8089
Exhaust PM2.5		0.0428 2.7041 0.7132 0.0404 0.7536	0.0428
Fugitive PM2.5		0.7132	0.0454 2.9040 0.7661 0.0428
PM10 Total		2.7041	2.9040
Exhaust PM10	b/day	0.0428	0.0454
Fugitive PM10	o/qı	2.6613	2.8586
SO2		0.0374	0.0397
00		12.8401	1.2526 8.5518 13.3853 0.0397 2.8586
×ON		8.3078	8.5518
ROG		1.2269 8.3078 12.8401 0.0374 2.6613	1.2526
	Category	Mitigated	Unmitigated

4.2 Trip Summary Information

	Aver	Average Daily Trip Rate	ıte	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Single Family Housing	771.12	802.71	698.22	1,276,692	1,188,601
Total	771.12	802.71	698.22	1,276,692	1,188,601

4.3 Trip Type Information

% esod	Pass-by	
Trip Purpose	rimary Diverted	
	Ш	07 00
Trip %	H-O or C-NW H-W or C-W H-S or C-C H-O or C-NW	00.70
	H-W or C-W	70.00
	H-O or C-NW	101
Miles	H-S or C-C	10.1
	H-W or C-W H-S or C-C	000
	Land Use	L -1 - 10

4.4 Fleet Mix

	•	•	-	•	-	-	-	•	•	-	-		
0.001333	0.000783	0.025790 0.006586 0.027831 0.045583 0.001467 0.001229 0.006102 0.000783	0.001229	0.001467	0.045583	0.027831	0.006586	0.025790	0.132626	0.220156	0.041257 0.22015	0.489257	Single Family Housing
MH	SBUS	MCY	UBUS	OBUS	НН	MHD	LHD2	LHD1	MDV	LDT2	LDT1	LDA	Land Use

5.0 Energy Detail

Historical Energy Use: N

Page 30 of 35 Fullerton Ranch Project - Placer County APCD Air District, Winter

Date: 8/8/2017 2:51 PM

5.1 Mitigation Measures Energy

Exceed Title 24

Install High Efficiency Lighting

Install Energy Efficient Appliances

	ROG	NOX	00	802	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4 PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N20	CO2e
Category						lb/day							lb/day	ау		
NaturalGas Mitigated	0990.0	0.0660 0.5643 0.2401 3.6000e-	0.2401	3.6000e- 003		0.0456	0.0456		0.0456	0.0456		720.3906	720.3906 720.3906 0.0138 0.0132 724.6715	0.0138	0.0132	724.6715
NaturalGas Unmitigated	0.0766	0.0766 0.6542 0.2784 4.1800e-	0.2784	4.1800e- 003		0.0529	0.0529	r	0.0529	0.0529		835.1386	835.1386 835.1386 0.0160 0.0153 840.1014	0.0160	0.0153	840.1014

Page 31 of 35

Date: 8/8/2017 2:51 PM

Fullerton Ranch Project - Placer County APCD Air District, Winter

5.2 Energy by Land Use - NaturalGas

Unmitigated

CO2e		840.1014	840.1014
N20		0.0153	0.0153
CH4	ау	0.0160	0.0160
Total CO2	lb/day	835.1386 835.1386 0.0160 0.0153 840.1014	835.1386 835.1386
NBio- CO2		835.1386	835.1386
Bio- CO2			
Exhaust PMZ.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.0529	0.0529
Exhaust PM2.5		0.0529	0.0529
Fugitive PM2.5			
PM10 Total		0.0529	0.0529
Exhaust PM10	lb/day	0.0529	0.0529
Fugitive PM10	/qı		
805		4.1800e- 003	4.1800e- 003
00		0.2784	0.2784 4.1800e-
XON		0.6542	0.6542
ROG		0.0766	0.0766
NaturalGa s Use	kBTU/yr	7098.68	
	Land Use	Single Family 7098.68 0.0766 0.6542 0.2784 4.1800e- Housing 003	Total

Mitigated

CO2e		724.6715	724.6715
N20		0.0132	0.0132 724.6715
CH4	ау	0.0138	0.0138
Total CO2	lb/day	720.3906 720.3906 0.0138 0.0132 724.6715	720.3906 720.3906 0.0138
NBio- CO2		720.3906	720.3906
Bio- CO2			
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4 PM2.5		0.0456 0.0456	0.0456
Exhaust PM2.5		0.0456	0.0456
Fugitive PM2.5			
PM10 Total	lb/day	0.0456 0.0456	0.0456
Exhaust PM10		0.0456	0.0456
Fugitive PM10			
802		3.6000e- 003	0.2401 3.6000e- 003
00		0.2401	
XON		0.5643	0.5643
ROG		0.0660	0990'0
NaturalGa s Use	kBTU/yr	6.12332	
	Land Use	Single Family 6.12332 0.0660 0.5643 0.2401 3.6000e- Housing 003	Total

6.0 Area Detail

6.1 Mitigation Measures Area

Fullerton Ranch Project - Placer County APCD Air District, Winter

Use Low VOC Paint - Residential Interior

Use Low VOC Paint - Residential Exterior

Use Low VOC Paint - Non-Residential Interior

Use Low VOC Paint - Non-Residential Exterior

Use only Natural Gas Hearths

CO2e		1,565.264 6	3,309.874 5
NZO		0.0283	0.1769
CH4	łay	0.0413	2.0877
Total CO2	lb/day	1,555.797 4	3,204.954 7
NBio- CO2		1,555.797 4	955.4445
Bio- CO2		0.0000	2,249.510 2
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.1346 0.1346 0.0000 1,555.797 1,555.797 0.0413 0.0283 1,565.264 4 4 6	21.4914 21.4914 2,249.510 955.4445 3,204.954 2.0877 0.1769 3,309.874 5
Exhaust PM2.5		0.1346	21.4914
Fugitive PM2.5			
PM10 Total		0.1346	21.4914 21.4914
Exhaust PM10	lb/day	0.1346 0.1346	21.4914
Fugitive PM10			
SO2		8.0700e- 003	0.2776
00		7.2194	159.7224
×ON		1.2868	2.4984
ROG		3.9657 1.2868 7.2194 8.0700e-	127.7862 2.4984 159.7224 0.2776
	Category	Mitigated	Unmitigated

Fullerton Ranch Project - Placer County APCD Air District, Winter

6.2 Area by SubCategory

Unmitigated

C02e		0.0000	0.0000	3,297.548	12.3261	3,309.874 5
N20				0.1769		0.1769
CH4	lay				0.0117	2.0877
Total CO2	lb/day	0.0000	0.0000	3,192.922 0	12.0327	3,204.954 7
Bio- CO2 NBio- CO2 Total CO2				943.4118	12.0327	955.4445
Bio- CO2				2,249.510 943.4118 3,192.922 2 0		2,249.510 2
PM2.5 Total		0.000.0	0.000.0	i	0.0369	21.4914
Exhaust PM2.5		0.000.0	0.0000	21.4545	0.0369	21.4914
Fugitive PM2.5						
PM10 Total		0.0000	0.0000	21.4545	0.0369	21.4914
Exhaust PM10	lb/day	0.000.0	0.0000	21.4545	0.0369	21.4914
Fugitive PM10)/qI					
SO2				0.2772	3 3.5000e- 004	0.2776
00				153.017	6.7048	159.7224
×ON				2.4208	0.0776	2.4984
ROG		0.4999	3.1201	123.9620 2.4208	0.2042	127.7862
	SubCategory	Architectural Coating	Consumer Products	Hearth	Landscaping	Total

Page 34 of 35

Date: 8/8/2017 2:51 PM

Fullerton Ranch Project - Placer County APCD Air District, Winter

6.2 Area by SubCategory

Mitigated

CO2e		0.0000	0.0000	1,552.938 5	12.3261	1,565.264 6
N20				0.0283		0.0283
CH4	ay			0.0296	0.0117	0.0413
Total CO2	lb/day	0.0000	0.0000	1,543.764 7	12.0327	1,555.797 5
Bio- CO2 NBio- CO2 Total CO2			 	1,543.764 7	12.0327	1,555.797 5
				0.000.0		0.0000
PM2.5 Total		0.0000	0.0000	0.0978	0.0369	0.1346
Exhaust PM2.5		0.0000	0.0000	0.0978	0.0369	0.1346
Fugitive PM2.5			r 	r 	r 	
PM10 Total		0.0000	0.0000	0.0978	0.0369	0.1346
Exhaust PM10	b/day	0.0000	0.0000	0.0978	0.0369	0.1346
Fugitive PM10)/q					
S02				7.7200e- 003	3.5000e- 004	8.0700e- 003
00				0.5146	6.7048	7.2194
NOx				1.2093	0.0776	1.2868
ROG		0.4999			0.2042	3.9657
	SubCategory	Architectural Coating	Consumer Products	Hearth	Landscaping	Total

7.0 Water Detail

7.1 Mitigation Measures Water

Install Low Flow Bathroom Faucet

Install Low Flow Kitchen Faucet

Install Low Flow Toilet

Install Low Flow Shower

Use Water Efficient Irrigation System

8.0 Waste Detail

8.1 Mitigation Measures Waste

Page 35 of 35

Fullerton Ranch Project - Placer County APCD Air District, Winter

9.0 Operational Offroad

!	Fuel Type
	Load Factor
-	Horse Power
	Days/Year
	Hours/Day
	Number
	Equipment Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type Number Hours/Day Hours/Year Horse Power Load Factor Fuel Type

Boilers

uel Type
Fuel
Boiler Rating
Heat Input/Year
Heat Input/Day
Number
Equipment Type

User Defined Equipment

Number	
Equipment Type	

11.0 Vegetation

Date: 8/8/2017 2:51 PM

Appendix C

Special-Status Plant Survey

ENVIRONMENTAL CONSULTING ● PLANNING ● LANDSCAPE ARCHITECTURE

June 14, 2016

Chris Tyler Terravest Capital Partners, Inc. 3208 Wycliffe Drive Modesto, CA 95355

RE: Special-Status Plant Surveys on the Fullerton Ranch Site, within the City of Lincoln, Placer County, California

Dear Mr. Tyler:

This report summarizes the results of a focused botanical survey for six special-status plant species: Ahart's dwarf rush (*Juncus leiospermus* var. *aharti*), big-scale balsam-root (*Balsamorhiza macrolepis* var. *macrolepis*), Bogg's Lake hedge-hyssop (*Gratiola heterosepala*), dwarf downingia (*Downingia pusilla*), legenere (*Legenere limosa*), and pincushion navarretia (*Navarretia myersii* ssp. *myersii*) on the Fullerton Ranch Site (Site), within the City of Lincoln, in Placer County, California. The Site was previously known as the Whispering Oaks Site. The survey was conducted in accordance with the recommended measure identified within the Biological Resource Assessment Update for the Whispering Oaks Site, Lincoln, Placer County, California (North Fork Associates 2006). The purpose of the survey was to determine whether potentially occurring special-status plants exist within the Site.

Location

The ±20-acre Site is located on the southern side of Nicolaus Road, roughly 800 feet east of Lakeside Drive. It is bordered on the north by Nicolaus Road, on the east by rural residences and a residential subdivision, on the south by a residential subdivision, and on the west by open annual grassland and a residential subdivision. The Site occurs in Section 16, Township 12 North, and Range 6 East on the 7.5-minute *Lincoln, California* quadrangle map (**Figure 1**).

Methodology

A Foothill Associates' botanist conducted a focused botanical survey within the evident and identifiable blooming period for the six potentially occurring special-status species on June 1, 2016. In addition, a comprehensive botanical inventory was conducted within the Site, in accordance with the California Department of Fish and Wildlife's (CDFW) (2009) protocol plant surveys. The survey was conducted by a biologist with the following qualifications: experience with conducting floristic surveys; intimate knowledge of plant taxonomy and plant community ecology and classification; familiarity with the plants of the area, including special-status and locally significant plants; familiarity with the appropriate State and federal statutes related to

plants and plant collecting; and experience with analyzing impacts of project activities on native plants and plant communities. The biologist walked transects in a north-south direction throughout the Site to provide total coverage. Five of the six potentially occurring species are found in vernal pools, so increased focus was placed on vernal pools and other depressional areas (see Table 1). Plants observed within the Site are provided in Appendix A.

Table 1 — Summary of Special-Status Species with Potential to Occur on the Site

Species	Federal	State	CNPS	Habitat	Potential for Occurrence
Ahart's dwarf rush Juncus leiospermus var. aharti	SC	None	1B	Vernal pools	Possible; Not observed during previous site visits.
Big-scale balsam-root Balsamorhiza macroleps var. macrolepis	SC	None	1B	Open woodlands and grasslands	Possible; Not observed during previous site visits.
Bogg's Lake hedge-hyssop Gratiola heterosepala	None	CE	1B	Moist margins of vernal pools and marshes	Possible; Not observed during previous site visits.
Dwarf downingia Downingia pusilla	None	None	2	Vernal Pools	Possible; Not observed during previous site visits.
Legenere limosa	SC	None	1B	Vernal Pools	Possible; Not observed during previous site visits.
Pincushion navarretia Navarretia myersii ssp. myersii	None	None	1B	Vernal Pools	Possible; Not observed during previous site visits.
Status Codes					
Federal	SC - Species o	f Concern			
State	CE - California	Endangered	d		
CNPS	List 1B - Rare	or Endanger	ed in Califori	nia	
	List 2 - R and	E in Californi	a. more com	mon elsewhere	

List 2 - R and E in California, more common elsewhere

Environmental Setting

The Site is comprised of annual grassland and oak woodland with seasonal wetland features interspersed in the southern half of the Site. The western half of the Site is comprised of oak woodland with an annual grassland understory. The topography within the Site is generally level with elevations ranging from 133 to 135 feet above mean sea level (MSL).

Results and Conclusion

Although the Site provides habitat for the six special-status species, these species were not observed during the June 1, 2016 focused botanical survey conducted within the evident and identifiable blooming period. These species do not occur within the Site. Therefore, the

Page 3 of 3

Proposed Project would have no impact on special-status plants. No additional rare plant surveys are recommended.

If you have any questions, please contact me at your earliest convenience at (916) 435-1202 or email kbayne@foothill.com.

Sincerely,

Kelly Bayne, M.S Senior Biologist

Enclosures (2)

Attachment A

Plants Observed within the Fullerton Ranch Site

Fomily	Scientific Name	Common Name	*
Family Apiaceae	Eryngium castrense	Great Valley coyote-thistle	N
Apiaceae	Eryngium vaseyi	Coyote-thistle	N
Asteraceae	Carduus pycnocephalus ssp. pycnocephalus	Italian thistle	ı
Asteraceae	Filago pyramidata var. pyramidata	Broadleaf cottonrose	i
Asteraceae	Holocarpha virgata		
Asteraceae	Hypochaeris glabra		
Asteraceae	Lactuca serriola	Prickly lettuce	ı
Asteraceae	Leontodon saxatilis	Hairy hawkbit	I
Asteraceae	Psilocarphus brevissimus	Woolly-marbles, woollyheads	N
Asteraceae	Sonchus oleraceus	Common sow thistle	I
Asteraceae	Taraxacum officinale	Common dandelion	1
Boraginaceae	Amsinckia menziesii	Common fiddleneck, small-flowered fiddleneck	N
Boraginaceae	Plagiobothrys stipitatus	Great Valley popcornflower	N
Brassicaceae	Brassica rapa	Turnip, field mustard	I
Brassicaceae	Hirschfeldia incana	Perennial, shortpot, or summer mustard	l l
Brassicaceae	Raphanus sativus	Radish	- 1
Campanulaceae	Downingia bicornuta	Downingia	N
Campanulaceae	Downingia ornatissima	Downingia	N
Caryophyllaceae	Silene gallica	Small-flower catchfly, windmill pink	1
Convolvulaceae	Convolvulus arvensis	Bindweed, orchard morning-glory	ı
Crassulaceae	Crassula sp.	Crassula	 N
Euphorbiaceae	Croton setigerus	Turkey-mullein	N
Fabaceae	Acmispon americanus var. americanus Deervetch, deerweed		N
Fabaceae	Lupinus bicolor Miniature lupine		N
Fabaceae Fabaceae	Medicago polymorpha California burclover Trifolium hirtum Rose clover		l I
Fabaceae			
Fagaceae	Vicia villosa Hairy vetch, winter vetch Quercus lobata Valley oak, roble		N N
Fagaceae	Quercus vislizeni	Interior live oak	N
Geraniaceae	Erodium botrys	Storksbill, filaree	1
Geraniaceae	Erodium cicutarium	Redstem filaree	<u> </u>
Geraniaceae	Geranium dissectum	Cranesbill, geranium	
Juglandaceae	Juglans sp.	Walnut	<u> </u>
Juncaceae	Juncus bufonius	Toad rush	N
Juncaceae	Juncus capitatus	Dwarf rush	ı
Lythraceae	Lythrum hyssopifolia	Loosestrife	I
Malvaceae	Malva sp.	Mallow	
Marsileaceae	Pilularia americana	Pilularia	N
Montiaceae	Claytonia sp.	Claytonia	N
Moraceae	Ficus carica	Edible fig	I
Oleaceae	Olea sp.	Olive	- 1
Orobanchaceae	Castilleja attenuata	Valley tassels	N
Orobanchaceae	Castilleja campestris	Paintbrush, owl's-clover	N
Plantaginaceae	Gratiola ebracteata	Bractless hedge-hyssop	N
Plantaginaceae	Plantago lanceolata	English plantain	I
Poaceae	Aira elegans	Elegant hair grass	- 1
Poaceae	Avena fatua	Wild oat	- 1
Poaceae	Briza minor	Annual quaking grass, small quaking grass	I
Poaceae	Bromus diandrus	Ripgut grass	1
Poaceae	Bromus hordeaceus	Soft chess	1
Poaceae	Deschampsia danthonioides	Annual hair grass	N .
Poaceae	Elymus caput-medusae	Medusa head	1
Poaceae	Festuca peropoles	Brome fescue	1
Poaceae	Festuca perennis	Rye grass	1
Poaceae Poaceae	Hordeum marinum ssp. gussoneanum Hordeum murinum	Mediterranean barley Wall barley	<u> </u>
Poaceae	Phalaris sp.	Canary grass	
Poaceae	Poa annua	Annual blue grass	1
Poaceae	Polypogon monspeliensis	Annual beard grass, rabbitfoot grass	
Polemoniaceae	Navarretia leucocephala	Navarretia	N N
Polygonaceae	Rumex conglomeratus	Dock	1
Polygonaceae	Rumex crassus	Dock	N N
Ranunculaceae	Ranunculus bonariensis vər. trisepalus	Buttercup	N
Rubiaceae	Galium parisiense	Wall bedstraw	1
Themidaceae	Dichelostemma multiflorum	Wild hyacinth	N
Themidaceae	Triteleia hyacinthina	White brodiaea, fool's onion	N

Appendix D

Dry-Season Sampling for Federally Listed Large Branchiopods

Prepared for:
FOOTHILL ASSOCIATES
590 Menlo Drive, Suite 5
4600 Karchner Road

November 2016

Rocklin, CA 95765 Sheridan, CA 95681

Contact: Meredith Branstad Contact: Brent Helm (916) 435-1202 (530) 633-0220

DRY-SEASON SAMPLING FOR FEDERALLY LISTED LARGE BRANCHIOPODS AT THE FULLERTON RANCH PROJECT, LINCOLN, PLACER COUNTY, CALIFORNIA (USFWS # 2017-TA-0297)

INTRODUCTION

Helm Biological Consulting (HBC), a division of Tansley Team, Inc., was contracted by Foothill Associates to conduct reconnaissance-level dry-season sampling for large branchiopods (fairy shrimp, tadpole shrimp, and clam shrimp) that are listed as threatened or endangered under the federal Endangered Species Act (e.g., vernal pool fairy shrimp [*Branchinecta lynchi*] and vernal pool tadpole shrimp [*Lepidurus packardi*]) at the Fullerton Ranch Project.

The Fullerton Ranch Project consists of a 20-acre parcel located just south of Nicolous Road, ¾ mile north of More Road, and 1 mile west of Nelson Road, in the City of Lincoln, Placer County, California (NW ½ of NW ¼ of NW ¼ of Section 16 Township, 12 North, Range 6 East, and Mount Diablo Base & Meridian of the Lincoln 7.5 minute US Geological Survey topographic quadrangle map [Center coordinates of the properties are WGS84 Latitude 38.895439° and Longitude -121.320317°, Figure 1]).

The remainder of this report discusses the methods and results of the dry-season sampling for the presence of federally listed large branchiopods at the Fullerton Ranch Project.

Ph: (530) 633-0220

"I	certify	that	the	information	in	this	survey	report	and	attached	exhibits	fully	and	accurate	ely
rei	oresents	my	wor	k."											

Brent P. Helm Signature But Well Date 11-28-2016

Ph: (530) 633-0220

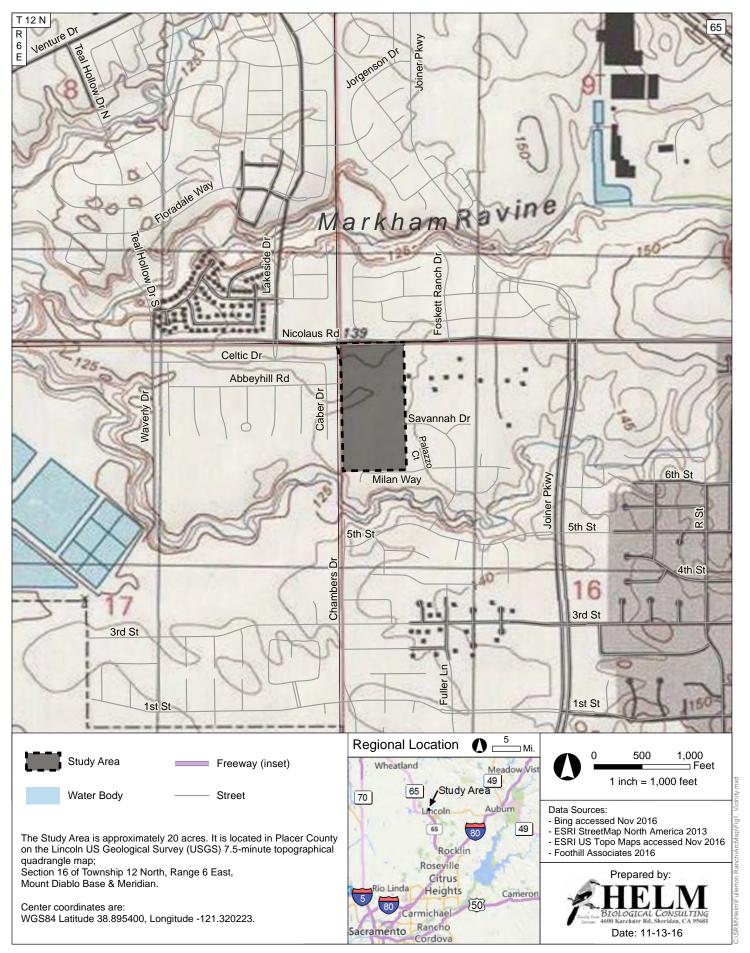


Figure 1. Study Area Vicinity

METHODS

Dry-season sampling methods followed USFWS's (2015) Survey Guidelines for the Listed Large Branchiopods and are briefly as described below.

Dr. Brent Helm of HBC conducted dry-season sampling on November 18, 2016 as authorized by the U.S. Fish and Wildlife Service (USFWS) (Appendix A) under recovery permit TE-795930-10 of Section 10(a)(1)(A) of the federal Endangered Species Act, 16 U.S.C. 1531 et seq., and its implementing regulations.

Dry sampling was conducted in all habitats on site that had potential to support federally-listed large branchiopods. Habitat characteristics of large branchiopods are based on the life history of Central Valley endemics (Eriksen and Belk 1999; Helm 1998, 1999; Helm and Vollmar 2002, Helm and Noyes, *in review*). The presence of water marks, algae mats, driftlines, hydrophytic vegetation ("water-loving plants"), slope, contributing watershed, maximum potential ponding depth, and aquatic arthropods (i.e., crustaceans and insects) exoskeletons were helpful indicators for evidence of ponding depth and duration. Habitats that swiftly flow water (e.g., creeks, streams, and ephemeral drainages) or semi-to-permanently inundated areas that support population of predators (e.g., bullfrogs, fish, and crayfish) were not generally considered suitable habitat for federally listed large branchiopods.

Soil samples were collected mainly from the lowest topographic areas within each pool. Soil samples were placed in liter size plastic sealable bags and marked with the project name, basin number, and date. The soil was then transported to HBC for processing and analysis as described below.

In HBC's laboratory, a brine solution was prepared by mixing table salt (NaCl) with lukewarm tap water in a large container. The collected soil material was placed in the brine solution. The soil material was then gently worked by hand to breakdown any persistent soil structure. The organic material rising to the top of the brine solution was skimmed off and placed in a 600-micron diameter pore-size sieve stacked atop a 75-micron diameter pore-size sieve. The soil material was processed through the top sieve by flushing it with lukewarm tap water while gently rubbing it with a soft-bristle brush. The soil retained from the 75-micron diameter pore size sieve was then removed and thinly (≈1.0 mm) spread into plastic petri dishes.

The contents of each petri dish were examined under a 10 to 252-power zoom binocular microscope. A minimum of 0.5-hour was spent searching the contents of each petri dish for large branchiopod cysts (embryonic eggs). Dr. Helm's large branchiopod cyst reference collection and scanning electron micrographs of cysts (Rabet 2010, Brendock *et al.* 2008, Hill and Shepard

Ph: (530) 633-0220

1998, Mura 1991, Belk 1989, and Gilchrist 1978) were used to identify and compare any cysts observed within the soil samples. Evidence of other macroscopic aquatic invertebrates encountered was also noted on the laboratory data sheet.

5

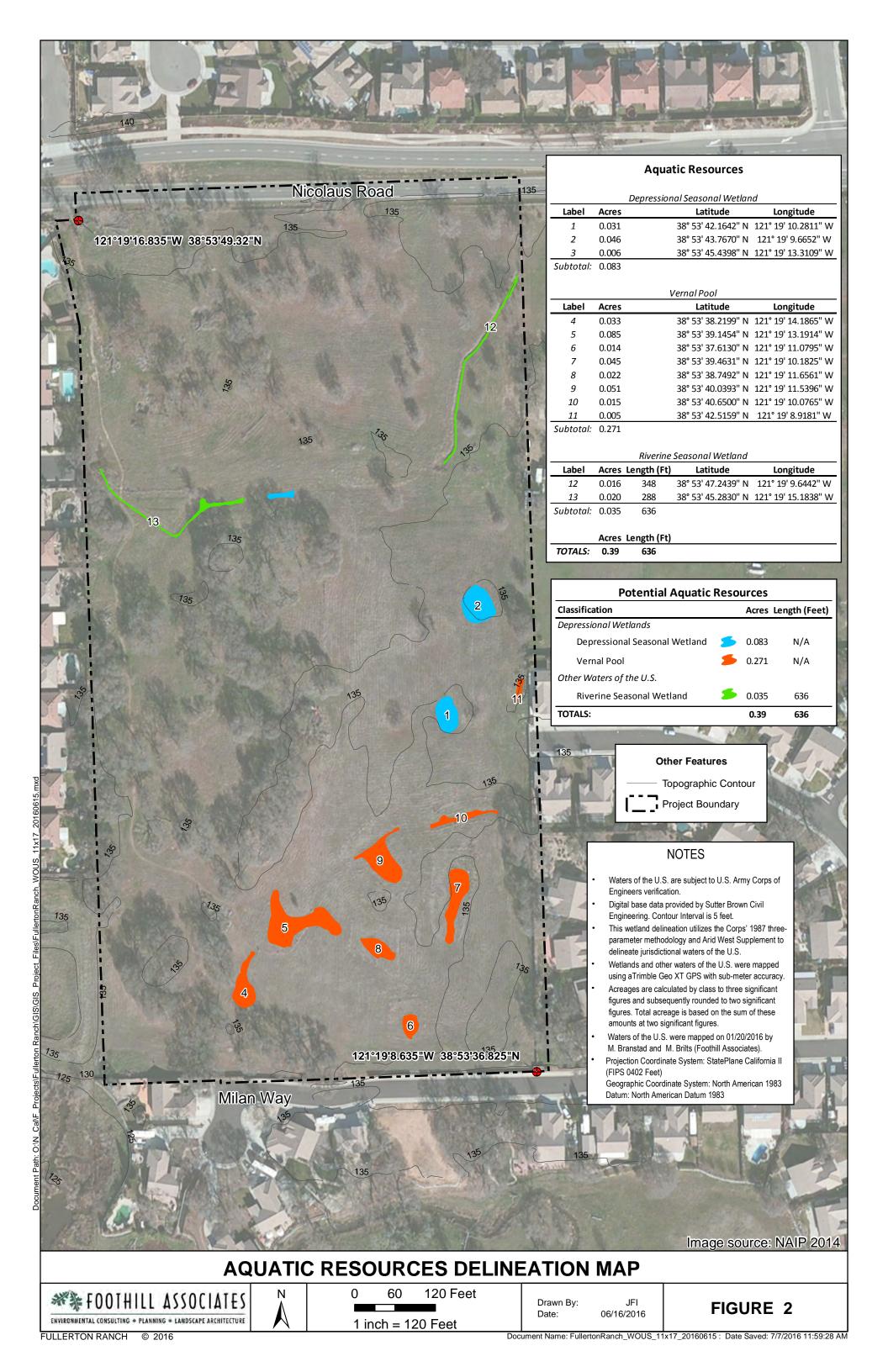
Ph: (530) 633-0220

RESULTS

A total of 13 wetlands (basins) were sampled using dry-season techniques (Exhibit A). No evidence of federally listed large branchiopods (cysts belonging to the genus *Branchinecta* or *Lepidurus* or carapaces of *Lepidurus*) were observed in the soils collected (Table 1).

Table 1. Results of Soil Examinations

Basin No.	Insects Exo- skeletons	(Flatworm) Micro-turbularin Cysts	(Seed Shrimp) Ostracod Carapaces	(Water Flea) Cladocera Ephippia	Copepod Cysts
1	Х	•	X		·
2	X				
3	X	X	Х		
4	Х		Х		
5	X	X	X	X	Χ
6	X	X	X		
7	X	X		X	Χ
8	X	X	X		
9	X			X	Χ
10	X	X	X	X	
11	X	X	X		
12	X		Χ		
13	Χ		X		


X = Taxon Present

Ph: (530) 633-0220

EXHIBIT A. FIGURE 2. AQUATIC RESOURCES DELINEATION MAP

Ph: (530) 633-0220 Fax: (530) 633-0230

LITERATURE CITED

- Eriksen, C. H., and D. Belk. 1999. Fairy shrimps of California's puddles, pools, and playas. Mad River Press, Inc. Eureka, CA. 196 pp.
- Gilchrist, B. M. 1978. Scanning electron microscope studies of the egg shell in some Anostraca (Crustacea: Branchiopoda). Cell Tiss. Res. 193: 337-351.
- Helm, B. P. 1998. Biogeography of eight large branchiopods endemic to California. Pages 124-139 *in* Witham, C. W., E. T. Bauder, D. Belk, W.R. Ferren Jr., and R. Ornduff. (eds.). Ecology, conservation, and management of vernal pool ecosystems –proceeding from a 1996 conference. California Native Plant Society, Sacramento, CA. 285 pp.
- Helm, B. P. 1999. Feeding ecology of *Linderiella occidentalis* (Dodds) (Crustacea: Anostraca). Doctoral thesis. University of California, Davis. 158 pp.
- Helm, B., and M. Noyes (in review). California large branchiopod occurrences: A comparison of method detection rates. Pages? -?. In: Robert Schlising (ed.). Vernal Pools in changing landscapes: from Shasta to Baja –proceeding from a 2014 conference. AquaAlliance, Chico, California.? pp.
- Helm, B. P., and J. E. Vollmar. 2002. Vernal pool large brachiopods. Pages 151-190 *in* John E. Vollmar (ed.). Wildlife and rare plant ecology of eastern Merced County's vernal pool grasslands. Sentinel Printers, Inc. CA. 446 pp.
- Hill, R. E., and W. D. Shepard. 1998. Observation on the identification of California anostracan cysts. Hydrobiologia 359: 113-123.
- Mura, G. 1991. SEM morphology of resting eggs in the species of the genus *Branchinecta* from North America. J. Crust. Biol. 11: 432-436.
- U.S. Department of the Interior, U.S. Fish and Wildlife Service (USFWS). 2015. Survey guidelines for the listed large branchiopods. 24 pp. Dated: 31 May 2015.

Ph: (530) 633-0220

APPENDIX A. USFWS AUTHORIZATION LETTER

Ph: (530) 633-0220 Fax: (530) 633-0230 From: Markegard, Sarah <sarah_markegard@fws.gov>

To: Brent P Helm

bhelm69485@aol.com>

Cc: Kellie Berry <kellie_berry@fws.gov>; Jason Hanni <jason_hanni@fws.gov>

Subject: Re: Authorization Request Date: Thu, Nov 17, 2016 3:02 pm

Brent Helm.

By this email message, you are authorized to conduct dry-season surveys (2016) for federally-listed large branchiopods per the conditions of recovery permit TE-795930-10 and as specified in your email request and maps dated November 14, 2016. The surveys will be conducted at the Fullerton Ranch in Placer County, CA and the Crooked Creek Project in Sacramento County, CA. Surveys may be conducted within all seasonally inundated wetlands identified on-site that may provide suitable habitat.

Please remember to carry a copy of your permit while conducting surveys, and to follow the terms and conditions of the permit and the <u>2015 survey guidelines</u>, including the reporting requirements. Let us know if the surveys are not performed as authorized, or if they are done by a different permittee under a separate authorization. This authorization does not include access to the property which must be arranged with the landowner or manager.

Electronic copies of the report(s) should be sent to Sarah Markegard, of the SFWO Recovery Branch and Kellie Berry, Sacramento Valley Division Chief. We ask that you use UTM coordinates for all spatial data, and please include which surveys were authorized, the names of all persons involved in the surveys, their recovery permit numbers, if applicable, and the date of this authorization, to help ensure that we correctly record the fulfillment of the reporting requirement under this authorization.

Please use the following Service reference numbers in future correspondence regarding these surveys/analyses:

Crooked Creek Property: 2008-TA-0178

Fullerton Ranch: 2017-TA-0297

To ensure the accuracy and data integrity of your projects, it is requested that you provide spatial information (boundaries, study areas, parcels, point locations, etc.) in the form of an ESRI shape file with projection, a GPS file with projection, or locations in an Excel spreadsheet with projection information. The preferred projection is UTM, Zone 10S, NAD83; the Sacramento Fish and Wildlife Office (SFWO) standard. FGDC compliant metadata must accompany each file. Please include any USFWS File Numbers associated with the data in your documentation. For additional information regarding metadata standards refer to http://www.fgdc.gov. For more information regarding spatial data please contact: Cheryl L. Hickam, GIS Branch Chief, U.S. Fish and Wildlife Service, 2800 Cottage Way, Suite W-2605, Sacramento, Ca 95825-1846, office: 916-414-6708.

On Mon, Nov 14, 2016 at 2:02 PM, Brent P Helm < bhelm69485@aol.com> wrote: Sarah,

I hope your enjoying the beautiful fall weather. HBC is requesting USFWS authorization to conduct dry-season sampling at the Crooked Creek Project (Elk Grove) and Fullerton Ranch (Lincoln)(See Attached PDF's). To date, the habitats proposed for sampling at both sites are dry and have not been inundated this season. Thank you for your time and consideration of this matter.

Brent

Tansley Team, Inc.
DBA Helm Biological Consulting
4600 Karchner Rd
Sheridan, CA 95681
Phone: (530) 633-0220
Fax: (530) 633-0230
Email: bhelm69485@aol.com

Sarah Markegard Recovery Biologist Sacramento Fish and Wildlife Office 2800 Cottage Way W-2605 Sacramento, CA 95825-1888

phone: 916-414-6492

email: sarah markegard@fws.gov

APPENDIX B. REPRESENTATIVE PHOTOGRAPHS

Ph: (530) 633-0220 Fax: (530) 633-0230

Wetland 13. Facing southeast.

Wetland 5. Facing northeast.

Wetland 8. Facing northeast.

Wetland 6. Facing north.

Wetland 7. Facing north.

Wetland 12. Facing east.

Appendix E

90-Day Report: Wet-Season Sampling for Listed Vernal Pool Branchiopods

90-Day Report 2016-2017 Wet-Season Survey for Listed Vernal Pool Branchiopods

Fullerton Ranch, Placer County, California

Prepared for:

U.S. Fish and Wildlife Service

Contracted By:

Terravest Capital Partners, LP

May 24, 2017

Prepared by:

FULLERTON RANCH

90-Day Report

Prepared for:

Terravest Capital Partners, LP

Data Collection and Report Preparation by:

Foothill Associates 590 Menlo Drive, Suite 5 Rocklin, CA 95765

Permit TE810380-05

I certify that the information in this survey report and attached exhibits fully and accurately represent my work.

Charlotte Marks

Marisa Brilts

May 24, 2017

TABLE OF CONTENTS

1.0	Introduction	1
2.0	Methods	2
3.0	Results	3
3.1	. Biological Community Description	3
3.2	. Sampling Results	3
3.3	. Site Conditions	3
4.0	Conclusions	4
5.0	References	5
List of	f Figures	
Figure Figure	e 1 — Site and Vicinity e 2 — Sampled Vernal Pools	6 7

ı

List of Appendices

Appendix A — Invertebrate Sampling Data Sheets Appendix B — Representative Site Photographs

Executive Summary

This report presents the results of the 2016-2017 wet-season surveys for listed vernal pool branchiopods conducted within the Fullerton Ranch site located in the City of Lincoln, Placer County, California (Site). The purpose of this survey was to determine the presence or absence of listed vernal pool branchiopods in the created and natural vernal pools as an indicator of the condition and function of vernal pool ecosystems within the Site.

The Site was surveyed on December 27, 2016, January 11 and 24, 2017, February 10 and 28, 2017, March 31, 2017, April 14 and 28, 2017, and May 12, 2017. A total of 13 features were sampled. No listed or non-listed branchiopod species were found in any of the sampled pools.

In 2004, dry-season surveys for large branchiopods were conducted on the Site, and no evidence of federally-listed branchiopods was observed (Helm 2004). The following year in 2005, wet-season branchiopod surveys were conducted on the Site, and no evidence of federally-listed large branchiopods were observed (Helm 2005). In 2016 when site ownership changed, dry-season sampling was conducted again within the Site and no evidence of federally listed large branchiopods were observed (Helm 2016). Since it has been more than 10 years since the previous wet-season invertebrate sampling surveys, and in due diligence of potential special-status species that may be present on the Site, protocol-level wet-season surveys for branchiopods was conducted and results from that survey are discussed in this report.

1.0 INTRODUCTION

This report presents the results of the 2016-2017 wet-season survey for listed vernal pool branchiopods conducted within the Fullerton Ranch project site. The Site is located south of Nicolaus Road, and north of Milan Way in northwest City of Lincoln (**Figure 1**). The Site is located in Township 12 North, Range 6 East, Section 16 of the *Lincoln* 7.5-minute USGS quadrangle. The approximate location of the center of the Site is 38° 53′ 44″ North, 121° 19′ 13″ West. The 19.7-acre Site contains 13 aquatic features including, two riverine seasonal wetlands, three depressional seasonal wetlands, and eight vernal pools.

2.0 METHODS

Vernal pool invertebrate surveys were conducted on December 27, 2016, January 11 and 24, 2017, February 10 and 28, 2017, March 31, 2017, April 14 and 28, 2017, and May 12, 2017. The surveys were conducted in accordance with the U.S. Fish and Wildlife Service (USFWS) 2015 *Survey Guidelines for the Listed Large Branchiopods*. The wetlands were sampled by pulling a D-frame, 150-micron aquatic dip-net through the water column. The dip-net was undulated up and down through the water column to ensure a representative sample from each of the wetlands sampled. A minimum of three five-foot passes were made with the dip-net in each sampled pool. No voucher specimens were collected. Locations of all sampled pools were recorded using the ArcGIS *Collector* app for Android and iPhones and are shown in **Figures 2**.

The estimated number (e.g., 10s, 100s, 1,000s, etc.) of listed branchiopods along with the presence of common invertebrates, insects, and other wildlife species within each wetland was indicated on the data sheets (**Appendix A**). Other data collected during sampling included the wetland number, water depth, estimated maximum depth, percent of inundation, water temperature, and general habitat and weather conditions. Representative site photographs were taken with a digital camera (**Appendix B**).

3.0 RESULTS

3.1. Biological Community Description

The vernal pools and seasonal wetlands on the Site are surrounded by oak woodland and annual grassland habitat that supports numerous grasses and herbaceous species. Dominant upland plants include: miner's lettuce (*Claytonia perfoliata*), broad-leaf filaree (*Erodium botrys*), foxtail barley (*Hordeum murinum*), ripgut brome (*Bromus diandrus*), rose clover (*Trifolium hirtum*), wild radish (*Raphanus sativus*), and vetch (*Vicia* sp.). Dominant wetland plant species observed within the vernal pools include: curly dock (*Rumex crispus*), coyote thistle (*Eryngium vaseyi*), and buttercup (*Ranunculus* sp.).

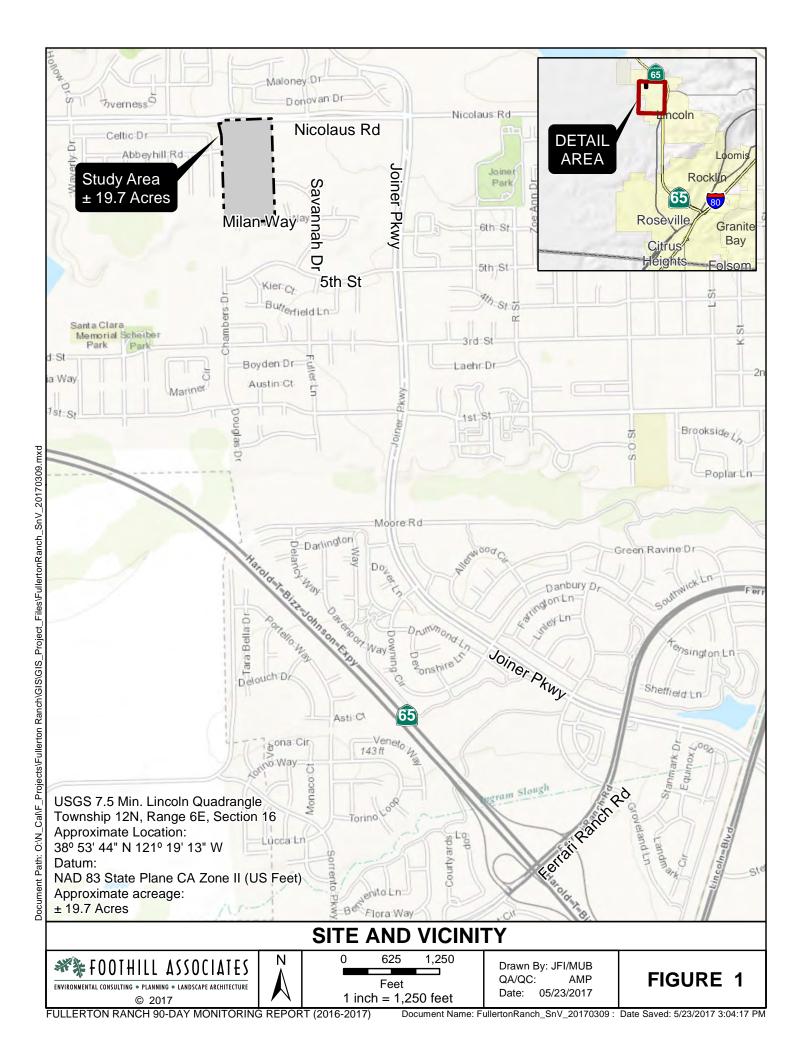
3.2. Sampling Results

A total of three depressional seasonal wetlands, two riverine seasonal wetlands, and eight vernal pools were sampled within the Site (**Figure 2**). No listed branchiopods were found in any of the sampled pools.

Non-listed aquatic invertebrates observed during the surveys include: seed shrimp (Ostracoda), flatworms (Turbellaria), diving water beetles (Dytiscidae), midges (Chironomidae), crawling water beetles (Haliplidae), and backswimmers (Notonectidae). Sierran treefrog tadpoles (*Pseudacris sierrae*), spiders, annelids, slugs, snails, caterpillars, and mosquito larvae were also observed within the pools. Detailed invertebrate sampling data sheets are provided in **Appendix A**.

3.3. Site Conditions

The Site is comprised of non-native annual grassland, vernal pools, seasonal wetlands, and oak woodland. Overall, the Site continues to provide suitable wetland and upland habitat for a variety of wildlife species.


In addition to the aquatic species described above, wildlife observed on the Site includes: acorn woodpecker (*Melanerpes formicivorous*), American robin (*Turdus migratorius*), Anna's hummingbird (*Calypte anna*), black phoebe (*Sayornis nigricans*), black-tailed jackrabbit (*Lepus californicus*), Brewer's blackbird (*Euphagus cyanocephalus*), Canada goose (*Branta canadensis*), mourning dove (*Zenaida macroura*), mountain bluebird (*Sialia currucoides*) northern flicker (*Colaptes auratus*), red-shouldered hawk (*Buteo lineatus*), red-winged blackbird (*Agelaius phoeniceus*), and turkey vulture (*Cathartes aura*).

4.0 CONCLUSIONS

No listed branchiopods species, including vernal pool fairy shrimp or vernal pool tadpole shrimp, were observed during the 2016-1017 wet-season sampling effort. However, the vernal pools and seasonal wetlands support a variety of common aquatic invertebrates and amphibians. No further monitoring surveys are required for this Site.

5.0 REFERENCES

- Helm Biological Consulting. 2004. *Dry-Season Sampling for Federally Listed large branchiopods* at the Premiere Oak Estates, Placer County, California. Lincoln, California. November 2004.
- Helm Biological Consulting. 2005. *Wet-Season Sampling for Federally Listed large branchiopods* at the Premiere Oak Estates, Placer County, California. Lincoln, California. June 2005.
- Helm Biological Consulting. 2016. *Dry-Season sampling for federally-listed large branchiopods at the Fullerton Ranch Project, Lincoln, California (USFWS #2017-TA-0297)*. Sheridan, California. November 2016.
- U.S. Fish and Wildlife Service (USFWS). 2015. Survey Guidelines for the Listed Large Branchiopods. Prepared by U.S. Fish and Wildlife Service, Pacific Southwest Region. May 31, 2015. Available at: https://www.fws.gov/cno/es/FinalSurveyGuidelinesforListedLargeBranchiopods.pdf.
- U.S. Geological Survey (USGS). 1990. *Lincoln, California*. 7.5-minute series topographic quadrangle. U.S. Department of Interior.

Appendix A —	- Invertebrate Sampling Data Sheets

County: Placer

Township: 12 North Permit #: TE-810380-5

Weather Conditions: sunny, partly cloudy, wind ~5mph

Collectors: Charlotte Marks, Marisa Brilts Date: December 27, 2016 Range: 6 East

Quad: Lincoln Time: 9:30 AM - 10:30 AM Air Temp: 41°F Section: 16

		Notes					spiders								
	Diptera	Chironomidae (Midge)													
Insecta	Hemiptera	Notonectidae (Backswimmers)													
lns	Coleoptera	Haliplidae (Crawling Water Beetles)													
	Cole	Dytiscidae (Diving Water Beetles)													
		sinslledhuT emrowbsl3	×												
		Ostracoda (Seed Shrimp)													
		Copepoda (Copepoda)													
		Conchostraca (Clam Shrimps)													
Crustacea		Cladocera (Water Fleas)					Х								
C	Notostraca	Vernal Pool Tadpole Shrimp													
	aca	California Linderiella													
	Anostraca	Vernal Pool Fairy Shrimp (B. lynchi)													
		Photo #	99	7743, 7744			<i>L</i> 9								
		Percent inundation	40%	%9			0.3								
	Dracent	Surface Area (mxm)													
	Estimated	Maximum Surface Depth Area (cm) (mxm)	10	2			15								
_	Water Depth (cm)						5								
Water Temp. (°C)							6								
		Water Temp	20	NS	DRY	DRY	49	DRY							
		Vernal Pool#	9	7	8	4	2	6	10	1	11	2	12	3	13
				_		_				•					

County: Placer

Township: 12 North
Permit #: TE-810380-5
Weather Conditions: rain clouds, parily sunny, wind ~15mph

Date: January 11, 2017 Collectors: Charlotte Marks Range: 6 East

Quad: Lincoln Time: 9:55 AM - 11:50 AM Section: 16 Air Temp: 52°F

															_
		Notes	Sierran tree frog (eggs)		caterpillar	spiders		spiders	spiders, snails,	spiders, moquito larvae, slug	slug, snails, spiders	caterpillar, pupae, spiders	caterpillar, spiders, black ground beetle	spiders, caterpillar, Sierran tree frog (eggs)	
	Diptera	Chironomidae (Midge)										×	×		
Insecta	Hemiptera	Notonectidae (Backswimmers)													
ense	Coleoptera	Reetles) Haliplidae (Crawling Water Beetles)													
	Cole	Dyriscidae (Diving Water)		×	×				larvae	larvae				larvae	
		Turbellaria Flatworms	×	×	×	×	×			×				×	
		Ostracoda (Seed Shrimp)	×												
		Copepoda (Copepods)													
		Conchostraca (Clam Shrimps)													
Crustacea		Cladocera (Water Fleas)													
Cru	Notostraca	Vernal Pool Tadpole Shrimp													
	ca	California Linderiella													
	Anostraca	Vernal Pool Fairy Shrimp (B. lynchi)													
		Photo #	7991	7992	7993	7995	7994	9667	7997	7998	7999, 8000, 8001	8002, 8003	8004, 8005, 8006	8004, 8008	0000 0010
		Percent inundation	100% +	+ %001	100% +	100%	+ %001	100% +	100% +	100% +	100%	100% +	100% +	+ %001	10007
	- Cooper	Surface Area (mxm)	9x2	9x51	18x6	14x3	11x8	9x11	6x2	14x9	61x2	26x9	38x14	20x18	15v27
	Poto seito P	Esumateu Maximum Depth (cm)	25	18	20	20	15	36	23	33	38	33	36	20	25
	Water Depth (cm)			13	13	10	10	18	15	18	25	15	23	10	12
	Water Temp. (°C)			16	16	16	16	15	15	16	15	15	15	17	14
		Vernal Pool #	9	8	7	10	6	.	11	2	12	3	13	2	V

Project Site: Fullerton Ranch County: Placer Township: 12 North Permit #: TE-810380-5

Weather Conditions: partly cloudy, sunny

Range: 6 East

Date: January 24, 2017 Collectors: Maris Brilts

Quad: Lincoln Time: 8:30 AM - 10:15 AM Section: 16 Air Temp: 37°F

_															
		Notes		Sierran tree frog (eggs)			Sierran tree frog (eggs)					Spider	Spider		Sierran tree frog (eggs)
	Diptera	Chironomidae (Midge)		X									X		X
Insecta	Hemiptera	Notonectidae (Backswimmers)													
sul	Coleoptera	Beetles) Haliplidae (Crawling Water Beetles)													
		Dyfiscidae (Diving Water									×				
		Turbellaria Emontel		×	×	×	×	×							×
		Ostracoda (Seed Shrimp)													×
		Copepoda (Copepods)													
		Conchostraca (Clam Shrimps)													
Crustacea		Cladocera (Water Fleas)													
Cn	Notostraca	Vernal Pool Tadpole Shrimp													
	эса	California Linderiella													
	Anostraca	Vernal Pool Fairy Shrimp (B. Iynchi)													
		Photo #	1	7	3	4	2	9	7	8	6	10	11	12,13	14
		Percent inundation	+001	+001	+001	100	86	86	100	100	100	100	100	+001	100
	Proceed	Surface Area (mxm)													
	Cotimotod	Maximum Depth (cm)	28	25	15	15	20	18	25	25	36	14	98	98	20
		Water Depth (cm)	10	13	10	10	12	10	18	12	25	22	70	22	10
	Water Temp. (°C)			9	9	9	9	9	9	9	7	9	9	9	9
		Vernal Pool #	4	2	8	6	7	10	<u></u>	11	2	12	3	13	9

Township: 12 North
Permit #: TE-810380-5
Weather Conditions: parly cloudy (rain); wind ~5-8 mph County: Placer

Date: February 10, 2017 Collectors: Charlotte Marks Range: 6 East

Quad: Lincoln Time: 12:15 PM - 2:30 PM Section: 16 Air Temp: 62°F

		Notes	Sierran tree frog (tadpoles)	Sierran tree frog (tadpoles)	Sierran tree frog (tadpoles), annelids	Sierran tree frog (tadpoles and eggs), unknown	invertebrate egg sac	Sierran tree frog (tadpoles), unknown	invertebrate egg sac	annelids	annelids	Sierran tree frog (eggs)		Sierran tree frog (eggs)	unknown invertebrate egg sac	annelids	Sierran tree frog (tadpoles and eggs)
	Diptera	Chironomidae (Midge)															
Insecta	Coleoptera Hemiptera Diptera	Beetles) Haliplidae (Crawling Water Beetles) Notonecidae (Backswimmers)			×												
		Dytiscidae (Diving Water								×							
		Turbellaria Flatworms	×	×	×	×		×									×
		Ostracoda (Seed Shrimp)											×				
		Copepoda (Copepods)															
		Conchostraca (Clam Shrimps)															
Crustacea		Cladocera (Water Fleas)															
C	Notostraca	Vernal Pool Tadpole Shrimp															
	ıca	California Linderiella															
	Anostraca	Vernal Pool Fairy Shrimp (B. lynchi)															
		Photo #	8131	8132	8133	8134		8135		8136	8137	8138	8139	8140	8141,8142	8144	8143
		Percent inundation	100+	+001	100	100+		100+		100+	+001	100+	100	100+	+001	100+	100+
		Surface Area (mxm)	2x8	6x14	21x8	15x18		21x3		14x14	8x2	18x14	37x2	24x8	37x9	17x11	21x15
	Lo to sei to	Estimated Maximum Depth (cm)	25	70	70	18	2	00	70	22	78	33	33	33	41	23	25
		Water Depth (cm)	15	13	10	15	2	15	2	70	15	18	23	23	22	38	18
		Water Temp. (°C)	21	21	22	23	67	7.7	<u>+</u> 7	21	21	21	21	21	21	24	23
		Vernal Pool #	9	8	7	6		10		-	11	2	12	3	13	4	2

County: Placer
Township: 12 North
Permit #: TE-810380-5
Weather Conditions: sunny with a slight haze, ~ 1 mph wind

Date: February 28, 2017 Collectors: Marisa Brilts Range: 6 East

Quad: Lincoln Time: 8:30 AM - 10:15 AM Section: 16 Air Temp: 35°F

		Notes	Sierran tree frog (tadpoles)	Sierran tree frog (tadpoles), spider	Sierran tree frog (tadpoles), spider	Sierran tree frog (tadpoles), bullfrog (tadpoles)	Sierran tree frog (tadpoles)	Sierran tree frog (tadpoles), red mosquito larvae	Mosquito larvae	Sierran tree frog (eggs and tadpoles)	Sierran tree frog (eggs), mosquito larvae	Sierran tree frog (eggs), mosquito larvae	Sierran tree frog (eggs)	Sierran tree frog (eggs), mosquito larvae	Ciorran troo from (ongs and tachnolos)
	Diptera	Chironomidae (Midge)	×	×	×	0,	07	×	×	×	×	×	×	×	•
cta	Hemiptera	Notonectidae (Backswimmers)								×					
Insecta		Haliplidae (Crawling Water Beetles)	×	×	×		×			×					>
	Coleoptera	Dyfrscidae (Diving Water Beetles) Haliplidae					×			×					^
		Turbellaria Flatworms	×		X	×	X								^
		Ostracoda (Seed Shrimp)	×					×							>
		Copepoda (Copepods)													
		Conchostraca (Clam Shrimps)													
Crustacea		Cladocera (Water Fleas)													
Cri	Notostraca	Vernal Pool Tadpole Shrimp													
	ıca	California Linderiella													
	Anostraca	Vernal Pool Fairy Shrimp (B. lynchi)													
		Photo #	1	2	3	4	2	9	7	8	6	10	11	12	12
		Percent inundation	06	62	86	86	62	75	75	20	20	86	06	86	OE
	Drocont	Surface Area (mxm)	20x20	12x5	7x4	9x4	11x2	8x8	5x2	6×6	91x2	30x6	23x5	8x4	111
	Dotomito T	Estinated Maximum Depth (cm)	20	8	15	13	8	13	15	15	25	20	20	18	10
		Water Depth (cm)	10	3	13	2	3	2	8	8	20	13	10	10	10
Water Temp. (°C)				10	10	10	11	10	10	10	11	10	10	11	10
		Vernal Pool #	2	8	6	7	10	-	1	2	12	3	13	4	9

Township: 12 North

Weather Conditions: sunny, ~15-20 mph winds Permit #: TE-810380-5

Water Temp. (°C)

Vernal Pool

#

26 NS DRY S DRY 25

10

=

28

24

9

ω 6

Sierran tree frog (eggs and tadpoles); mosquito larvae Sierran tree frog (tadpoles); mayfly larvae Sierran tree frog (tadpoles), mayfly larvae Sierran tree frog (eggs); mayfly larvae Notes mosquito larvae; spider Sierran tree frog (eggs) Sierran tree frog (eggs) mayfly larvae Chironomidae (Midge) (Backswimmers) Insecta Notonectidae Beetles) Hailplidae (Crawling Water Beetles) Time: 1:15 PM - 2:45 PM × Quad: Lincoln Section: 16 Air Temp: 68°F Dyfiscidae (Diving Water × Turbellaria Flatworms (Seed Shrimp) Ostracoda Copepoda (Copepods) Collectors: Charlotte Marks (Clam Shrimps) Date: March 31, 2017 Conchostraca Range: 6 East (Water Fleas) Crustacea Cladocera Notostraca Tadpole Shrimp Vernal Pool California Linderiella Anostraca Shrimp (B. lynchi) Pool Fairy 8886, 8887 8888, 8889 Photo # 8890 8878 8879 8882 8883 8884 8880 8877 inundation Percent 70 95 70 06 10 70 80 Area (mxm) 27x8 8x2 9x11 8x6 5x6 4x4 5x5 35x1 Maximum Estimated Depth (cm) 12 10 18 10 20 28 Water Depth (cm) 10 15 18 13 8

Sierran tree frog (tadpoles)

8891

40

9x5

24

12 13 2

28

Project Site: Fullerton Ranch County: Placer

Weather Conditions: clear, ~5-6 mph wind Township: 12 North Permit #: TE-810380-5

Date: April 14, 2017 Collectors: Marisa Brilts Range: 6 East

Ouad: Lincoln Time: 1:30 PM - 3:30 PM Section: 16 Air Temp: 57°F

		Notes	Sierran tree frog (tadpoles)	Sierran tree frog (tadpoles)		Sierran tree frog (eggs and tadpoles)		Sierran tree frog (eggs)					Sierran tree frog (tadpoles)		
	Diptera	Chironomidae (Midge)													
Insecta	Hemiptera	Notonectidae (Backswimmers)											×	×	
lns		Crawling Water Beetles)						×	×				×	×	
	Coleoptera	(Diving Water Beetles) Haliplidae		×	×	×		×	×				×	×	
		Turbellaria Flatworms Dytiscidae		×	×	×									
		Ostracoda (Seed Shrimp)		×											×
		Copepoda (Copepods)													
		Conchostraca (Clam Shrimps)													
Crustacea		Cladocera (Water Fleas)													
Cru	Notostraca	Vernal Pool qmind2 əloqbsT													
	эса	California Linderiella													
	Anostraca	Vernal Pool Fairy Shrimp (B. lynchi)													
		Photo #	-	2	3	4	2	9	7	8	6	10	11	12	13
		Percent inundation	80	70	100	82	06	70	09	100	30	80	100+	09	82
	Drocon+	Surface Area (mxm)	6x3	18x18	14x5	£x9	6×2	£x9	9x9	5x2	5x2	91x2	9x0£	18x3	3x3
	potomito!	Maximum Depth (cm)	20	15	8	8	8	20	15	20	10	20	20	13	23
Water Depth (cm)			8	8	2	2	8	8	8	15	2	15	10	2	8
Water Temp. (°C)			79	79	79	79	76	79	79	22	79	79	79	79	25
		Vernal Pool #	4	2	8	6	10	7		11	2	12	3	13	9

Permit #: TE-810380-5 Township: 12 North County: Placer

Weather Conditions: sunny, ~15 mph wind

Date: April 28, 2017 Collectors: Charlotte Marks Range: 6 East

Ouad: Lincoln Time: 9:30 AM - 10:45 AM Section: 16 Air Temp: 64° F

Sierran tree frog (metamorphs and tadpoles), mosquito larvae, mayfly larvae Sierran tree frog (tadpoles) Notes Chironomidae (Midge) (Backswimmers) × Insecta Notonectidae Beetles) Hailplidae (Crawling Water Beetles) Coleoptera Dytiscidae (Diving Water × Turbellaria Flatworms (Seed Shrimp) Ostracoda Copepoda (Copepods) (Clam Shrimps) Conchostraca (Water Fleas) Crustacea Cladocera Notostraca Tadpole Shrimp Vernal Pool Linderiella California Anostraca Vernal Pool Fairy Shrimp (B. lynchi) 9703 9704 9705 9708 9707, 9706 9709 9710 9711 9718 9719, 9720 Photo # 9721 9722 Percent inundation 40 99 Present Surface Area (mxm) 15x5 9x3 Estimated Maximum Depth (cm) 13 15 Water Depth (cm) 9 ∞ Water Temp. (°C) DRY DRY DRY DRY DRY DRY NS 21 DRY 26 Vernal Pool# 9 10 13 2

DRY

9

Project Site: Fullerton Ranch County: Placer

Township: 12 North Permit #: TE-810380-5

Weather Conditions: sunny, scattered clouds, ~3-5 mph wind

Date: May 12, 2017 Collectors: Charlotte Marks Range: 6 East

Quad: Lincoln Time: 11:10 AM - 12:05 PM Section: 16 Air Temp: 65°F

		Nates													
	Diptera	Chironomidae (Midge)													
ta	Hemiptera	Notonectidae (Backswimmers)													
Insecta		(Crawling Water Beetles)													
	Coleoptera	(Diving Water Beetles) Haliplidae													
		Flatworms Pytiscidae													
		(Seed Shrimp) Turbellaria													
		(Copepods) Ostracoda													
		(Clam Shrimps) Copepoda													
		(Water Fleas) Conchostraca													
Crustacea	а	Cladocera													
Ö	Notostraca	Vernal Pool Tadpole Shrimp													
	эса	California Linderiella													
	Anostraca	Vernal Pool Fairy Shrimp (B. lynchi)													
		Photo #	290	291	292, 293	294	295, 296	297	299	298	300	301	302	303	304
		Percent inundation													
	Drocont	Surface Area (mxm)													
Estimated Maximum Depth (cm)															
Water Depth (cm)															
	Water Temp. (°C)			DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
		Vernal Pool #	4	2	13	3	12	2	-	11	10	7	6	8	9

Appendix B —	- Representative Sit	e Photographs

Description: Looking north across Depressional Seasonal Wetland #1.

Date: February 10, 2017 Photographer: Charlotte Marks

Description: Looking north across Depressional Seasonal Wetland #2.

Date: February 10, 2017 Photographer: Charlotte Marks

REPRESENTATIVE SITE PHOTOGRAPHS

PAGE 1 OF 7

APPENDIX B

Description: Looking east across Depressional Seasonal Wetland #3.

Date: January 11, 2017 Photographer: Charlotte Marks

Description: Looking southwest across Vernal Pool #4.

Date: January 11, 2017 Photographer: Charlotte Marks

REPRESENTATIVE SITE PHOTOGRAPHS

PAGE 2 OF 7

APPENDIX B

Description: Looking north across Vernal Pool #5.

Date: January 11, 2017 Photographer: Charlotte Marks

Description: Looking east across Vernal Pool #6.

Date: February 28, 2017 Photographer: Marisa Brilts

REPRESENTATIVE SITE PHOTOGRAPHS

PAGE 3 OF 7

APPENDIX B

Description: Looking north across Vernal Pool #7.

Date: January 11, 2017 Photographer: Charlotte Marks

Description: Looking west across Vernal Pool #8.

Date: January 11, 2017 Photographer: Charlotte Marks

REPRESENTATIVE SITE PHOTOGRAPHS

PAGE 4 OF 7

APPENDIX B

Description: Looking west across Vernal Pool #9.

Date: February 10, 2017 Photographer: Charlotte Marks

Description: Looking east across Vernal Pool #10.

Date: January 11, 2017 Photographer: Charlotte Marks

REPRESENTATIVE SITE PHOTOGRAPHS

PAGE 5 OF 7

APPENDIX B

Description: Looking east across Vernal Pool #11.

Date: February 10, 2017 Photographer: Charlotte Marks

Description: Looking north across Riverine Seasonal Wetland #12.

Date: January 11, 2017 Photographer: Charlotte Marks

REPRESENTATIVE SITE PHOTOGRAPHS

PAGE 6 OF 7

APPENDIX B

Description: Looking west across Riverine Seasonal Wetland #13.

Date: January 11, 2017 Photographer: Charlotte Marks

Description: Looking west across Riverine Seasonal Wetland #13.

Date: February 10, 2017 Photographer: Charlotte Marks

REPRESENTATIVE SITE PHOTOGRAPHS

PAGE 7 OF 7

APPENDIX B

ENVIRONMENTAL CONSULTING ● PLANNING ● LANDSCAPE ARCHITECTURE

July 15, 2016

Leah Fisher
U.S. Army Corps of Engineers
Sacramento District, Regulatory Division
1325 J Street, Room 1350
Sacramento, CA 95814

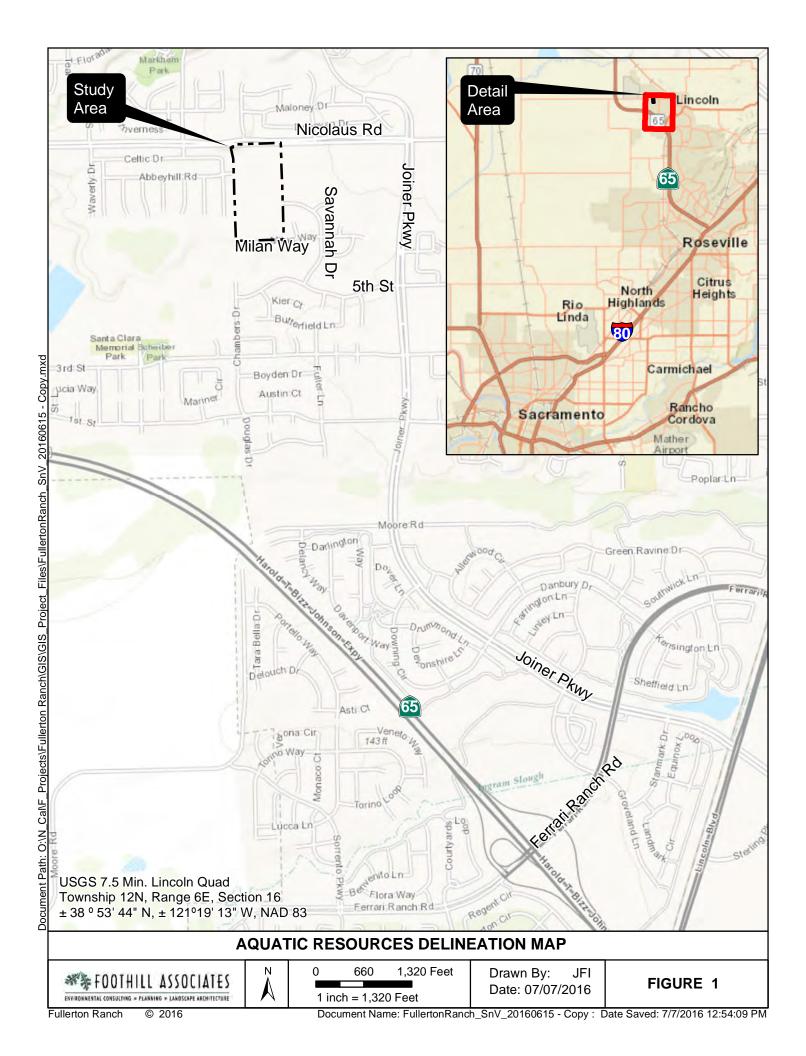
RE: Request for a Preliminary Jurisdictional Determination for a Previously Verified Delineation of Waters of the United States at the Fullerton Ranch Site in the City of Lincoln, Placer County, California

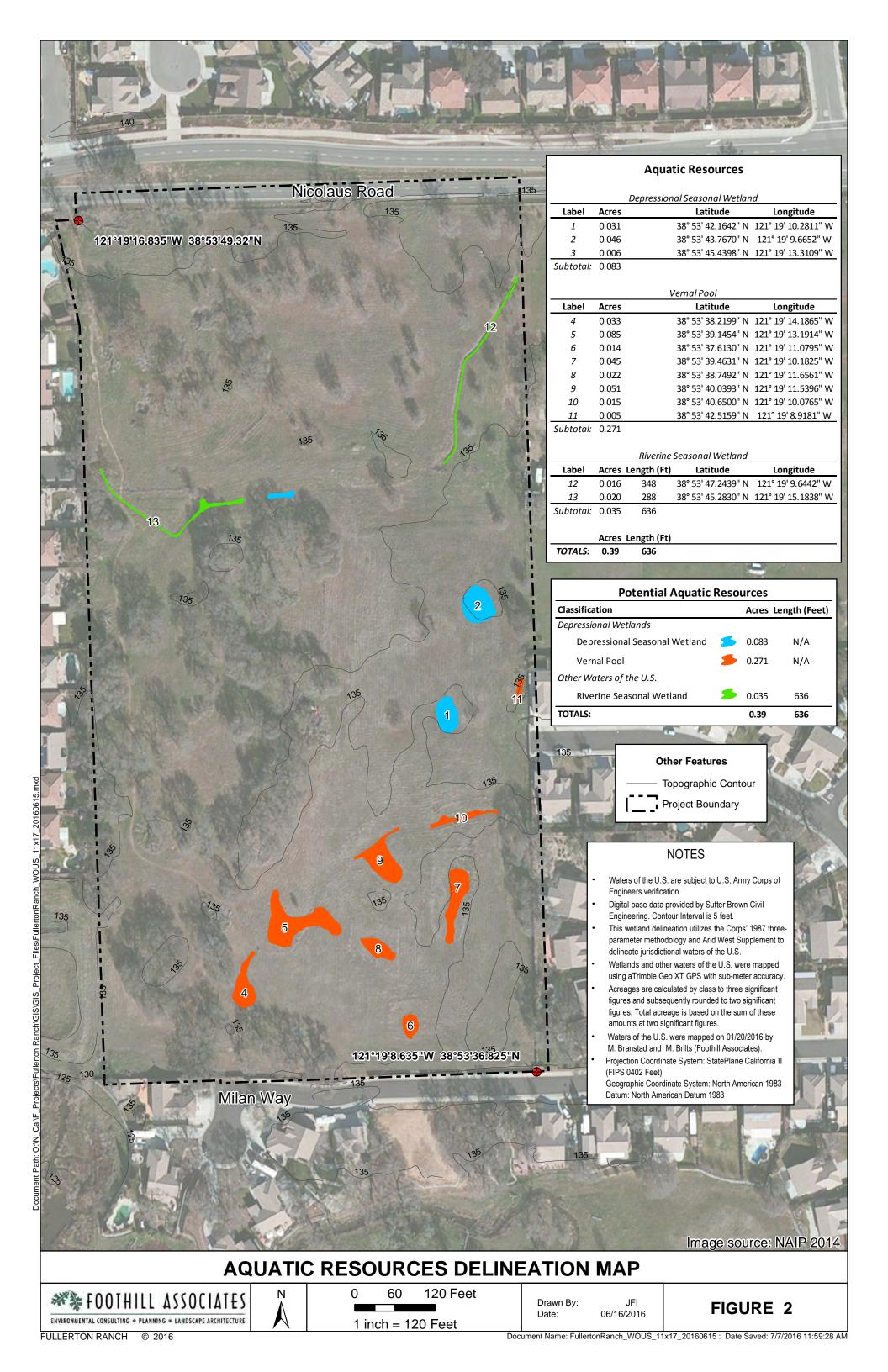
Dear Ms. Fisher;

On behalf of Terravest Capital Partners, Inc., Foothill Associates requests a Preliminary Jurisdictional Determination of the ±20-acre Fullerton Ranch Site (Site), located in the City of Lincoln, Placer County, California. The Site, which was originally named Whispering Oaks, was previously verified by the U.S. Army Corps of Engineers (Corps) in a letter, dated February 2, 2007 (Corps ID #200400843). The Site is located in Section 16, Township 12 North, Range 6 East, Placer County, California.

The shapefiles of the wetlands that were previously mapped were uploaded onto a Trimble GeoXT Global Positioning System (GPS) hand-held unit. A Foothill Associates' biologist conducted a site visit on May 4, 2016 to ground-truth the Site to confirm that no changes have occurred since the 2007 delineation. The following items are enclosed for your review:

- 1) Figure 1 —Site and Vicinity;
- 2) Figure 2 Aquatic Resources Delineation Map, dated June 16, 2016; and
- 3) Aquatic Resources Inventory Spreadsheet (Excel Format) on compact disk.


Please contact me if you need any additional information. Thank you for your assistance.


Sincerely,

Kelly Bayne, M.S. Senior Biologist

Enclosures (3)

cc: Chris Tyler, Terravest Capital Partners, Inc.

Longitude	38.89504561 -121.3195225	38.89549083 -121.3193514	-121.3203641	-121.3206074	38.89420706 -121.3203309	-121.3197443	-121.3194951	-121.3199045	-121.3198721	-121.3194657	-121.3191439	-121.3193456	-121.3208844
Naters_Type Latitude	38.89504561	38.89549083	38.8959555	38.89394997	38.89420706	38.89378139	38.89429531	38.894097	38.89445536	38.894625	38.89514331	38.89645664	38.89591194
Waters_Type	ISOLATE	ISOLATE	ISOLATE	ISOLATE	ISOLATE	ISOLATE	ISOLATE	ISOLATE	ISOLATE	ISOLATE	ISOLATE	ISOLATE	ISOLATE
Amount Units	0.03103667 ACRE	0.04624691 ACRE	0.00601168 ACRE	0.03327248 ACRE	0.08518995 ACRE	0.01444363 ACRE	0.04525921 ACRE	0.0218844 ACRE	0.05065606 ACRE	0.01533962 ACRE	0.00536482 ACRE	695.7693 FOOT	576.68405 FOOT
Cowardin_Code HGM_Code Meas_Type Amount Units	Area	Area	Area	Area	Area	Area	Area	Area	Area	Area	Area	Linear	Linear
	CALIFORNIA PEM2	CALIFORNIA PEM2	CALIFORNIA PEM2	CALIFORNIA PEM2	CALIFORNIA PEM2	CALIFORNIA PEM2	CALIFORNIA PEM2	CALIFORNIA PEM2	CALIFORNIA PEM2	CALIFORNIA PEM2	CALIFORNIA PEM2	CALIFORNIA PEM2	CALIFORNIA PEM2
Name				VP4 (RSW13 (

DEPARTMENT OF THE ARMY

U.S. ARMY CORPS OF ENGINEERS, SACRAMENTO DISTRICT 1325 J STREET SACRAMENTO CA 95814-2922

July 25, 2016

Regulatory Division (SPK-2004-00843)

Terravest Capital Partners, LP Attn: Mr. Christopher Tyler 3208 Wycliffe Drive Modesto, California 95355

Dear Mr. Tyler:

We are responding to your consultant's July 15, 2016, request for a preliminary jurisdictional determination (JD), in accordance with our Regulatory Guidance Letter (RGL) 08-02, for the Fullerton Ranch site. The approximately 20-acre project site is located near Markham Ravine, south of Nicolaus Road and north of Milan Way, Latitude 38.8953380°, Longitude -121.32023°, in Lincoln (historical), Placer County, California.

Based on available information, we concur with the amount and location of wetlands on the site as depicted on the enclosed June 16, 2016, Aquatic Resources Delineation Map, Figure 2, drawing prepared by Foothill Associates. The approximately 0.39 acres of wetlands present within the survey area are potential waters of the United States regulated under Section 404 of the Clean Water Act.

We have enclosed a copy of the *Preliminary Jurisdictional Determination Form* for this site. Please sign and return a copy of the completed form to this office. Once we receive a copy of the form with your signature we can accept and process a Pre-Construction Notification or permit application for your proposed project.

You should not start any work in potentially jurisdictional waters of the United States unless you have Department of the Army permit authorization for the activity. You may request an approved JD for this site at any time prior to starting work within waters. In certain circumstances, as described in RGL 08-02, an approved JD may later be necessary.

You should provide a copy of this letter and notice to all other affected parties, including any individual who has an identifiable and substantial legal interest in the property.

This preliminary determination has been conducted to identify the potential limits of wetlands and other water bodies which may be subject to Corps of Engineers' jurisdiction for the particular site identified in this request. A Notification of Appeal Process and Request for Appeal form is enclosed to notify you of your options with this

determination. This determination may not be valid for the wetland conservation provisions of the Food Security Act of 1985. If you or your tenant are U.S. Department of Agriculture (USDA) program participants, or anticipate participation in USDA programs, you should request a certified wetland determination from the local office of the Natural Resources Conservation Service, prior to starting work.

We appreciate your feedback. At your earliest convenience, please tell us how we are doing by completing the customer survey on our website under *Customer Service Survey*.

Please refer to identification number SPK-2004-00843 in any correspondence concerning this project. If you have any questions, please contact me at our California North Branch Office, Regulatory Division, U.S. Army Corps of Engineers, 1325 J Street, Room 1350, Sacramento, California 95814-2922, by email at Leah.M.Fisher@usace.army.mil, or telephone at 916-557-6639. For more information regarding our program, please visit our website at www.spk.usace.army.mil/Missions/Regulatory.aspx.

Sincerely,

Leah M. Fisher

Senior Regulatory Project Manager

California North Branch Regulatory Division

Enclosures

cc: (w/o encls)

Ms. Kelly Bayne, Foothill Associates, kbayne@foothill.com

PRELIMINARY JURISDICTIONAL DETERMINATION FORM Sacramento District

This preliminary JD finds that there "may be" waters of the United States on the subject project site, and identifies all aquatic features on the site that could be affected by the proposed activity, based on the following information:

Date: July 25, 2016 ress Terravest Capital Partners, Inc. Attn: Mr. Christopher Tyler 3208 Wycliffe Drive Modesto, California 95355 ry Water Bodies Tidal: None identified as Waters: Non-Tidal: None Desk) Determination etermination: of Site Visit(s): pply – checked items should be included in urces below) ultant: Aquatic Resources Delineation Map, nt.
ress Terravest Capital Partners, Inc. Attn: Mr. Christopher Tyler 3208 Wycliffe Drive Modesto, California 95355 ny Water Bodies Tidal: None identified as Waters: Non-Tidal: None Desk) Determination etermination: of Site Visit(s): pply – checked items should be included in urces below) ultant: Aquatic Resources Delineation Map,
identified as Waters: Non-Tidal: None Desk) Determination stermination: of Site Visit(s): pply – checked items should be included in urces below) ultant: Aquatic Resources Delineation Map,
pply – checked items should be included in urces below) ultant: Aquatic Resources Delineation Map,
urces below) ultant: Aquatic Resources Delineation Map,
COLN
I-00843, Approved JD dated February 2, 2007
ps and should not be relied upon for later jurisdictional
erson Requesting Preliminary JD
or

person who requested this preliminary JD has declined to exercise the option to obtain an approved JD in this instance and at this time.

2. In any circumstance where a permit applicant obtains an individual permit, or a Nationwide General Permit (NWP) or other general permit verification requiring "preconstruction notification" (PCN), or requests verification for a non-reporting NWP or other general permit, and the permit applicant has not requested an approved JD for the activity, the permit applicant is hereby made aware of the following: (1) the permit applicant has elected to seek a permit authorization based on a preliminary JD, which does not make an official determination of jurisdictional waters; (2) that the applicant has the option to request an approved JD before accepting the terms and conditions of the permit authorization, and that basing a permit authorization on an approved JD could possibly result in less compensatory mitigation being required or different special conditions; (3) that the applicant has the right to request an individual permit rather than accepting the terms and conditions of the NWP or other general permit authorization; (4) that the applicant can accept a permit authorization and thereby agree to comply with all the terms and conditions of that permit, including whatever mitigation requirements the Corps has determined to be necessary; (5) that undertaking any activity in reliance upon the subject permit authorization without requesting an approved JD constitutes the applicant's acceptance of the use of the preliminary JD, but that either form of JD will be processed as soon as is practicable; (6) accepting a permit authorization (e.g., signing a proffered individual permit) or undertaking any activity in reliance on any form of Corps permit authorization based on a preliminary JD constitutes agreement that all wetlands and other water bodies on the site affected in any way by that activity are jurisdictional waters of the United States, and precludes any challenge to such jurisdiction in any administrative or judicial compliance or enforcement action, or in any administrative appeal or in any Federal court; and (7) whether the applicant elects to use either an approved JD or a preliminary JD, that JD will be processed as soon as is practicable. Further, an approved JD, a proffered individual permit (and all terms and conditions contained therein), or individual permit denial can be administratively appealed pursuant to 33 C.F.R. Part 331, and that in any administrative appeal, jurisdictional issues can be raised (see 33 C.F.R. 331.5(a)(2)). If, during that administrative appeal, it becomes necessary to make an official determination whether CWA jurisdiction exists over a site, or to provide an official delineation of jurisdictional waters on the site, the Corps will provide an approved JD to accomplish that result, as soon as is practicable.

Appendix G

Arborist Report

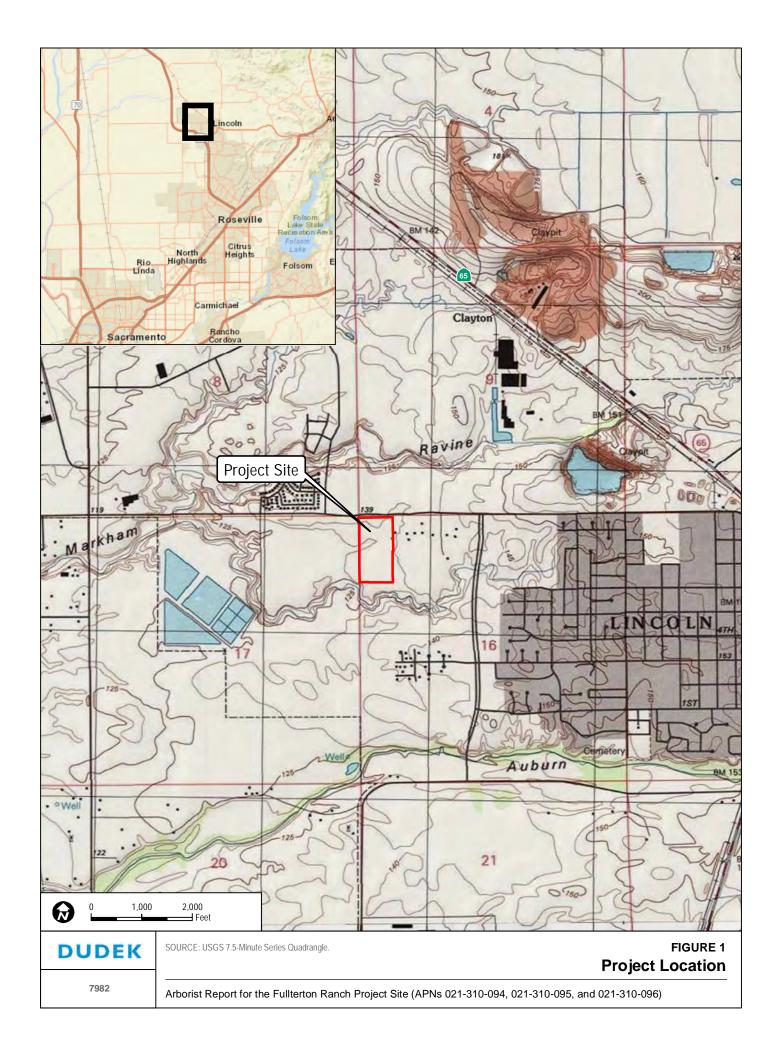
B53 LINCOLN WAY, SUITE #208 AUBURN, CALIFORNIA 95603 T 530.885.8232 F 530.885.8372

August 15, 2016 Job No. 7982

Mr. Chris Tyler Terravest Capital Partners 3208 Wycliffe Dr. Modesto, CA 95355

Subject: Arborist Report for the Fullerton Ranch Project Site (APNs 021-310-094,

021-310-095, and 021-310-096), City of Lincoln, California.


Dear Mr. Tyler:

This Arborist Report summarizes Dudek's evaluation and analysis of tree resources on the Fullerton Ranch project site, located in the City of Lincoln, California. Field inventory and assessments of the project site's trees were originally conducted by Dudek in 2013 and 2015, with re-assessments conducted in August 2016. The focus of Dudek's field evaluations was to inventory and assess all on-site trees that are subject to regulation by the City of Lincoln that could be affected by proposed development. This report includes a discussion of tree inventory, evaluation, and analysis methods, a summary of findings, identification of anticipated impacts, and tree protection recommendations.

SITE AND PROJECT DESCRIPTION

The project site (APNs 021-310-094, 021-310-095, and 021-310-096) is located in the City of Lincoln, Placer County, California (Figure 1). The project site is bounded by Nicolaus Road on the north, the Glenmore subdivision and the City's former Waste Water Treatment Plant (proposed for re-development by Lewis Communities) on the west, the Brookview subdivision and Milan Way on the south, and the Brookview subdivision and 2.5 acre minimum residential lots on the east. The site is nearly level at an elevation of approximately 130 feet above mean sea level (AMSL). Tree cover on site is dominated by blue oak (*Quercus douglasii*) in the south and valley oak (*Quercus lobata*) in the north. Interior live oak (*Quercus wislizeni*), northern California black walnut (*Juglans californica* var. *hindsii*), and pear (*Pyrus* spp.) are also present on site in smaller numbers.

The project consists of a re-zone from Residential Estate (RE) to Planned Development and approval of an 82 lot vesting tentative subdivision map. The 19.7 acre site is designated Low Density Residential (LDR) in the City of Lincoln General Plan and the proposed development density of 4.16 dwelling units per acre (du/ac) is consistent with the LDR density ranges of 3 to

Mr. Chris Tyler

Subject: Arborist Report for the Fullerton Ranch Project Site (APNs 021-310-094, 021-310-095, and 021-310-096), City of Lincoln, California

5.9 du/ac so no general plan amendment is required. The project site has been the subject of previous development proposals, including Premier Oaks Estates (2004) and Whispering Oaks (2007).

REGULATORY FRAMEWORK

The City of Lincoln's 'Guidelines for Development around Oak Trees' document covers all species of oak trees and defines a tree as:

"... any living oak tree having at least one trunk of six inches or more in diameter measured four and one-half (4 $\frac{1}{2}$) feet above the ground, or a multi-trunked oak tree having an aggregate diameter of ten inches or more, measured four and one-half (4 $\frac{1}{2}$) feet above the ground."

These guidelines also require that development applicants provide a tree survey, presenting location, number, size (diameter), approximate height, and approximate canopy diameter of all oak trees on the project site, and identification of which trees may be affected by proposed development. This Arborist Report has been developed to address City requirements and includes mapped tree locations (Attachment 1), individual tree size and attribute data (Attachment 2), a summary of tree impacts, and recommendations for protection of trees to be retained on the project site (Attachment 3).

METHODS

An inventory and evaluation of the project site's trees was conducted by a Dudek International Society of Arboriculture (ISA) Certified Arborist on September 12 and 13, 2013, August 4, 2015, and again on August 16, 2016. The following data was collected for any newly-mapped trees: tag number, species, trunk diameter(s) at breast height (4.5 feet above grade), canopy dripline diameter (feet), tree height, and overall tree health and structural condition. Additionally, detailed information regarding tree health and structure, including observed tree defects and pest/disease presence, were noted for each tree.

Trunk diameter measurements were taken at 4.5 feet above the ground along the trunk axis, with a few common exceptions. In cases where a tree's trunk split into multiple stems at approximately 4.5 feet above ground, the measurement was made at the location that best represented the trunk's diameter. Tree height measurements were estimated by the arborist and tree canopy radius measurements were estimated by "pacing-off" the measurement based on the arborist's knowledge of his stride length or by visually estimating the canopy width for trees not located near proposed development areas.

Subject: Arborist Report for the Fullerton Ranch Project Site (APNs 021-310-094, 021-310-095, and 021-310-096), City of Lincoln, California

Pursuant to the Guide for Plant Appraisal, tree health and structure were evaluated with respect to five distinct tree components: roots, trunk, scaffold branches, small branches, and foliage. Each tree component was assessed with regard to health factors such as insect, fungal or pathogen damage, mechanical damage, presence of decay, presence of wilted or dead leaves, and wound closure. Components were graded as *good*, *fair*, *poor*, and *dead* with 'good' representing no apparent problems, and 'dead' representing a dying and/or dead tree. This method of tree condition rating is comprehensive and results in ratings that are useful for determining the status of trees based on common industry standards. Trees in natural settings have important habitat value, as evidenced by numerous cavity nesters and insects that thrive on and within oak trees, even when they are considered in poor structural or health condition. However, this assessment focuses on tree condition with regards to health and structure for purposes of analyzing potential project impacts and where necessary, providing recommendations for mitigating potential tree hazards, such as trees with weak limb attachments, cavities and rot, or excessive lean.

Concurrent with individual tree attribute measurement and assessment, trees were tagged with a unique tree identification number and the location of each individual tree was hand mapped on a site aerial photograph. Following the field tree assessment, project surveyors conducted an engineering survey of tree locations (VVH Consulting Engineers). Surveyed tree locations are presented in Attachment 1 and individual tree data is presented in Attachment 2.

RESULTS

Tree Inventory

A total of 189 individual trees are included in the oak tree assessment data set for the Fullerton Ranch Project site, which includes 99 blue oaks (*Quercus douglasii*), 85 valley oaks (*Quercus lobata*), and 6 interior live oaks (*Quercus wislizenii*). Table 1 provides a summary of the species of oak trees mapped on the project site.

Table 1
Summary of Existing Trees

Scientific Name	Common Name	Tree Quantity
Quercus douglassii	Blue oak	98
Quercus lobata	Valley oak	85
Quercus wislizenii	Interior live oak	6
	Total:	189

Mr. Chris Tyler

Subject: Arborist Report for the Fullerton Ranch Project Site (APNs 021-310-094, 021-310-095, and 021-310-096), City of Lincoln, California

For the purposes of this report, trees were rated according to their "natural setting attributes." Good condition trees exhibit acceptable vigor, healthy foliage, adequate structure, and lack of any major maladies. Fair condition trees are typical, with few maladies, but declining vigor. Poor condition trees exhibit declining vigor, unhealthy foliage, poor branch structure or excessive lean. The oak trees that are proposed for retention on site vary in respect to health and structural condition. It is estimated that the larger diameter blue oak trees in the southern and western portions of the property are older than 60 years old, based on observations of historic aerial imagery of the site from 1954. Based on this imagery analysis, the majority of valley oaks on site are less than 60 years old, as they were not visible in the 1954 image. Blue oak life spans are approximately 90-100 years¹; therefore, the large-diameter blue oaks on site are expected to be nearing the end of their natural life span. This is correlated with field observations of rot, dead/dying trees, and large limb failure in tree canopies of the largest blue oaks on site, which are typical maladies of senescent trees.

It should also be noted that tree health assessments consider a number of observable tree characteristics. For example, a tree with a 'Fair' health rating is one that exhibits average overall health. There is nothing necessarily wrong with a tree given a 'Fair' rating, but it is simply not exhibiting good health. Trees with 'Fair' ratings can live for a very long time. Structural condition relates to the architecture of the tree. Trees with 'Poor' structural ratings usually have trunk issues (cavities, cracks, etc.), poor branch attachments that can lead to branch failure, or other structural soundness issues. This relates to the risk of the tree or tree part failing. From a wildlife habitat perspective, trees with fair or poor ratings would be perfectly normal in a woodland or forest setting, in which one would find trees of all rating categories. Poor structured trees typically provide great habitat value.

Tree Impact Assessment

Tree impacts were determined by evaluating surveyed tree locations relative to the project development areas. Impact totals presented herein are based on the project's vesting tentative subdivision map as of the date of this report. As such, the actual number of trees that are subject to impact may change if site plan modifications are made. Table 2 summarizes tree preservation and removal totals, by species. As presented, a total of 95 trees (representing a total of 1,935 trunk diameter inches) are identified for removal and 94 trees (representing a total of 2,241 trunk diameter inches) are identified for preservation on site. Given the characteristics of the project site and the proposed subdivision map, it is anticipated that all trees retained on site may require

5

DUDEK

7982 August 2016

¹ http://www.fs.fed.us/database/feis/plants/tree/quedou/all.html

Subject: Arborist Report for the Fullerton Ranch Project Site (APNs 021-310-094, 021-310-095, and 021-310-096), City of Lincoln, California

canopy or root pruning, or may be subject to dripline encroachment. Therefore, recommendations to minimize the extent of impact to preserved trees are provided in Attachment 3.

Table 2
Summary of Potential Tree Impacts

Scientific Name	Common Name	Tree Quantity, b	y Impact Status
Scientific Name	Common Name	Remove	Retain
Quercus douglassii	Blue oak	45	53
Quercus lobata	Valley oak	48	37
Quercus wislizenii	Interior live oak	2	4
	Total:	95	94

RECOMMENDATIONS

Tree Removal

The proposed project development footprint may require removal of up to 95 of the site's oak trees. Mitigation for removal of oak trees from the project site is expected to be negotiated with the City of Lincoln, and may include on- or off-site tree planting, payment of an in-lieu fee, or a combination thereof, or other measures approved by the City.

Protection of Retained Trees

This report recommends implementing the measures included in Attachment 3, which have been prepared to minimize impacts to trees retained on-site. These measures incorporate the tree protection standards included in the City of Lincoln's 'Guidelines for Development around Oak Trees.'

ARBORIST'S DISCLOSURE

This report provides conclusions and recommendations based only on a visual examination of the trees and surrounding site by an ISA Certified Arborist and reasonable reliance upon the completeness and accuracy of the information provided to the arborist. The examination did not include subterranean or internal examination of the trees.

Arborists are tree specialists who use their education, knowledge, training and experience to examine trees, recommend measures to enhance the beauty and health of trees, and attempt to

Mr. Chris Tyler

Subject: Arborist Report for the Fullerton Ranch Project Site (APNs 021-310-094, 021-310-095, and 021-310-096), City of Lincoln, California

reduce the risk of living near them. Although trees provide many benefits to those who live near them, they also include inherent risks from breakage or failure that can be minimized, but not eliminated.

Arborists cannot detect every condition that could possibly lead to the failure of a tree. Trees are living organisms subject to attack by disease, insects, fungi, weather, and other forces of nature, and conditions that lead to failure are often hidden within trees and below ground. There are some inherent risks with trees that cannot be predicted with any degree of certainty, even by a skilled and experienced arborist.

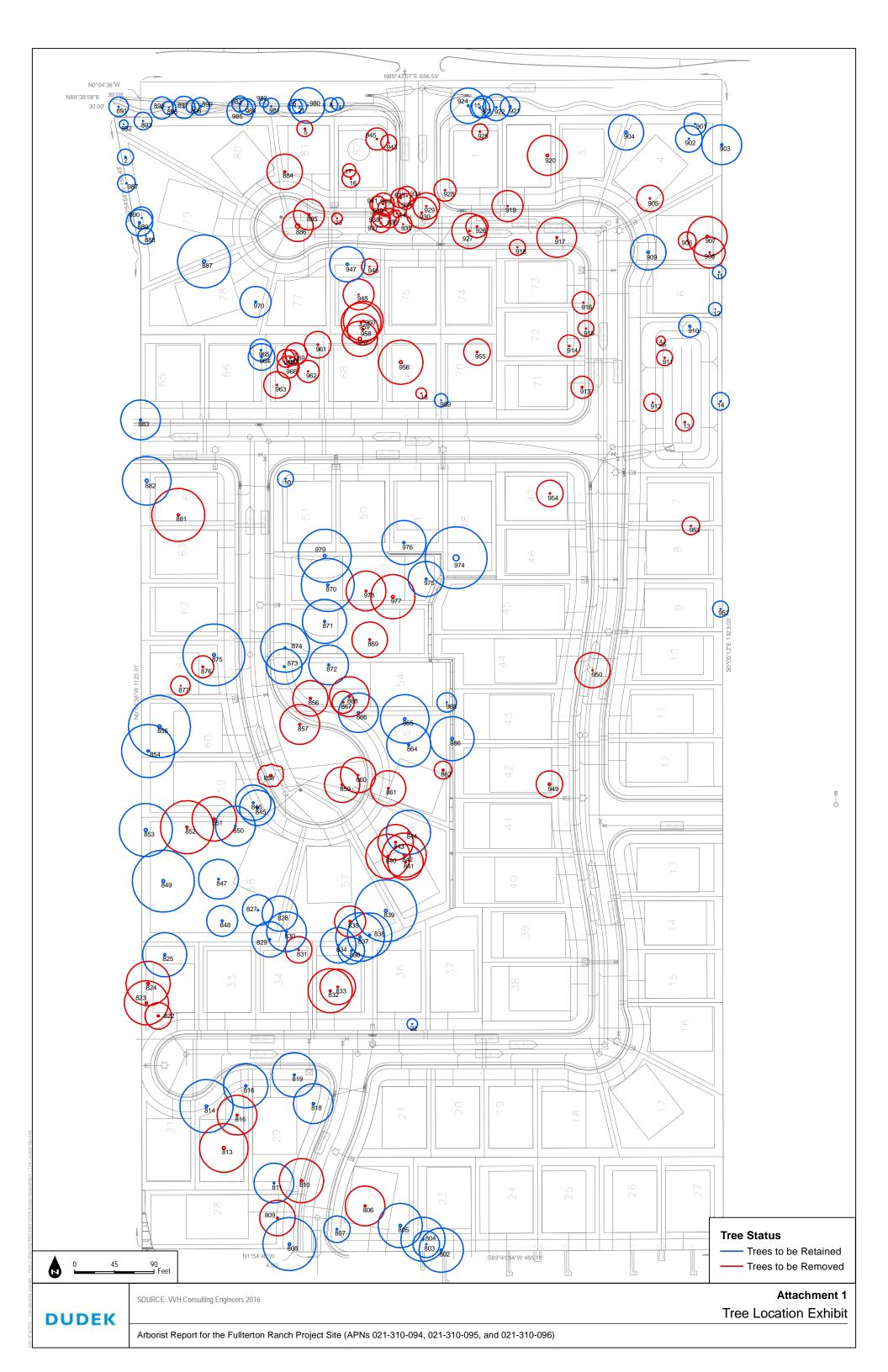
Arborists cannot predict acts of nature including, without limitation, storms of sufficient strength, which can cause even an apparently healthy tree to fail. Additionally, arborists cannot guarantee that a tree will be healthy or safe under all circumstances, or for any specific period of time. A tree's condition could change over a short or long period of time due to climatic, cultural or environmental conditions. Further, there is no guaranty or certainty that recommendations or efforts to correct unsafe conditions will prevent future breakage or failure of a tree.

To live or work near trees is to accept some degree of risk. Neither the author of this report nor Dudek have assumed any responsibility for, nor will either of them be liable for, any claims, losses or damages for damage to any tree, death or injury to any person, or any loss of or damage to any personal or real property.

If you need further information, please contact me at (530) 885-8232.

Sincerely,

Scott Eckardt


ISA Certified Arborist #WE-5914A Registered Professional Forester #2835

at W. Edenet

Attachments:

- 1. Tree Location Exhibit
- 2. Tree Inventory Data Sheet
- 3. Tree Protection Recommendations

Attachment 1 Tree Location Exhibit

Attachment 2 Tree Inventory Data Sheet

Sheet
/ Data S
Inventory
2: Tree
Attachment 2

Species T1 T Quercus douglasii 30.7 Quercus douglasii 15.7 Quercus douglasii 24.1				F				Tree Health	alth		-	ree Structure	nre		I	
	T2 T3	4T	T5	Т6	Total Trunk Diameter Inches	Height (feet)	Dripline (feet)	Overall Health Rating Epicormic sprouting	Canopy dieback	Other pests/disease Structural Rating	Proken limbs/branches	Trunk wound w/ decay	Cavity in canopy branches Dead wood in canopy	Leaning/arching trunk	Poor branch attachment	Comments
					30.7	45	20	Fair/Poor X	×	Fair			×		Trun	Trunk splits at 7'
					15.7	35	30	Fair		Poor				×	Narr	Narrow canopy, suppressed
					24.1	20	20	Fair/Poor	×	X Poor		×			Beet	Beetle exit holes in trunk, cavity at 20' (at branch split)
Quercus douglasii 32.7					32.7	20	90	Good/Fair	×	Fair					Trun	Trunk splits at 5', minor branch dieback, good canopy balance
Quercus douglasii 26.3					26.3	45	45	Fair	×	Fair					Mino	Minor branch dieback, trunk splits at 15', open canopy branches
Quercus douglasii 21.7					21.7	40	30	Poor	×	Very Poor	×	×		×		Trunk splits at 12', included bark at primary crotch, 50% of canopy dead, trunk wound at 7' with exposed dead wood, partial dead topm, woodpecker damage
Quercus douglasii 32.5		_			32.5	50	09	Fair		X Fair	×				Trun 25' ir	Trunk splits at 12', including bark at primary crotch, old broken 10" limb at 15', small dead limb in lower canopy, woodpecker holes at 25' in main limb
Quercus douglasii 22.5					22.5	35	40	Fair/Poor X	×	Fair					Shor	Short, dense tree, trunk splits at 10'
Quercus douglasii 31.2					31.2	40	90	Fair/Poor X		Fair/Poor	×	×			Few	Few broken/dead limbs, trunk splits at 8', low hanging limbs, barbed wire through tree, trunk crack with possible decay at base, large limb (12") broken out on south side of canopy, old broken and distodged limb in canopy
Quercus douglasii 21.7					21.7	45	45	Fair	×	Fair				×		Trunk splits at 10', slight lean to west, unbalanced tree canopy from adjacent tree #810
Quercus douglasii 39.5					39.5	50	55	Fair/Poor X	×	Fair		×			X Burl	Burl at base, several poor branch crotches
Quercus douglasii 33.3					33.3	55	09	Fair	×	X Fair	×				Seve	Several low hanging branches, trunk splits at 12', large broken limbs at 20' and 25', woodpecker holes in upper trunk
Quercus douglasii 26.0					26.0	45	45	Fair/Poor X	×	Fair	×		×		Trun	Trunk splits at 8', some low branches on southeast side, large broken limb at 15' with possible decay
Quercus douglasii 30.3					30.3	20	90	Fair		Fair	×				Inclu	Included bark at primary branch crotch
Quercus douglasii 29.7					29.7	45	45	Fair/Poor X	×	X Fair		×	×		Barb	Barbwire through trunk, trunk wound at 4' with ants and beetle exit holes
Quercus douglasii 26.1					26.1	45	90	Fair/Poor X	×	Poor	×			×	Trun	Trunk leans slightly east, low hanging branches, epicormic sprouting, canopy dieback, broken limb at 15' (approx. 8" dia.)
Quercus douglasii 28.0					28.0	30	30	Poor X	×	Very Poor	×			×	Seve	Several low hanging limbs, trunk splits at 10′, both trunks droop toward ground, heavy lean away from adjacent tree #823, poor branching structure, broken limb at 20′ (approx. 14″ dia.), part of canopy from #823 fallen into tree
Quercus douglasii 30.1					30.1	20	20	Very Poor X	×	X Very Poor	×	×	×	×	Тор	Top broken out of tree
Quercus douglasii 32.3					32.3	22	20	Poor	×	Poor	×	×	×	×	Seve	Several broken limbs, small cavities in canopy branches, trunk leans east at 20°, some low hanging limbs
Quercus douglasii 32.7					32.7	50	20	Fair		Fair/Poor	×	×			Larg	Large main limb broken off at 25' (approx. 24" dia.)
Quercus douglasii 17.8					17.8	45	35	Fair	×	Fair				×		Most branches to north and south, narrow canopy
Quercus douglasii 19.8					19.8	40	40	Fair	×	Fair					Trun	Trunk splits at 8'
Quercus douglasii 24.8					24.8	20	40	Fair		Fair	×				Seve	Several low hanging limbs, a few large branches broken on west side, narrow canopy, large limb broken out at 20' (approx. 12" dia.)
Quercus douglasii 22.5					22.5	55	45	Fair	×	Fair					Spar	Sparse canopy, 3 primary trunks split at 20'
Quercus douglasii 17.6					17.6	45	30	Poor	×	Poor		×	×		Few	Few large branches, decay at 10' and 15' in main leader
Quercus douglasii 25.4					25.4	40	50	Fair	×	Fair	×				Barb	Barbwire through trunk, trunk splits at 12', 2 large horizontal limbs grown from split
Quercus douglasii 21.5					21.5	40	40	Fair	×	Fair					Poor	Poor branch and twig development, barbed wire through trunk
Quercus douglasii 23.1					23.1	45	40	Fair	×	Fair				×		Canopy growth to west, crowded by adjacent trees to the east, trunk leans slightly west
Quercus douglasii 13.3 15	15.9				29.2	25	35	Fair	×	Poor				×		Crowded by trees to the east, canopy growth heavily to west and north, trunk splits at 3', one main limb dead, suppressed
Quercus douglasii 21.5					21.5	40	30	Fair		Fair	×			×		Canopy growth to south, crowded by adjacent trees to the north, some low hanging branches, narrow branch attachment with included bark
Quercus douglasii 35.2					35.2	22	55	Fair	×	Fair/Poor	×				Inclu	Included bark at primary crotch at 5', some low hanging limbs, failure of 2 large limbs (approx. 14" and 16" dia.)
Quercus douglasii 24.1					24.1	20	50	Fair	×	Fair			×	×	Trun	Trunk bends east away from tree # 837, some low hanging branches
Quercus douglasii 38.6					38.6	50	70	Fair	×	Fair					Larg	Large spreading canopy, several low hanging branches, minor canopy dieback, trunk grown around adjacent pole

Sheet
, Data
Inventory
Tree
Attachment 2:

			Individual Trunk Diameters	Trunk Di	ameters					Tree	Tree Health			Tree Structure	acture			
Tag Number	Species	11	T2 T3	3 T4	15	16	Total Trunk Diameter Inches	Height (feet)	Dripline (feet)	Overall Health Rating	Epicormic sprouting Canopy dieback Gall presence	Other pests/disease Rating	rall tural ng Included bark	Broken limbs/branches	Cavity in trunk or main stem	Dead wood in canopy	Poor branch attachment	Comments
840	Quercus douglasii	27.8					27.8	45	50	Fair	×	Fair/Poor	oor	×		×	×	Tree leans west, canopy growth to west, 2 large limbs broken on west side
841	Quercus douglasii	23.6					23.6	40	40	Fair	×	Poor)r		×	×	×	Barbed wire along trunk, some small cavities in canopy branches, canopy to south east, trunk leans and bends to south, heavily arching trunk
842	Quercus douglasii	27.6					27.6	22	50	Poor	×	Poor)r		×		. J	Sparse canopy, trunk splits at 8', large limb failure
843	Quercus douglasii	23.4					23.4	45	40	Very Poor	×	Poor	Jr	×		×		Cracked/weathered trunk, exposed core, basal wound, dead wood in trunk
844	Quercus douglasii	25.6					25.6	45	50	Good/Fair	×	Good	ρχ					Minor branch dieback
845	Quercus douglasii	26.2					26.2	90	40	Good/Fair	×	Fair	× . <u>=</u>					Trunk splits at 12' into 3 main stems, included bark at several large limb crotches, minor canopy dieback
846	Quercus douglasii	22.4					22.4	50	40	Good/Fair	×	Fair	.=				×	Trunk splits into 3 stems at 15', canopy growth to north and north east, minor canopy dieback
847	Quercus douglasii	21.7					21.7	20	45	Fair	×	Fair	. <u>+</u>				×	Trunk splits into 3 stems at 12', canopy growth to east and north
848	Quercus douglasii	27.9					27.9	40	35	Very Poor	×	Very Poor	200r	×	×		×	Canopy growth to south east, few low hanging branches, large main stem broken out on south side (approx. 16" diameter) at 20 feet, trunk cavity
849	Quercus douglasii	39.1					39.1	09	20	Fair/Poor		X Fair/Poor	,oor			×	<i>></i> ∞	Woodpecker cavities, several low hanging branches, trunk splits into 3 main stems at 15', dead limbs, large branch overlap over adjacent backyard
850	Quercus douglasii	22.8					22.8	40	45	Poor	×	Fair	ir	×			4	Poor twig/branch development, sparse canopy
851	Quercus douglasii	27.8					27.8	09	50	Fair	×	Fair/Pool	oor	×		×		Trunk leans slightly west, good branching structure, sparse canopy
852	Quercus douglasii	28.7					28.7	09	09	Fair	×	Fair/Poo	oor,		×	×	_	Trunk leans slightly west, a few low hanging branches, cavity in main stem at 25'
853	Quercus douglasii	41.2					41.2	02	09	Fair	×	Fair	ir		×	×	U)	Small nest in tree, trunk splits into 3 main stems at 12'
854	Quercus douglasii	30.9					30.9	09	09	Fair	×	Fair	ir		×			Spreading canopy
855	Quercus douglasii	47.5					47.5	90	02	Fair		Fair	ir X			×	×	Trunk splits at 6', canopy growth to the east, several low hanging limbs, included bark in large limbs on north side, minor dead wood in canopy
856	Quercus douglasii	28.6					28.6	40	40	Poor	×	Poor	or .	×	×		×	Several cavities throughout tree, canopy growth to north west, old broken limbs/branches in canopy, large decay column in main trunk
857	Quercus douglasii	26.3					26.3	40	45	Fair	×	Fair	ir	×	×		×	Canopy growth to north west and south, canopy dieback, potential decay in lower limb at 20' (approx. 10" dia.), broken limb at 25' (approx. 8" dia.)
858	Quercus douglasii	31.2					31.2	18	30	Poor		Very Poor	200r	×	×			Trunk broken at 8', one large limb prostrate to east, significant decay in main trunk
859	Quercus douglasii	25.2					25.2	40	40	Fair	×	Fair	ir	×			×	Compact, arched canopy with low hanging branches, large limb broken out of canopy at 25' (approx. 9" dia.)
860	Quercus douglasii	18.2					18.2	40	40	Fair/Poor		Fair	ir	×		×	X	2 large cavities in trunk (3' and 12'), canopy growth to south east, trunk leans to south
861	Quercus douglasii	22.2					22.2	40	40	Fair	×	Fair	ir			×	×	Trunk lean and canopy growth to south, small limbs, sparse canopy
862	Quercus douglasii	25.1					25.1	10	20	Very Poor		Very Poor	Poor	×				Tree has fallen over but still contains live tissue
864	Quercus douglasii	25.8					25.8	20	20	Fair	×	Fair	ir				Ш	Broken limb from tree #862 or 863 hanging in canopy, irregular canopy form
865	Quercus douglasii	35.0					35.0	45	55	Fair	×	Fair	ir		×	×	1	1 large low limb, basal cavity and decay on west side of trunk base
998	Quercus douglasii	26.8					26.8	40	45	Fair	×	Fair	ir	×	×	×	×	Trunk splits at 6', canopy growth to south, low-hanging limbs, large broken limb at 20' (approx. 10" dia.)
867	Quercus douglasii	18.3					18.3	25	25	Very Poor	×	Very Poor	Poor	×	×	×	V	Main stem broken off at 25'
898	Quercus douglasii	24.2					24.2	40	45	Poor	×	Poor	ıc			×		Large co-dominant stem broken out of canopy on south side (approx. 15" diameter) at 20 feet, resulting in lopsided canopy
869	Quercus douglasii	24.1					24.1	40	40	Fair	×	Fair	ir				U)	Several dead branches, sparse and lopsided canopy
870	Quercus douglasii	30.2					30.2	45	09	Fair/Poor	×	Fair	ir		×	×	×	Trunk splits at 8', poor branch structure
871	Quercus douglasii	26.9					26.9	45	20	Fair	×	Fair	ı <u>ı</u> .			×	×	Sparse canopy
872	Quercus douglasii	25.6					25.6	45	45	Fair	×	Fair	ir			×		Trunk splits at 12' into 2 primary stems
873	Quercus douglasii	21.2					21.2	40	40	Fair	×	Fair	يا			×		Tall & thin, relatively narrow canopy

		Comments	Large, open canopy, trunk splits at 8' with included bark at attachment	Large, open canopy, trunk splits at 7' with included bark at attachment	Trunk splits at 3' with included bark at attachment, loose bark at base		Slime flux on south side	Barbed wire around trunk, large arching canopy, canopy overhangs neighboring backyard, deadwood in trunk (west side)	Trunk splits at 8', tall arching canopy, canopy overhangs neighboring backyard, narrow stem attachment	Minor canopy dieback	Included bark at primary crotch, loose bark at base		Major limb broken at 25' (approx. 22" dia.) on south side	Small trunk wound, suppressed	One healthy limb overhangs adjacent backyard		Minor canopy dieback, power line through canopy		Sparse canopy	Included bank at primary branch	Suppressed tree		Power line through canopy, main trunk splits at 15' with included bark at attachment, dead top	Poor branch development, included bark at primary crotch, northern main stem dead	Significant oak gall, several dead branches, narrow dense form	Trunk splits into 3 primary trunks at 10'	Barbed wire through trunk, trunk splits at 6' with included bark at attachment	Trunk splits at 3' with included bark at attachment	Foliage primarily on branches, dense upright form	Thin, compact tree with dense foliage and few large branches	Trunk splits at 2' with included bark at attachment		Trunk splits at 3' with included bark at attachment	Trunk splits at 1' with included bark at attachment	Trunk diameter measured at 4', trunk splits at 4.5 feet into 3 main stems
		Com	Large,	Large,	Trunk		Slime	Barbe	Trunk	Minor	Includ		Major	Small	One h	Lean	Minor		Spars	Includ	Suppr		Power	Poor b	Signifi	Trunk	Barbe	Trunk	Foliag	Thin, c	Trunk		Trunk	Trunk	Trunk
	ŀ	Poor branch attachment		×																	×											×			_
	ŀ	Leaning/arching trunk		_					×						×	×			×		_											$\hat{}$			
	Į	Dead wood in canopy	×					×			×	×										×			×								×		
	inre	Cavity in canopy branches	×					×																											
	Tree Structure	Cavity in trunk or main stem			×		×	×							×																				
	lee ?	Broken limbs/branches					×	×			×		×	×				×	×		×			×									$\vdash \vdash$		
ľ	<u> </u>	Included bark	×	×	×					×	×									×			×				×	×			×		×	×	
		Overall Structural Rating	Fair	Fair	Fair	Fair	Fair	Fair	Good	Fair	Fair/Poor	Fair	Fair/Poor	Fair	Poor	Poor	Fair	Poor	Poor	Poor	Poor	Poor	Very Poor	Poor	Fair	Fair	Fair	Fair	Fair	Fair	Fair	Fair	Fair	Fair	Fair
		Other pests/disease					×																												
_	اء	Gall presence		-	×					×	×	×	-	×			-				-		×	×	×		×	×				×		×	
	Healt	Epicormic sprouting Canopy dieback	×	×	_			×		×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	\vdash	×
ŀ	Tree Health	Overall Health Rating	Fair	Fair	Fair	Good	Fair	Fair	Good	Fair	Fair/Poor	Fair	Fair/Poor	Fair	Poor	Fair	Fair	Fair	Very Poor	Poor	Poor	Poor	Very Poor	Poor	Fair	Good/Fair	Fair	Good/Fair	Fair	Fair	Fair	Fair/Poor	Fair	Fair	Fair
		Dripline (feet)	22	02	25	22	09	55	45	40	35	35	09	18	30	25	22	10	20	25	15	25	15	20	25	30	45	40	30	20	45	35	40	25	18
		Height (feet)	40	55	20	20	40	90	55	40	35	35	55	20	25	25	25	15	25	35	25	30	35	35	40	30	45	45	45	30	40	40	40	25	18
	I	Total Trunk Diameter Inches	25.0	39.7	21.0	8.8	31.1	44.1	28.7	26.6	25.5	31.2	43.1	8.9	28.5	13.2	13.5	9.1	13.1	23.3	8.4	11.2	13.6	24.7	13.8	14.9	28.3	36.2	18.0	11.5	31.8	14.1	35.6	29.1	13.3
		16																																	
	meters	15																																	
-	nk Di	T																																	
F	Individual Trunk Diameters	Т3																																9.9	
1	ludi	7			8.7						14.3	18.4			12.9					8.2				13.1				21.1			16.3		18.1	12.0	
		4	25.0	39.7	12.3	8.8	31.1	1.44	28.7	26.6	11.2	12.8	43.1	8.9	15.6	13.2	13.5	9.1	13.1	15.1	8.4	11.2	13.6	11.6	13.8	14.9	28.3	15.1	18.0	11.5	15.5	14.1	17.5	10.5	13.3
	_	Species	Quercus douglasii	Quercus douglasii	Quercus douglasii	Quercus douglasii	Quercus douglasii	Quercus douglasii	Quercus lobata	Quercus lobata	Quercus lobata	Quercus lobata	Quercus lobata	Quercus lobata	Quercus lobata	Quercus lobata	Quercus lobata	Quercus douglasii	Quercus lobata	Quercus lobata	Quercus lobata	Quercus lobata	Quercus lobata	Quercus lobata	Quercus lobata	Quercus Iobata	Quercus lobata	Quercus lobata	Quercus lobata	Quercus lobata	Quercus lobata	Quercus lobata	Quercus lobata	Quercus douglasii	Quercus douglasii
		Tag Number	874	875	876	877	881	882	883	884	885	886	887	888	889	890	891	892	893	895	968	897	868	899	901	902	903	904	902	906	206	806	606	910	911

Attachment 2: Tree Inventory Data Sheet

ry Data Sneet	
Attachment Z: Tree Inventory Data Sheet	
Attachr	

Tree Structure	Included bark	Trunk diameter measured at 4', trunk splits at 4.5 feet into 2 main stems, sapsucker damage on main trunk	X X Trunk splits at 3' with included bark at attachment			×	X X Good new growth	Trunk splits into 2 primary trunks at 12'	X X Trunk splits into 2 primary trunks at 7'	×	Trunk splits at 3', barbed wire through tree at trunk split	X Poor twig development, a few dead branches, wire through canopy	X Poor twig development	or X X Primary trunk leans north at 15°, power line through canopy, canopy sparse, located outside fence	Trunk splits at base, 2 small primary trunks, no large branches	X Trunk spits at 2' with included bark	or X Trunk splits into 2 primary trunks at 6'	Trunk spits at 20' into 2 stems	or X Trunk splits at 6', included bark at primary crotch, open crown, narrow branch attachment	X Trunk splits at 6', included bark at primary crotch, most limbs to south	or X X Trunk splits at 8', included bark at primary crotch, narrow canopy	or X Poor branch development, trunk splits into 2 at 10'	X Trunk leans N slightly	X Few large branches, canopy growth to south	Trunk splits into 2 trunks at 12', twisted trunk, poor twig development	or Trunk splits at 1', most branches to south, suppressed	or Few large branches, lean from stand of trees to north	Trunk splits at 15' into 2, co-dominant tree	X Straight trunk with a few large branches, dominant tree	Dense canopy, trunk leans north west	Small, thin tree, no large branches, leaf roller	X 1 primary trunk with few large branches, leans north west slightly	X Small tree with good lateral branch development, included bark at main branch attachment, sparse canopy	X Trunk splits at 3', included bark at crotch
Tree Health	Epicormic sprouting Canopy dieback Gall presence Other pests/disease	X Fair	X	X X Fair	X	Fair	X	X	X X Poor	X X Eair	Fair	X X Fair	X X Fair	Fair/Poor	Fair	X	X X Fair/Poor	X X Fair	X Fair/Poor	X X Fair	Fair/Poor	X Fair/Poor	X X Fair	X X Fair	X Fair	X Fair/Poor	Fair/Poor	X Fair	X Fair	Fair	X X Fair	X	X Fair	X Fair
Tree	Overall Health Rating	Fair/Poor	Fair	Good/Fair	Fair	Good	Fair	Fair	Fair	Fair/Poor	Fair	Fair/Poor	Fair/Poor	Fair	Fair	Fair	Fair	Fair	Fair	Fair	Fair	Fair	Fair	Fair	Fair	Fair	Fair	Fair	Fair	Fair	Fair	Good/Fair	Fair	Fair
	Dripline (feet)	20	25	25	18	25	45	18	35	45	22	30	25	40	18	25	40	25	30	35	18	22	22	20	22	22	20	18	25	18	18	25	18	40
	Height (feet)	18	22	30	25	30	30	30	30	35	25	30	25	45	25	30	35	40	40	45	45	45	45	45	45	30	40	40	45	20	45	45	25	45
	Total Trunk Diameter Inches	12.9	24.8	18.2	12.3	15.4	22.4	11.3	17.0	35.3	29.7	18.1	13.9	22.0	17.9	19.1	19.3	16.2	15.8	20.1	10.3	12.1	10.7	9.5	12.6	20.1	10.6	10.6	15.7	8.4	10.5	16.2	10.5	32.8
	16																																	
meters	T5																																	
unk Dia	T4																																	
Individual Trunk Diamete	T3										9.9																							
Indiv	12		11.2							19.2	11.5				9.5	0:9										10.4								15.3
	7	12.9	13.6	18.2	12.3	15.4	22.4	11.3	17.0	16.1	11.6	18.1	13.9	22.0	8.4	13.1	19.3	16.2	15.8	20.1	10.3	12.1	10.7	9.5	12.6	2.6	10.6	10.6	15.7	8.4	10.5	16.2	10.5	17.5
	Species	Quercus douglasii	Quercus douglasii	Quercus lobata	Quercus lobata	Quercus douglasii	Quercus lobata	Quercus douglasii	Quercus lobata	Quercus lobata	Quercus wislizeni	Quercus lobata	Quercus lobata	Quercus lobata	Quercus douglasii	Quercus douglasii	Quercus douglasii	Quercus lobata	Quercus lobata	Quercus lobata	Quercus lobata	Quercus lobata	Quercus lobata	Quercus lobata	Quercus lobata	Quercus lobata	Quercus lobata	Quercus lobata	Quercus lobata	Quercus wislizeni	Quercus lobata	Quercus lobata	Quercus lobata	Quercus lobata
	Tag Number	912	913	914	915	916	917	918	919	920	921	922	923	924	925	926	927	928	929	930	931	933	934	935	936	937	938	939	940	941	943	945	946	947

eet
ıta Sheel
ory Da
nventor
Tree
ent 2:
ttachmen
¥

			Individu	Individual Trunk Diameters	Diamete	ırs					Tree Health	alth			Tree Structure	ructure			
Tag Number	Species	1	12	T3 T	Т Т		Tc Tra	Total Trunk Hei Diameter (fe	Height Dr (feet) (Dripline (feet)	Overall Health Rating	Canopy dieback Gall presence	Other pests/disease Structural Rating	Included bark	Broken limbs/branches	Cavity in trunk or main stem	Dead wood in canopy	Leaning/arching trunk Lopsided canopy Poor branch attachment	Comments
948	Quercus Iobata	12.8						12.8	40	35	Fair		Fair	×					Narrow, dense form, many lateral branches
949	Quercus lobata	14.8	11.5	8.2			3	34.5	18	30 F	Fair/Poor X	×	Poor	×	×				Decay at trunk base
026	Quercus Iobata	14.9						14.9	25	40	Fair X	×	Fair						Small & twisted tree
952	Quercus douglasii	12.8						12.8	20	18	Good	×	Fair						Small tree with rounded canopy, along fence line
953	Quercus douglasii	14.1						14.1	30	20	Good		Fair						Small, dense tree with narrow canopy
954	Quercus Iobata	19.6						19.6	40	30	Fair	×	Fair						Significant oak gall, dense canopy with many dead twigs
922	Quercus Iobata	22.1					2	22.1	45	30	Fair	×	Fair	×					Trunk splits at 4', good new growth
926	Quercus Iobata	25.7	16.2				4	41.9	45	50	Fair		Fair	×					Good branch development, poor twig development, included bark at branch crotches
296	Quercus Iobata	8.5	14.4	20.9			4	43.8	50	40	Fair	×	Fair	×					Included bark at primary crotches, dense crown
928	Quercus lobata	12.9	12.8				2	25.7 4	40	35	Fair	×	Fair	×					Included bark at primary crotch, split crown
626	Quercus Iobata	17.9						17.9	45	45	Fair		Fair				×	×	Some dead/low hanging branches, most limbs to north west
096	Quercus Iobata	22.6					2	22.6	20	45	Fair X		Fair	×				×	Canopy growth to west, included bark at several branch crotches, sparse canopy
196	Quercus Iobata	18.4						18.4	45	30	Fair X	×	Fair						
362	Quercus lobata	16.3						16.3	45	25	Fair	×	Fair						Included bark at primary crotch
896	Quercus Iobata	16.1						16.1	45	30	Fair X	×	Fair	×					Open canopy, several low limbs
964	Quercus Iobata	18.4						18.4	45	30	Fair X	×	Fair	×					Trunk splits into 2 primary trunks at 10'
396	Quercus Iobata	18.3						18.3	45	25	Fair	×	Poor						Dense canopy and narrow branch attachments
996	Quercus Iobata	15.4						15.4	45	25	Fair	×	Fair						Several dead branches and twigs some narrow crotches
296	Quercus Iobata	13.1						13.1	45	20	Fair	×	Fair						Thin tree, a few large branches
896	Quercus Iobata	11.9	2.7					17.6	40	18	Fair	×	Poor					×	Small trunk has dead top
696	Quercus Iobata	16.2						16.2	45	25	Fair	×	Fair						Dense branches, narrow form
970	Quercus Iobata	27.2					2	27.2	35	35	Good	×	Fair	×				×	Several crotches with included bark, trunk leans south
974	Quercus douglasii	27.2	27.1	28.2			- 80	82.5	50	70	Fair	×	Fair		×	×			Splits at 4' into 3 primary trunks, spreading canopy, low limbs on east side, barbed wire in trunk on east side, large limb broken out on east side at 30' (approx. 10" dia.), 2 large limbs broken out on southwest side at 15'
975	Quercus douglasii	25.4					2	25.4	40	40	Fair	×	Fair		×		×		Twisted trunk, splits into 3 at 18', small basal wound on north side, sparse canopy
926	Quercus douglasii	31.2					3	31.2	55	50 G	Good/Fair	×	Good				×		Trunk splits at 20' into 3 limbs, open canopy
977	Quercus douglasii	38.0					ဧ	38.0 6	09	50	Fair	×	Fair			×	×		Large limb broken out on south side at 20' (approx. 18" dia.), sparse canopy
978	Quercus douglasii	23.1					2	23.1 5	20	45	Fair	×	Fair						Sparse canopy, minimal twig development
626	Quercus douglasii	36.7					3	36.7 5	55	09	Fair	×	Fair				×		Split at 15' into 2 primary trunks, large broken limbs on north west side at 25' (approx. 12" dia.) and north side at 28' (approx. 9" dia.), broken limbs on north side, large dead limb in lower canopy
086	Quercus Iobata	18.6					1	18.6	30	40 G	Good/Fair	×	Fair		×				Open crown, many large limbs, wire through canopy, adjacent to power pole (approx. 8')
981	Quercus Iobata	13.4					1	13.4	30	18 V	Very Poor X	×	Very Poor	٦٢					Sparse canopy, thin branches, 2 primary stems, wire through canopy
982	Quercus Iobata	9.2					,	9.2	25	10 V	Very Poor		Very Poor	٦٢					Dead top, live sprouts at approx. 4', otherwise dead
983	Quercus Iobata	14.8	9.4				2	24.2	25	18 V	Very Poor X	×	Very Poor	λ	×				Included bark at most branch crotches, wire through canopy, trunk wound on west side
984	Quercus lobata	14.2						14.2	25	18 V	Very Poor X	×	Very Poor)r	×				Narrow crown, poor branch development, 2 primary trunks, canopy top dead, trunk wound on south side

Attachment 2: Tree Inventory Data Sheet

													ack												
													Heavy ga∥ presence, wet soil at base (drainage from neighboring property), narrow canopy, minor twig dieback												
												1', galls	ow canopy, m												
			py (>8")									ırger stem at	roperty), narr	tems	galls										
			limbs in cano									ire through la	eighboring p	into 3 main st	split at 2.5', g					ırm					
			other broken		sluded bark							plit, barbed w	ainage from r	its at 4.5 feet	through trunk	bby form				ile, shrubby fo					
		Narrow crown, poor branch development	Large broken limb on north side, several other broken limbs in canopy $(>\!8")$		Small tree, narrow trunk split at 8' with included bark		λſ		Ф			Trunk splits at 2', included bark at trunk split, barbed wire through larger stem at 1', galls	oil at base (dra	Trunk diameter measured at 4', trunk splits at 4.5 feet into 3 main stems	Located along property line, barbed wire through trunk split at 2.5', galls	Suppressed, fence between trunks, shrubby form		d trunk		Suppressed, growing up against utility pole, shrubby form					
		, poor branch	limb on north	e.	rrow trunk spl	l tree	Trunk wound on largest trunk	Canopy growth to west side	Canopy growth the east side	back	tature tree	2', included b	sence, wet so	r measured a	property line	ence betweer	shrubby form	Isolated, small tree, crooked trunk	l tree	growing up ag	shrubby form				
	Comments	Varrow crown	arge broken-	On property line	Small tree, na	Isolated, small tree	runk wound	Sanopy growt	Sanopy growt	Minor twig dieback	Good, small-stature tree	runk splits at	leavy gall pre	runk diamete	ocated along	Suppressed, f	Suppressed, shrubby form	solated, smal	Isolated, small tree	Suppressed, ç	Suppressed, shrubby form		Suppressed		
	Poor branch attachment				0,	_		×	×)	L	1			0,	0,	ı	_	0,	0,		0,		
	Dead wood in canopy Leaning/arching trunk		×																						
4.1.40	Cavity in canopy branches		×																						
Cturiotura	Trunk wound w/ decay Cavity in trunk or main stem						×																		
F	Broken limbs/branches Trink wound W, decay		×									×		×											
	Overall Structural Rating	Very Poor	Fair	Fair	Fair	Fair	Fair	Fair	Fair	Fair	Good	Fair	Fair	Fair	Fair	Poor	Fair	Fair	Fair	Fair	Fair	Fair	Fair	Fair	Fair
	Other pests/disease	×						×	×				×	×										×	
4410.0	Canopy dieback	×	×					(x	(×			(x	<u> </u>								×	×	×	
Troo Doolth	E c D	or X				×																	or		
	Overall Health Rating	Very Poor	Fair	Good	Good	Good	Fair	Good	Good	Good	Good	Fair	Fair	Fair	Fair	Fair	Fair	Good	Fair	Good	Fair	Good	Fair/Poor	Fair	Good
	Dripline (feet)	15	20	20	22	15	18	16	14	18	18	15	15	20	20	22	20	15	12	16	12	12	8	10	16
	Height (feet)	25	90	25	25	20	20	18	16	20	22	20	18	15	30	12	15	15	18	15	12	18	18	18	16
	Total Trunk Diameter Inches	20.6	36.8	16.6	9.1	6.6	20.1	11.3	11.5	17.7	12.3	12.9	7.9	19.9	17.2	12.9	17.9	7.9	8.4	11.9	10.0	6.3	6.1	6.0	10.0
	ЭТ																								
On Option	T5																								
Sig Aur.	4T																4.0								
Individual Trunk Diameter	Т3						5.4										4.0			3.3					
	2	7.9		7.4			5.6	3.4	4.3	8.6		5.8		6.8	9.1	4.8	4.0			3.4	4.0				
	Σ	12.7	36.8	9.2	9.1	6.6	9.1	7.9	7.2	9.1	12.3	7.1	7.9	13.1	8.1	8.1	5.9	7.9	8.4	5.2	0.9	6.3	6.1	0.9	10.0
	Species	Quercus Iobata	Quercus douglasii	Quercus Iobata	Quercus douglasii	Quercus douglasii	Quercus lobata	Quercus lobata	Quercus lobata	Quercus Iobata	Quercus lobata	Quercus lobata	Quercus lobata	Quercus douglasii	Quercus douglasii	Quercus wislizeni	Quercus wislizeni	Quercus douglasii	Quercus douglasii	Quercus wislizeni	Quercus douglasii	Quercus Iobata	Quercus lobata	Quercus Iobata	Quercus wislizeni
	Tag Number	985	986	286	886	686	2	3	4	2	10	11	12	13	14	15	16	17	18	21	22	23	24	25	26

Attachment 3 Tree Protection Recommendations

Attachment 3 Tree Management Recommendations and Protection Measures

The following tree protection measures include requirements based on the City of Lincoln's 'Guidelines for Development around Oak Trees' document and additional recommended measures intended to avoid or minimize impacts to trees during construction. The measures presented should be monitored by arborists and enforced by contractors and developers for maximum benefit to the trees

Tree Protection Measures Prior to Construction

Prior to any grading activity, preserved trees with canopies that fall within 30 feet of construction activity should be protected by fencing and signage. All contractors should be made aware of the tree protection measures. A project arborist should be assigned to monitor tree health and construction activity near retained trees on site. The project arborist should be an International Society of Arboriculture (ISA) Certified Arborist.

<u>Inspection</u>: Any large tree proposed for preservation on site should be thoroughly inspected for internal or subterranean decay by a qualified arborist prior to construction activity to determine if retention/protection on site is a viable management option.

Site Preparation: Tree removal, pruning, and inspection should be conducted during site preparation activities. Where permitted by the City, tree removal and pruning activity should be conducted according to industry standards (ANSI A300). ISA Certified Arborist inspection of trees to be retained on site is recommended to identify any health or structural issues which may warrant further management action (pruning, cabling, bracing, removal, etc.). Additionally, pruning should be conducted to remove deadwood, hazard branches, or limbs/branches that may conflict with proposed construction activity.

<u>Fencing and Signage:</u> A 4-foot high, orange-webbing, polypropylene barricade fence with tree protection signs should be erected around all trees (or tree groups) to be preserved. The protective fence should be installed at the dripline of the tree(s). This will delineate the tree protection area and prevent unwanted activity in and around the trees in order to reduce soil compaction in the root zones of the trees and other damage from heavy equipment. The fence webbing should be secured to 6-foot, heavy gauge t-bar line posts, pounded in the ground a minimum of 18-inches and spaced 8-feet oncenter. Fence webbing should be attached to t-bar posts with minimum 14-gage wire fastened to the top, middle and bottom of each post. Tree protection signs should be attached to every fourth post. The contractor should maintain the fence to keep it upright, taut, and aligned at all times. Fencing should be removed only after all construction activities are complete.

<u>Pre-Construction Meeting:</u> A pre-construction meeting should be held between all contractors (including grading, tree removal/pruning, builders, etc.) and the arborist. The arborist will instruct the contractors on tree protection practices and answer any questions. All equipment operators and spotters, assistants, or those directing operators from the ground, should provide written acknowledgement of their receiving tree protection training. This training should include information on the location and marking of protected trees, the necessity of preventing damage, and the discussion of work practices that will accomplish such.

Protection and Maintenance during Construction

Once construction activities have begun the following measures should be adhered to:

Avoidance: Signs, ropes, cables, or any other items should not be attached to any preserved tree.

Equipment Operation and Storage: Operating heavy machinery around the root zones of trees will increase soil compaction, which decreases soil aeration and subsequently reduces water penetration in the soil. All heavy equipment and vehicles should stay out of the fenced tree protection zone, unless where specifically approved in writing by the City and under the supervision of an ISA Certified Arborist.

Storage and Disposal: Do not store or discard any supply or material, including paint, lumber, concrete overflow, etc. within the fenced tree protection zone. Remove all foreign debris within the fenced tree protection zone; it is important to leave the duff, mulch, chips, and leaves around the retained trees for water retention and nutrients. Avoid draining or leakage of equipment fluids near retained trees. Fluids such as: gasoline, diesel, oils, hydraulics, brake and transmission fluids, paint, paint thinners, and glycol (anti-freeze) should be disposed of properly. Keep equipment parked outside of the fenced tree protection zone of retained trees to avoid the possibility of leakage of equipment fluids into the soil.

Grade Changes: Grade changes (including fill) are not permitted within a tree's dripline. Lowering the grade within a tree's dripline will necessitate cutting main support and feeder roots, jeopardizing the health and structural integrity of the tree(s). Adding soil, even temporarily, on top of the existing grade will compact the soil further, and decrease both water and air availability to the trees' roots. Where grade changes are necessary, slopes, retaining walls, alternative fill materials, or aerating tiles may be installed outside canopy driplines as an alternative technique.

Moving Construction Materials: Care will be taken when moving equipment or supplies near the trees, especially overhead. Avoid damaging the tree(s) when transporting or moving construction materials and working around retained trees (even outside of the fenced tree protection zone). Above ground tree parts that could be damaged (e.g., low limbs, trunks) should be flagged with red ribbon. If contact with the tree crown is unavoidable, prune the conflicting branch(es) using ISA or ANSI A300 standards.

<u>Trenching</u>: All trenching should be outside of the canopy driplines. Where trenching is necessary within the canopy dripline, boring or drilling should be used as an alternative technique.

<u>Drainage:</u> Site grading should not result in water being diverted toward tree canopy driplines and new footings, curbs, and/or walls should not be constructed as to trap or dam water within the canopy dripline.

<u>Paving:</u> Only pervious paving materials should be used for paving within the driplines of retained trees, where necessary.

<u>Canopy Pruning:</u> All pruning should be completed under the direction of an ISA Certified Arborist and done according to ISA and ANSI A300 standards. Only conflicting limbs, deadwood, and hazard branches/limbs should be removed.

<u>Inspection:</u> An ISA Certified Arborist should inspect the preserved trees on at least a monthly basis for the duration of construction activity. A summary report documenting observations and management recommendations should be submitted to the owner following each inspection.

Maintenance after Construction

Once construction is complete the tree protection fencing may be removed and the following measures performed to sustain and enhance the vigor of the preserved trees.

<u>Mulch</u>: Provide a 4-inch mulch layer under the canopy of trees. Mulch should include clean, organic mulch that will provide long-term soil conditioning, soil moisture retention, and soil temperature control.

<u>Pruning:</u> Pruning should *only* be done to maintain clearance and remove broken, dead or diseased branches. Pruning should only take place following a recommendation by an ISA Certified Arborist and performed under the supervision of an ISA Certified Arborist. No more than 15% of the canopy should be removed at any one time. All pruning should conform to ISA or ANSI A300 standards.

<u>Watering:</u> Retained trees on site should be watered as they were prior to the commencement of construction activity. Supplemental irrigation may be necessary for twelve months following substantial root pruning.

<u>Watering Adjacent Plant Material:</u> All plants near the trees should be compatible with water requirements of said trees. Watering regime included in the site's landscape plan should be developed with consideration for the water needs of retained trees.

<u>Spraying:</u> If the trees are maintained in a healthy state, regular spraying for insect or disease control should not be necessary. If a problem does develop, an ISA Certified Arborist should be consulted; the trees may require application of insecticides to prevent the intrusion of bark-boring beetles and other invading pests. All chemical spraying should be performed by a licensed applicator under the direction of a licensed pest control advisor.

Monitoring: All trees within 30 feet of construction activity should be monitored by an ISA Certified Arborist for the first three years after construction completion. An annual monitoring report should be submitted to the owner and the City. Each report should summarize the inspection efforts, document observations and management actions taken, include photographs of each tree, and compare post-construction tree conditions with the original, pre-construction baseline condition. If any retained trees die within this inspection period, they should be replaced at a ratio approved by the City or an in-lieu mitigation fee paid as directed by the City.

Appendix H

Cultural Resources Information (Confidential)

Appendix I

Cultural Consultation Letters

Consulting Archeology 40 Years: 1975-2015

January 6, 2017

T'si-Akim Maidu Mr. Grayson Coney, Cultural Director PO Box 1316 Colfax, CA 95713

Dear Mr. Coney:

Peak & Associates, Inc. has contracted with De Novo Environmental to perform a cultural resources assessment of the proposed Fullerton Ranch Project, a proposed residential subdivision in Lincoln, Placer County. The project area, of about 19.7 acres, is depicted on the enclosed map. The project area lies in section 16 of township 12N, range 6E on the south side of Nicolas Road west of the new Joiner Parkway.

This same property was surveyed for cultural resources in 2002 and again last month. Results were negative in terms of Native American resources on both occasions.

We are contacting individuals identified by the Native American Heritage Commission as persons who might have information to contribute regarding potential Native American concerns in the project area. Any information or concerns that you may have regarding village sites, traditional properties or modern Native American uses in any portion of the project vicinity will be welcomed. If you know other individuals who are familiar with the vicinity, we would welcome this information as well.

We recognize that much of the information about protected and sacred sites may be confidential within your community and cannot be shared with those outside of your community. We will work with you to minimize impact on your cultural resources. Please contact me to discuss how we can accomplish protection of your cultural resources within your limits of confidentiality and the needs of the project.

Thank you for your assistance.

Sincerely,

Consulting Archeologist

Consulting Archeology 40 Years: 1975-2015

January 6, 2017

Shingle Springs Band of Miwok Indians Mr. Nicholas Fonseca, Chairperson PO Box 1340 Shingle Springs, CA 95682

Dear Mr. Fonseca:

Peak & Associates, Inc. has contracted with De Novo Environmental to perform a cultural resources assessment of the proposed Fullerton Ranch Project, a proposed residential subdivision in Lincoln, Placer County. The project area, of about 19.7 acres, is depicted on the enclosed map. The project area lies in section 16 of township 12N, range 6E on the south side of Nicolas Road west of the new Joiner Parkway.

This same property was surveyed for cultural resources in 2002 and again last month. Results were negative in terms of Native American resources on both occasions.

We are contacting individuals identified by the Native American Heritage Commission as persons who might have information to contribute regarding potential Native American concerns in the project area. Any information or concerns that you may have regarding village sites, traditional properties or modern Native American uses in any portion of the project vicinity will be welcomed. If you know other individuals who are familiar with the vicinity, we would welcome this information as well.

We recognize that much of the information about protected and sacred sites may be confidential within your community and cannot be shared with those outside of your community. We will work with you to minimize impact on your cultural resources. Please contact me to discuss how we can accomplish protection of your cultural resources within your limits of confidentiality and the needs of the project.

Thank you for your assistance.

Sincerely,

Consulting Archeologist

Consulting Archeology 40 Years: 1975-2015

January 6, 2017

T'si-Akim Maidu Mr. Don Ryburg, Chairperson 11442 Butler Road Grass Valley, CA 95945

Dear Mr. Ryburg:

Peak & Associates, Inc. has contracted with De Novo Environmental to perform a cultural resources assessment of the proposed Fullerton Ranch Project, a proposed residential subdivision in Lincoln, Placer County. The project area, of about 19.7 acres, is depicted on the enclosed map. The project area lies in section 16 of township 12N, range 6E on the south side of Nicolas Road west of the new Joiner Parkway.

This same property was surveyed for cultural resources in 2002 and again last month. Results were negative in terms of Native American resources on both occasions.

We are contacting individuals identified by the Native American Heritage Commission as persons who might have information to contribute regarding potential Native American concerns in the project area. Any information or concerns that you may have regarding village sites, traditional properties or modern Native American uses in any portion of the project vicinity will be welcomed. If you know other individuals who are familiar with the vicinity, we would welcome this information as well.

We recognize that much of the information about protected and sacred sites may be confidential within your community and cannot be shared with those outside of your community. We will work with you to minimize impact on your cultural resources. Please contact me to discuss how we can accomplish protection of your cultural resources within your limits of confidentiality and the needs of the project.

Thank you for your assistance.

Sincerely,

Consulting Archeologist

Consulting Archeology 40 Years: 1975-2015

January 6, 2017

United Auburn Indian Community of the Auburn Rancheria Mr. Gene Whitehouse, Chairperson 10720 Indian Hill Road Auburn, CA 95603

Dear Mr. Whitehouse:

Peak & Associates, Inc. has contracted with De Novo Environmental to perform a cultural resources assessment of the proposed Fullerton Ranch Project, a proposed residential subdivision in Lincoln, Placer County. The project area, of about 19.7 acres, is depicted on the enclosed map. The project area lies in section 16 of township 12N, range 6E on the south side of Nicolas Road west of the new Joiner Parkway.

This same property was surveyed for cultural resources in 2002 and again last month. Results were negative in terms of Native American resources on both occasions.

We are contacting individuals identified by the Native American Heritage Commission as persons who might have information to contribute regarding potential Native American concerns in the project area. Any information or concerns that you may have regarding village sites, traditional properties or modern Native American uses in any portion of the project vicinity will be welcomed. If you know other individuals who are familiar with the vicinity, we would welcome this information as well.

We recognize that much of the information about protected and sacred sites may be confidential within your community and cannot be shared with those outside of your community. We will work with you to minimize impact on your cultural resources. Please contact me to discuss how we can accomplish protection of your cultural resources within your limits of confidentiality and the needs of the project.

Thank you for your assistance.

Sincerely,

Consulting Archeologist

Appendix J

Noise Study

Fullerton Ranch Planned Development

City of Lincoln, California

March 28, 2017

jcb Project # 2017-104

Prepared for:

Attn:

Steve McMurtry 1020 Suncast Lane, Suite 106 El Dorado Hills, California 95762

Prepared by:

j.c. brennan & associates, Inc.

Luke Saxelby, INCE Bd. Cert.

Vice President

Board Certified, Institute of Noise Control Engineering (INCE)

The proposed project includes a Rezone and a Vesting Tentative Map that would facilitate the development of 82 single family residential units on approximately 19.7 acres located southwest of the Nicolaus Road and Joiner Parkway intersection. The project applicant has submitted a vesting tentative map which contains a lot layout plan, preliminary utility layout plan, preliminary grading and drainage plan, existing easements plan, and a preliminary tree removal plan.

This section provides a general description of the existing noise sources in the project vicinity, a discussion of the regulatory setting, and identifies potential noise impacts associated with the proposed project. Project impacts are evaluated relative to applicable noise level criteria and to the existing ambient noise environment. Mitigation measures have been identified for significant noise-related impacts.

ENVIRONMENTAL SETTING

KEY TERMS

Acoustics	The science of sound.
Ambient Noise	The distinctive acoustical characteristics of a given area consisting of all noise sources audible at that location. In many cases, the term ambient is used to describe an existing or pre-project condition such as the setting in an environmental noise study.
Attenuation	The reduction of noise.
A-Weighting	A frequency-response adjustment of a sound level meter that conditions the output signal to approximate human response.
Decibel or dB	Fundamental unit of sound, defined as ten times the logarithm of the ratio of the sound pressure squared over the reference pressure squared.
CNEL	Community noise equivalent level. Defined as the 24-hour average noise level with noise occurring during evening hours (7 - 10 p.m.) weighted by a factor of three and nighttime hours weighted by a factor of 10 prior to averaging.
Frequency	The measure of the rapidity of alterations of a periodic acoustic signal, expressed in cycles per second or Hertz.
Impulsive	Sound of short duration, usually less than one second, with an abrupt onset and rapid decay.
L _{dn}	Day/Night Average Sound Level. Similar to CNEL but with no evening weighting.
L_{eq}	Equivalent or energy-averaged sound level.
L _{max}	The highest root-mean-square (RMS) sound level measured over a given period of time.

 $L_{(n)}$ The sound level exceeded a described percentile over a measurement period.

For instance, an hourly L50 is the sound level exceeded 50 percent of the time

during the one hour period.

Loudness A subjective term for the sensation of the magnitude of sound.

Noise Unwanted sound.

SEL Sound exposure levels. A rating, in decibels, of a discrete event, such as an

aircraft flyover or train passby, that compresses the total sound energy into a

one-second event.

FUNDAMENTALS OF ACOUSTICS

Acoustics is the science of sound. Sound may be thought of as mechanical energy of a vibrating object transmitted by pressure waves through a medium to human (or animal) ears. If the pressure variations occur frequently enough (at least 20 times per second), then they can be heard and are called sound. The number of pressure variations per second is called the frequency of sound, and is expressed as cycles per second or Hertz (Hz).

Noise is a subjective reaction to different types of sounds. Noise is typically defined as (airborne) sound that is loud, unpleasant, unexpected or undesired, and may therefore be classified as a more specific group of sounds. Perceptions of sound and noise are highly subjective from person to person.

Measuring sound directly in terms of pressure would require a very large and awkward range of numbers. To avoid this, the decibel scale was devised. The decibel scale uses the hearing threshold (20 micropascals), as a point of reference, defined as 0 dB. Other sound pressures are then compared to this reference pressure, and the logarithm is taken to keep the numbers in a practical range. The decibel scale allows a million-fold increase in pressure to be expressed as 120 dB, and changes in levels (dB) correspond closely to human perception of relative loudness.

The perceived loudness of sounds is dependent upon many factors, including sound pressure level and frequency content. However, within the usual range of environmental noise levels, perception of loudness is relatively predictable, and can be approximated by A-weighted sound levels. There is a strong correlation between A-weighted sound levels (expressed as dBA) and the way the human ear perceives sound. For this reason, the A-weighted sound level has become the standard tool of environmental noise assessment. All noise levels reported in this section are in terms of A-weighted levels, but are expressed as dB, unless otherwise noted.

The decibel scale is logarithmic, not linear. In other words, two sound levels 10 dB apart differ in acoustic energy by a factor of 10. When the standard logarithmic decibel is A-weighted, an increase of 10 dBA is generally perceived as a doubling in loudness. For example, a 70 dBA sound is half as loud as an 80 dBA sound, and twice as loud as a 60 dBA sound.

Community noise is commonly described in terms of the ambient noise level, which is defined as the all-encompassing noise level associated with a given environment. A common statistical tool to

measure the ambient noise level is the average, or equivalent, sound level (Leq), which corresponds to a steady-state A weighted sound level containing the same total energy as a time varying signal over a given time period (usually one hour). The Leq is the foundation of the composite noise descriptor, L_{dn}, and shows very good correlation with community response to noise.

The day/night average level (L_{dn}) is based upon the average noise level over a 24-hour day, with a +10 decibel weighing applied to noise occurring during nighttime (10:00 p.m. to 7:00 a.m.) hours. The nighttime penalty is based upon the assumption that people react to nighttime noise exposures as though they were twice as loud as daytime exposures. Because L_{dn} represents a 24-hour average, it tends to disguise short-term variations in the noise environment. CNEL is similar to L_{dn} , but includes a +5 dB penalty for evening noise. Typically CNEL and Ldn values are within 0.5 dB of each other and are often considered to be synonymous. Table 1 lists several examples of the noise levels associated with common situations.

TABLE 1 : TYPICAL NOISE LEVELS		
COMMON OUTDOOR ACTIVITIES	Noise Level (DBA)	COMMON INDOOR ACTIVITIES
	110	Rock Band
Jet Fly-over at 300 m (1,000 ft)	100	
Gas Lawn Mower at 1 m (3 ft)	90	
Diesel Truck at 15 m (50 ft), at 80 km/hr (50 mph)	80	Food Blender at 1 m (3 ft) Garbage Disposal at 1 m (3 ft)
Noisy Urban Area, Daytime Gas Lawn Mower, 30 m (100 ft)	70	Vacuum Cleaner at 3 m (10 ft)
Commercial Area Heavy Traffic at 90 m (300 ft)	60	Normal Speech at 1 m (3 ft)
Quiet Urban Daytime	50	Large Business Office Dishwasher in Next Room
Quiet Urban Nighttime	40	Theater, Large Conference Room (Background)
Quiet Suburban Nighttime	30	Library
Quiet Rural Nighttime	20	Bedroom at Night, Concert Hall (Background)
	10	Broadcast/Recording Studio
Lowest Threshold of Human Hearing	0	Lowest Threshold of Human Hearing

SOURCE: CALTRANS, TECHNICAL NOISE SUPPLEMENT, TRAFFIC NOISE ANALYSIS PROTOCOL. NOVEMBER 2009.

EFFECTS OF NOISE ON PEOPLE

The effects of noise on people can be placed in three categories:

- Subjective effects of annoyance, nuisance, and dissatisfaction;
- Interference with activities such as speech, sleep, and learning; and
- Physiological effects such as hearing loss or sudden startling.

Environmental noise typically produces effects in the first two categories. Workers in industrial plants can experience noise in the last category. There is no completely satisfactory way to measure the subjective effects of noise or the corresponding reactions of annoyance and dissatisfaction. A wide variation in individual thresholds of annoyance exists and different tolerances to noise tend to develop based on an individual's past experiences with noise.

Thus, an important way of predicting a human reaction to a new noise environment is the way it compares to the existing environment to which one has adapted: the so-called ambient noise level. In general, the more a new noise exceeds the previously existing ambient noise level, the less acceptable the new noise will be judged by those hearing it.

With regard to increases in A-weighted noise level, the following relationships occur:

- Except in carefully controlled laboratory experiments, a change of 1 dBA cannot be perceived;
- Outside of the laboratory, a 3 dBA change is considered a just-perceivable difference;
- A change in level of at least 5 dBA is required before any noticeable change in human response would be expected; and
- A 10 dBA change is subjectively heard as approximately a doubling in loudness, and can cause an adverse response.

Stationary point sources of noise – including stationary mobile sources such as idling vehicles – attenuate (lessen) at a rate of approximately 6 dB per doubling of distance from the source, depending on environmental conditions (i.e. atmospheric conditions and either vegetative or manufactured noise barriers, etc.). Widely distributed noises, such as a large industrial facility spread over many acres, or a street with moving vehicles, would typically attenuate at a lower rate.

EXISTING NOISE LEVELS

Traffic Noise Levels

The FHWA Highway Traffic Noise Prediction Model (FHWA-RD 77-108) was used to develop L_{dn} (24-hour average) noise contours for the primary project-area roadways. The model is based upon the CALVENO noise emission factors for automobiles, medium trucks, and heavy trucks, with consideration given to vehicle volume, speed, roadway configuration, distance to the receiver, and the acoustical characteristics of the site. The FHWA Model predicts hourly L_{eq} values for free-flowing traffic conditions, and is generally considered to be accurate within 1.5 dB. To predict L_{dn} values, it is necessary to determine the hourly distribution of traffic for a typical 24-hour period.

Existing traffic volumes were obtained from the traffic consultant (Fehr & Peers, January 2017). Day/night traffic distributions were based upon file data for similar roadways and field-measured values where available. Using these data sources and the FHWA traffic noise prediction methodology, traffic noise levels were calculated for existing conditions. Table 2 shows the results of this analysis. Appendix A provides the complete inputs and results for the FHWA traffic noise modeling.

Traffic noise levels are predicted at the sensitive receptors located at the closest typical setback distance along each project-area roadway segments. In some locations sensitive receptors may be located at distances which vary from the assumed calculation distance and may experience shielding from intervening barriers or sound walls. However, the traffic noise analysis is believed to be representative of the majority of sensitive receptors located closest to the project-area roadway segments analyzed in this report. Where sound walls occur, a -5 dB offset was applied to account for typical acoustic shielding provided by a 6-foot tall sound wall.

The actual distances to noise level contours may vary from the distances predicted by the FHWA model due to roadway curvature, grade, shielding from local topography or structures, elevated roadways, or elevated receivers. The distances reported in Table 2 are generally considered to be conservative estimates of noise exposure along the project-area roadways.

TABLE 2: PREDICTE	TABLE 2: PREDICTED EXISTING TRAFFIC NOISE LEVELS								
Roadway	Segment	Noise Level at Closest	DISTANCES TO TRAFFIC NOISE CONTOURS, LDN/CNEL (FEET)						
KOADWAT	SEGMENT	RECEPTORS (LDN/CNEL)	70 dB	65 dB	60 DB				
Nicolaus Rd.	West of Lakeside	57.0	11	23	50				
Nicolaus Rd.	Lakeside to Fullerton Ranch	57.7	11	25	53				
Nicolaus Rd.	Fullerton Ranch to Joiner	56.9	11	25	53				
Nicolaus Rd.	East of Joiner	60.9	15	32	68				
Joiner Parkway	Nicolaus to 1st	55.8	10	21	45				
Joiner Parkway	South of 1st	56.9	13	29	63				

NOTES: DISTANCES TO TRAFFIC NOISE CONTOURS ARE MEASURED IN FEET FROM THE CENTERLINES OF THE ROADWAYS. SOURCE: FHWA-RD-77-108 WITH INPUTS FROM FEHR & PEERS AND J.C. BRENNAN & ASSOCIATES, INC. 2017.

COMMUNITY NOISE SURVEY

A community noise survey was conducted to document existing ambient noise levels at the project site. The data collected included the hourly average (Leq), median (L50), and the maximum level (Lmax) during the measurement period. Noise monitoring sites and the measured noise levels at each site are summarized in Table 3. Figure 1 shows the locations of the noise monitoring site.

Community noise monitoring equipment included a Larson Davis Laboratories (LDL) Model 820 precision integrating sound level meter equipped with an LDL ½" microphone. The measurement system was calibrated using a LDL Model CAL200 acoustical calibrator before and after testing. The measurement equipment meets all pertinent requirements of the American National Standards Institute (ANSI) for Type 1 (precision) sound level meters.

TABLE	TABLE 3: SUMMARY OF EXISTING BACKGROUND NOISE MEASUREMENT DATA									
			Average Measured Hourly Noise Levels, dB							
			DAYTIME (7AM-10PM) NIGHTTIME (10PM-7A			рм-7ам)				
SITE	Location	CNEL/L _{DN}	$L_{\scriptscriptstyle EQ}$	L_{50}	L _{MAX}	$L_{\scriptscriptstyle EQ}$	L ₅₀	$L_{\scriptscriptstyle{MAX}}$		
		Continuous (24-hour)	Noise Lev	el Measur	ements					
А	North border of site	65	63	58	81	57	45	76		
		Short-Term Nois	e Level M	easuremei	nts					
1	Abbeyhill Dr. @ W. border of project Site	NA	51	46	63		1/12/17, 2:26 pm. – Roadwa traffic, birds, rain			
2	Milan Way @ S. border of project site.	NA	53	53	55	1/12/17, 2:51 pm. – Birds/wildlife/rain		•		
3	Savannah Dr. @ E. border of project site.	NA	58	58	60	_	2/17, 3:10 ds/wildlif	•		

NOTE: SOURCE: J.C. BRENNAN & ASSOCIATES, INC., 2016.

REGULATORY FRAMEWORK

STATE

Governor's Office of Planning and Research (OPR)

The State of California General Plan Guidelines (State of California 1998), published by OPR provides guidance for the acceptability of projects within specific CNEL contours. The guidelines also present adjustment factors that may be used in order to arrive at noise acceptability standards that reflect the noise control goals of the community, the particular community's sensitivity to noise, and the community's assessment of the relative importance of noise pollution.

LOCAL

City of Lincoln General Plan Health & Safety Element

The City of Lincoln 2050 General Plan Health and Safety Element was adopted March 2008, establishes the following goals and policies that are pertinent to the proposed project:

Goal HS-8:	To protect residents from health hazards and annoyance associated with excessive noise levels.
Policy HS 8.1	Sensitive Receptors: The City will allow the development of new noise-sensitive land uses (which include but are not limited to residential, health care facilities and schools) only in areas exposed to existing or projected levels of noise which satisfy the levels specified in Table 8.1. Noise mitigation measures spaces to levels specified in Table 8.1. (Figure 2 of this Report)
Policy HS 8.2	Protect Residential Areas: The City will strive to achieve exterior noise levels for existing and future dwellings in residential areas that do not exceed exterior noise levels of 60 dBA CNEL and interior noise levels of 45 dBA CNEL.
Policy HS 8.3	Railroad Noise: The City will work with railroad operators to assess the feasibility of noise mitigation measures, where sensitive noise receptors are impacted by rail operations.
Policy HS 8.4	Controlling Truck Traffic: The City shall control noise sources in residential areas and other noise-sensitive areas by restricting truck traffic to designated truck routes.
Policy HS 8.5	Noise Monitoring: The City shall establish an ongoing noise monitoring program for the purpose of enforcing noise standards established by the City.

Policy HS 8.6	Development Around Airports: The City shall require that development around Lincoln Airport be consistent with the noise standards contained in the approved Airport Land Use Commission Plan, and where deemed appropriate, require aviation easements from new development.
Policy HS 8.7	Update Airport Master Plan: The City shall pursue the update of the Airport Master Plan noise contours through the year 2030, consistent with the anticipated use of the airport by larger aircraft, and to revise the General Plan as necessary to reflect new noise contours.
Policy HS 8.8	Construction Noise: The City will provide guidelines to developers for reducing potential construction noise impacts on surrounding land uses.
Policy HS 8.9	Noise Compatibility Guidelines The City shall use adopted noise compatibility guidelines to evaluate compatibility of proposed new development and ensure compatibility between residential, commercial and other surrounding land uses (See Table 8-1, Maximum Allowable Noise Exposure by Land Use).
Policy HS 8.10	Sound Attenuation Features: The City shall require sound attenuation features such as walls, berming, and heavy landscaping between commercial and industrial uses and residential uses to reduce noise and vibration. Setback distances may also be used to reduce noise. Policy HS 8.11 Update Airport Master Plan: The City shall pursue the update of the Airport Master Plan noise contours through the year 2030, consistent with the anticipated use of the airport by larger aircraft, and to revise the General Plan as necessary to reflect new noise contours.
Policy HS 8.11	Noise Buffering: The City shall require a variety of sound attenuation features (including noise buffering or insulation) in new development along major streets and highways, and along railroad tracks.
Policy HS 8.15	Limiting Construction Activities: The City shall establish restrictions regarding the hours and days of construction activities throughout the City.

IMPACTS AND MITIGATION MEASURES

THRESHOLDS OF SIGNIFICANCE

Consistent with Appendix G of the CEQA Guidelines, the project will have a significant impact related to noise if it will result in:

- Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies;
- Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels;
- A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project;
- A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without project;
- For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, expose people residing or working in the project area to excessive noise levels within two miles of a public airport or public use airport; or
- For a project within the vicinity of a private airstrip, expose people residing or working in the project area to excessive noise levels.

Noise Standards

The noise standards applicable to the project include the relevant portions of the City of Lincoln General Plan as described in the Regulatory Framework section above, and the following standards.

Vibration Standards

Vibration is like noise in that it involves a source, a transmission path, and a receiver. While vibration is related to noise, it differs in that in that noise is generally considered to be pressure waves transmitted through air, whereas vibration usually consists of the excitation of a structure or surface. As with noise, vibration consists of an amplitude and frequency. A person's perception to the vibration will depend on their individual sensitivity to vibration, as well as the amplitude and frequency of the source and the response of the system which is vibrating.

Vibration can be measured in terms of acceleration, velocity, or displacement. A common practice is to monitor vibration measures in terms of peak particle velocities in inches per second. Standards pertaining to perception as well as damage to structures have been developed for vibration levels defined in terms of peak particle velocities.

The City of Lincoln does not have specific policies pertaining to vibration levels. However, vibration levels associated with construction activities are addressed as potential noise impacts associated with project implementation.

Human and structural response to different vibration levels is influenced by a number of factors, including ground type, distance between source and receptor, duration, and the number of perceived vibration events. Table 4 indicates that the threshold for damage to structures ranges from 0.2 to 0.6 peak particle velocity in inches per second (in/sec p.p.v). The general threshold at which human annoyance could occur is notes as 0.1 in/sec p.p.v.

TABLE 4: EFFECTS	OF VIBRATION ON	PEOPLE AND BUILDINGS	
PEAK PARTICLE VELOCITY MM/SECOND	PEAK PARTICLE VELOCITY IN/SECOND	Human Reaction	Effect on Buildings
0.15-0.30	0.006-0.019	Threshold of perception; possibility of intrusion	Vibrations unlikely to cause damage of any type
2.0	0.08	Vibrations readily perceptible	Recommended upper level of the vibration to which ruins and ancient monuments should be subjected
2.5	0.10	Level at which continuous vibrations begin to annoy people	Virtually no risk of "architectural" damage to normal buildings
5.0	0.20	Vibrations annoying to people in buildings (this agrees with the levels established for people standing on bridges and subjected to relative short periods of vibrations)	Threshold at which there is a risk of "architectural" damage to normal dwelling - houses with plastered walls and ceilings Special types of finish such as lining of walls, flexible ceiling treatment, etc., would minimize "architectural" damage
10-15	0.4-0.6	Vibrations considered unpleasant by people subjected to continuous vibrations and unacceptable to some people walking on bridges	Vibrations at a greater level than normally expected from traffic, but would cause "architectural" damage and possibly minor structural damage.

SOURCE: CALTRANS. TRANSPORTATION RELATED EARTHBORNE VIBRATIONS. TAV-02-01-R9601 FEBRUARY 20, 2002.

ITEMS NOT ADDRESSED FURTHER IN THIS STUDY

Lincoln Regional Airport

Figure 3 shows the predicted annual noise contours for the Lincoln Regional Airport. Based upon the Figure 3 noise contours, the project site is located approximately 1-mile outside of the 60 dB CNEL noise contour for the airport. Therefore, no new sensitive receptors would be exposed to aircraft noise exceeding the City of Lincoln 60 dB CNEL exterior and 45 dB CNEL interior noise level standard. Additionally, j.c. brennan & associates, Inc. staff did not observe aircraft overflights directly over the project site during visits to the project site. While occasional overlflights could occur, they are not predicted to cause any exceedance of the City of Lincoln exterior or interior noise level standards as discussed above. Therefore, this item is not analyzed further.

Sierra Pacific Lumber Mill and Union Pacific Railroad

Traffic noise was the dominant noise sources observed on the project site. These sources of noise were not observed to be generate substantial noise on the project site. This is due to substantial distance and shielding from intervening residential uses. Therefore, this item is not analyzed further.

IMPACT 1: EXPOSURE OF PERSONS TO, OR GENERATION OF NOISE LEVELS IN EXCESS OF APPLICABLE STANDARDS OR A SUBSTANTIAL PERMANENT INCREASE IN AMBIENT NOISE LEVELS IN THE PROJECT VICINITY ABOVE LEVELS EXISTING WITHOUT THE PROJECT - TRAFFIC NOISE AT EXISTING RECEPTORS (LESS THAN SIGNIFICANT)

To describe future noise levels due to traffic, the Federal Highway Administration Highway Traffic Noise Prediction Model (FHWA RD-77-108) was used. Inputs to the model included traffic volumes provided by Fehr & Peers. The FHWA model is based upon the Calveno reference noise factors for automobiles, medium trucks and heavy trucks, with consideration given to vehicle volume, speed, roadway configuration, distance to the receiver, and the acoustical characteristics of the site. The FHWA model was developed to predict hourly Leq values for free-flowing traffic conditions. To predict Ldn/CNEL values, it is necessary to determine the day/night distribution of traffic and adjust the traffic volume input data to yield an equivalent hourly traffic volume.

Table 5 shows the noise levels associated with traffic on the local roadway network under the existing and existing plus project traffic conditions. As indicated by Table 5, the related noise level increases under development of the proposed project are predicted to be no more than 0.2 dB. As described earlier, a 3-dBA change is considered to be a just-perceivable difference. Therefore, this would be a less than significant impact.

It is important to note that the predicted noise levels shown in Table 5 include shielding from existing 6-foot tall sound walls at existing residential areas

TABLE 5: EXISTING T	TABLE 5: EXISTING TRAFFIC NOISE LEVELS VS. EXISTING PLUS PROJECT TRAFFIC NOISE LEVELS	ROJECT TRAFFIC	Noise Levels				
		NO	Noise Levels (CNEL/LDN, DB))B)	I on down more	oad , ommonie	Olda A a T. moats
Roadway	SEGMENT	EXISTING	EXISTING + PROIECT	CHANGE (DB)	DISTANCE TO E	DISTANCE TO EXISTING + PROJECT TRAFFIC NOISE CONTOURS, FEET ¹	JECT I KAFFIC EET ¹
					70 DB LDN	70 DB LDN 65 DB LDN	60 DB LDN
Nicolaus Rd.	West of Lakeside	57.0	57.1	0.1	11	24	51
Nicolaus Rd.	Lakeside to Fullerton Ranch	57.7	57.8	0.1	12	25	54
Nicolaus Rd.	Fullerton Ranch to Joiner	56.9	57.0	0.1	12	25	54
Nicolaus Rd.	East of Joiner	6.09	6.09	0.0	15	32	69
Joiner Parkway	Nicolaus to 1st	55.8	55.9	0.1	10	21	45
Joiner Parkway	South of 1st	56.9	57.1	0.2	14	30	64
1 = 1							

¹ Distances to traffic noise contours are measured in feet from the centerlines of the roadways. Actual distances may vary due to shielding from existing noise barriers or intervening structures. Traffic noise levels may vary depending on actual setback distances and localized shielding.
SOURCE: FHWA-RD-77-108 with INPUTS FROM FEHR & PEERS AND J.C. BRENNAN & ASSOCIATES, INC. 2017.

IMPACT 2: POTENTIAL TO EXPOSE PERSONS TO, OR GENERATE NOISE LEVELS IN EXCESS OF APPLICABLE STANDARDS OR TO RESULT IN A SUBSTANTIAL TEMPORARY OR PERIODIC INCREASE IN AMBIENT NOISE LEVELS IN THE PROJECT VICINITY ABOVE LEVELS EXISTING WITHOUT PROJECT - CONSTRUCTION NOISE (LESS THAN SIGNIFICANT)

The new development, maintenance of roadways, installation of public utilities, and infrastructure improvements associated with the project will require construction activities. These activities include the use of heavy equipment and impact tools. Table 6 provides a list of the types of equipment which may be associated with construction activities and the associated noise levels.

TABLE 6: CONSTRUCTION EQUIPMENT NOISE								
Type of Fourdament	PF	REDICTED NOISE	DISTANCES TO NOISE CONTOURS (FEET)					
TYPE OF EQUIPMENT	Noise Level at 50'	Noise Level at 100'	Noise Level at 200'	Noise Level at 400'	70 dB Lmax contour	65 dB Lmax contour		
Backhoe	78	72	66	60	126	223		
Compactor	83	77	71	65	223	397		
Compressor (air)	78	72	66	60	126	223		
Concrete Saw	90	84	78	72	500	889		
Dozer	82	76	70	64	199	354		
Dump Truck	76	70	64	58	100	177		
Excavator	81	75	69	63	177	315		
Generator	81	75	69	63	177	315		
Jackhammer	89	83	77	71	446	792		
Pneumatic Tools	85	79	73	67	281	500		

Source: Roadway Construction Noise Model User's Guide. Federal Highway Administration. FHWA-HEP-05-054. January 2006. J.C. Brennan & Associates, Inc. 2013.

Activities involved in project construction would typically generate maximum noise levels ranging from 85 to 90 dB at a distance of 50 feet. The nearest residential receptors would be located 25-50 feet or more from the majority of project construction activities.

There is generally an increase in ambient noise between the hours of 7 a.m. and 7 p.m. By limiting the hours of construction to these hours, the potential for nuisance noise is reduced because project construction-related noise increases would be less noticeable. The use of mufflers on construction equipment would decrease the overall noise generated during construction. Because sound diminishes with distance, locating noise-generating equipment away from noise sensitive uses would reduce overall noise impacts associated with project construction. Implementation of the following mitigation measure would reduce impacts to a **less-than-significant** level.

MITIGATION MEASURES

Mitigation Measure 2-1: The City shall ensure construction contractors comply with the following:

- Construction hours shall be limited to 7am to 7pm, Monday through Friday (unless extended by a special permit).
- All heavy construction equipment and all stationary noise sources (such as diesel generators) shall have manufacturer-installed mufflers.
- Equipment warm up areas, water tanks, and equipment storage areas shall be located in an area as far away from existing residences as is feasible.

Impact 3: Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels (Potentially Significant)

The primary vibration-generating activities associated with the proposed project would occur during construction when activities such as grading, utilities placement, and roadway construction occur. Sensitive receptors which could be impacted by construction related vibrations, especially vibratory compactors/rollers, are located approximately 25-50 feet or further from the project site. At this distance construction vibrations are not predicted to exceed acceptable levels. Additionally, construction activities would be temporary in nature and would likely occur during normal daytime working hours.

Construction vibration impacts include human annoyance and building structural damage. Human annoyance occurs when construction vibration rises significantly above the threshold of perception. Building damage can take the form of cosmetic or structural. Table 7 shows the typical vibration levels produced by construction equipment.

Table 7: Vibration Levels for Varying Construction Equipment							
Type of Equipment	PEAK PARTICLE VELOCITY @ 25 FEET (INCHES/SECOND)	PEAK PARTICLE VELOCITY @ 50 FEET (INCHES/SECOND)	PEAK PARTICLE VELOCITY @ 100 FEET (INCHES/SECOND)				
Large Bulldozer	0.089	0.031	0.011				
Loaded Trucks	0.076	0.027	0.010				
Small Bulldozer	0.003	0.001	0.000				
Auger/drill Rigs	0.089	0.031	0.011				
Jackhammer	0.035	0.012	0.004				
Vibratory Hammer	0.070	0.025	0.009				
Vibratory Compactor/roller	0.210 (<0.200 @ 26')	0.074	0.026				

SOURCE: FEDERAL TRANSIT ADMINISTRATION, TRANSIT NOISE AND VIBRATION IMPACT ASSESSMENT GUIDELINES, MAY 2006

The Table 7 data indicate that construction vibration levels anticipated for the project are less than the 0.2 in/sec p.p.v. threshold of damage to buildings and less than the 0.1 in/sec threshold of annoyance criteria at distances over 25 feet. Therefore, construction vibrations are not predicted to cause damage to existing buildings or cause annoyance to sensitive receptors. Therefore, this impact would be considered **less than significant.**

IMPACT 4: EXPOSURE OF PERSONS TO, OR GENERATION OF NOISE LEVELS IN EXCESS OF STANDARDS ESTABLISHED IN THE LOCAL GENERAL PLAN OR NOISE ORDINANCE – TRAFFIC NOISE AT NEW RECEPTORS (LESS THAN SIGNIFICANT)

The FHWA traffic noise prediction model was used to predict Cumulative + Project traffic noise levels at the proposed residential uses associated with the project. Table 8 shows the predicted traffic noise levels at the proposed residential uses adjacent to the major project-area roadways.

Appendix B provides the complete inputs and results to the FHWA traffic noise prediction model for onsite receptors.

TABLE 8: CU	TABLE 8: CUMULATIVE + PROJECT TRANSPORTATION NOISE LEVELS AT PROPOSED RESIDENTIAL USES									
	RECEPTOR	APPROXIMATE RESIDENTIAL		Predicted Traffic Noise Levels, CNEL/Ldn						
ROADWAY	DESCRIPTION	SETBACK, FEET1	ADT	No Wall	6' WALL	7' WALL	8' WALL	9' WALL		
Nicolaus Road	Nearest Backyards	70′	25,710	67 dB	61 dB	59 dB	58 dB	57 dB		

¹ SETBACK DISTANCES ARE MEASURED IN FEET FROM THE CENTERLINES OF THE ROADWAYS TO THE CENTER OF RESIDENTIAL BACKYARDS.

SOURCE: FHWA-RD-77-108 WITH INPUTS FROM ABRAMS ASSOCIATES, AND J.C. BRENNAN & ASSOCIATES, INC. 2015.

The Table 8 data indicate that a 7-foot tall sound wall would achieve the City of Lincoln 60 dB CNEL exterior noise level standard. However, a 6-foot tall would achieve 61 dB CNEL which meets the City's conditionally acceptable noise level standard of up to 65 dB CNEL, as shown in Figure 2 of this document. Based upon discussions with City staff and review of existing sound wall heights around the project site, a 6-foot tall wall would be consistent with surrounding wall heights while also ensuring that future residents are not exposed to excessive noise levels. Therefore, a 6-foot tall sound wall should be constructed, as shown on Figure 4.

Interior Noise Impacts:

Modern construction typically provides a 25 dB exterior-to-interior noise level reduction with windows closed. Therefore, sensitive receptors exposed to exterior noise of 70 dB CNEL/L_{dn}, or less, will typically comply with the City of Lincoln 45 dB CNEL interior noise level standard. Additional noise reduction measures, such as acoustically rated windows are generally required for exterior noise levels exceeding 70 dB CNEL/L_{dn}.

⁻⁻ MEETS THE CITY OF EXTERIOR NOISE STANDARD WITHOUT MITIGATION.

It should be noted that exterior noise levels are typically 2-3 dB higher at second floor locations. The proposed residential uses are predicted to be exposed to unmitigated first floor exterior transportation noise levels of 67 dB CNEL/L_{dn}. Therefore, second floor facades are predicted to be exposed to exterior noise levels of up to 70 dB CNLE/L_{dn}. Based upon a 25 dB exterior-to-interior noise level reduction, interior noise levels are predicted to be 45 dB CNEL. These interior noise levels would meet the City of Lincoln 45 dB CNEL interior noise level standard and no interior noise mitigation would be required.

The following mitigation measures will minimize noise impacts resulting from transportation noise impacts on the proposed project site. Implementation of this mitigation measure would ensure consistency with the City's noise standards and would reduce this potentially significant impact to a **less than significant** level.

MITIGATION MEASURES

Mitigation Measure 4-1: A 6-foot tall sound wall shall be constructed along Nicolaus Road.

IMPACT 5: POTENTIAL TO EXPOSE OF PERSONS TO, OR GENERATE NOISE LEVELS IN EXCESS OF STANDARDS ESTABLISHED IN THE LOCAL GENERAL PLAN OR NOISE ORDINANCE, OR APPLICABLE STANDARDS OF OTHER AGENCIES OR TO RESULT IN A SUBSTANTIAL PERMANENT INCREASE IN AMBIENT NOISE LEVELS IN THE PROJECT VICINITY ABOVE LEVELS EXISTING WITHOUT THE PROJECT (LESS THAN CUMULATIVELY CONSIDERABLE)

The cumulative context for noise impacts associated with the Proposed Project consists of the existing and future noise sources that could affect the project or surrounding uses. Noise generated by construction would be temporary, and would not add to the permanent noise environment or be considered as part of the cumulative context. The total noise impact of the Proposed Project would be fairly small and would not be a substantial increase to the existing future noise environment.

TRAFFIC

Cumulative noise impacts would occur primarily as a result of increased traffic on local roadways due to the proposed project and other projects within the area. Tables 9 show cumulative traffic noise levels with and without the proposed project.

Under cumulative conditions, there would not be significant increases in noise levels compared to the no project conditions. However, the 60, 65 and 70 dB L_{dn} contours would extend farther under cumulative conditions and potentially impact additional sensitive receptors. As shown, the proposed project would contribute no more than 0.2 dB L_{dn} to noise levels on roadways fronting residential uses along the study area roadways. As described earlier, a 3-dBA change is considered to be a just-perceivable difference. Additionally, the project would not cause new exceedances of the City of Lincoln 60 dB CNEL exterior noise level standard. Consequently, this would result in a **less than cumulatively considerable** contribution to cumulative noise levels.

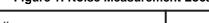
			NC						
	TOTOUR T	RS, FEET1	17 ga 09	94	94	94	120	71	96
	Вістамсе то Симии атите в Вропест	TRAFFIC NOISE CONTOURS, FEET1	70 DB LDN 65 DB LDN 60 DB LDN	43	44	44	56	33	45
	Diemond	DISTANCE T TRAFFIC	NGT BG OZ	70	70	70	76	15	21
	0	CHANGE (DB)		0.0	0.1	0.1	0.0	0.0	0.0
	Noise Levels (CNEL/LDN, DB)	CUMULATIVE + PROJECT CHANGE (DB)	,	61.0	61.5	2.09	64.5	28.8	265
TIVE PLUS PROJECT NOISI	NOI	CUMULATIVE NO	PROJECT	61.0	61.4	9.09	64.5	58.8	2.65
		SEGMENT		West of Lakeside	Lakeside to Fullerton Ranch	Fullerton Ranch to Joiner	East of Joiner	Nicolaus to 1st	South of 1st
ROADWAY SEGMENT		ROADWAY		Nicolaus Rd.	Nicolaus Rd.	Nicolaus Rd.	Nicolaus Rd.	Joiner Parkway	Joiner Parkway

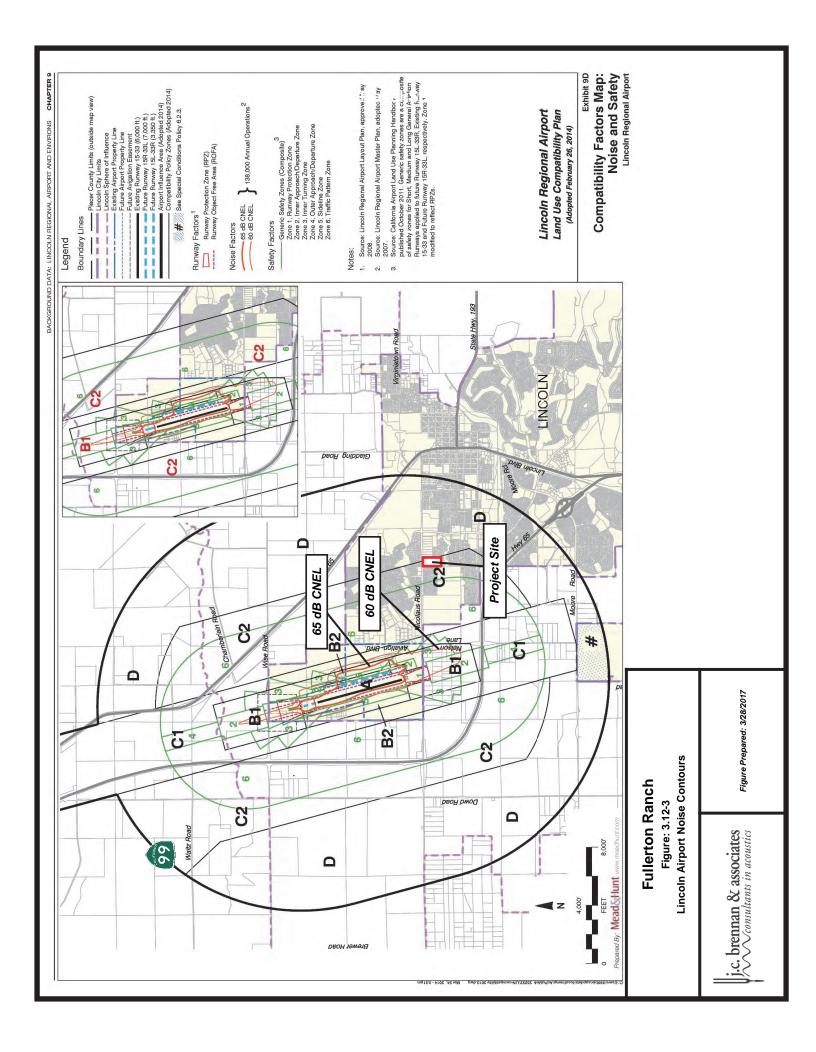
Distances to traffic noise contours are measured in feet from the centerlines of the roadways. Actual distances may vary due to shielding from existing noise barriers or intervening structures. Traffic noise levels may vary depending on actual setback distances and localized shielding. SOURCE: FHWA-RD-77-108 WITH INPUTS FROM FEHR & PEERS AND J.C. BRENNAN & ASSOCIATES, INC. 2017. Authors Note: The traffic noise levels shown in Table 9 are based upon the existing land uses and in some cases include shielding from existing sound walls. The predicted traffic noise levels for Nicolaus Road between Fullerton Ranch and Joiner Parkway assume shielding from the current sound walls adjacent to residential uses. Table 8 which is shown previously, is specific to the project site where no sound walls occur

Legend

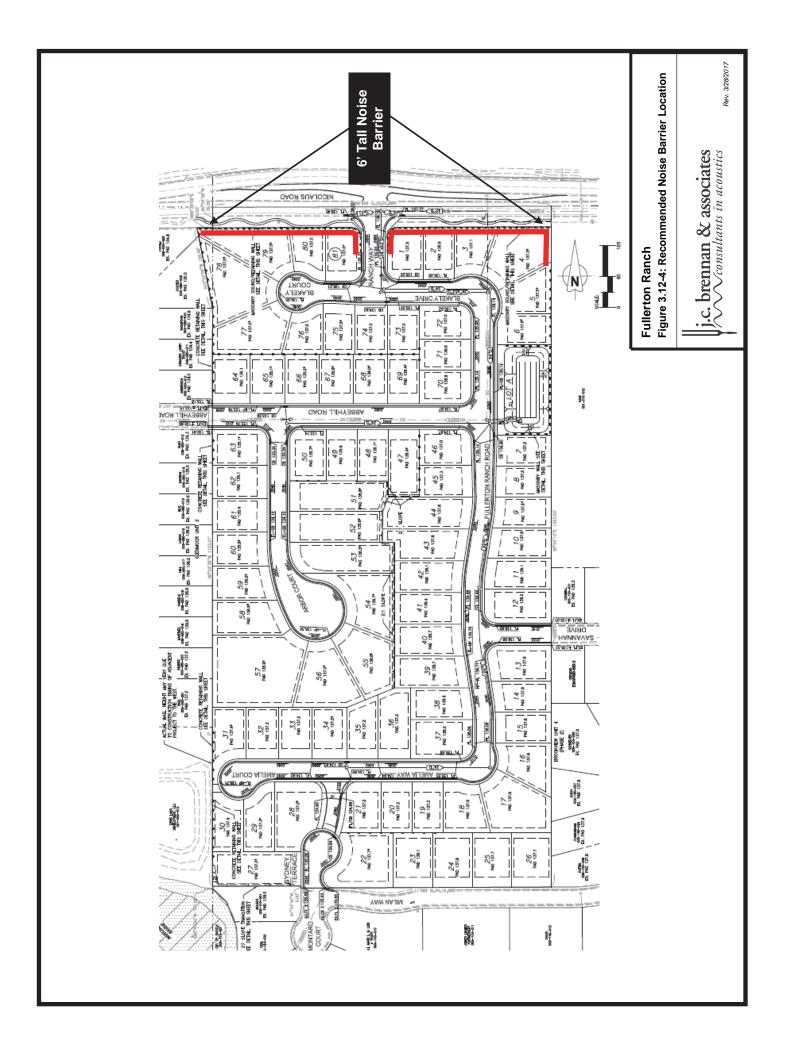
: Continuous (24-hr) Noise Measurement Site

: Short-Term Noise Measurement Site




Figure 2 – Table 8.1 of the City of Lincoln General Plan

-			Nois	e Level (C	NEL)		
	0-55	56-60	61-65	66-70	71-75	75-80	>81
Residential - Low Density Single Family, Duplex, Mobile Homes	Y						
Residential - Multiple Family, Group Homes							
Motels / Hotels							
Schools, Libraries, Churches, Hospitals, Extended Care Facilities							
Auditoriums, Concert Halls, Amphitheaters			, mi				
Sports Arenas, Outdoor Spectator Sports							
Playgrounds, Neighborhood Parks							
Golf Courses, Riding Stables, Water Recreation, Cemeteries							
Office Buildings, Business Commercial and Professional							


Industrial, Manufacturing, Utilities, Agriculture

Normally Acceptable. Specified land use is satisfactory, based on the assumption that any buildings involved are of normal, conventional construction, without any special noise insulation requirements.
Conditionally Acceptable. New construction or development should be undertaken only after a detailed analysis of the noise reduction requirements is made and needed insulation features have been included in the design.
Normally Unacceptable. New construction or development should generally be discouraged. If new construction or development does proceed, a detailed analysis of the noise reduction requirements must be made and needed noise insulation features included in the design. Outdoor areas must be shielded.
Unacceptable. New construction or development should not be undertaken.

Appendix A
FHWA-RD-77-108 Highway Traffic Noise Prediction Model
Data Input Sheet
Project #: 2017-104
Description: Existing
Ldn/CNEL: Ldn

Hard/§

Roadway Name Segment Descriptic Nicolaus Rd. West of Lakeside		Ę	ADT 10.070	Day % 87	Eve %	Night %	% Med. Trucks	% Hvy. Trucks 0.5	Speed 40	Distance 80	Offset (dB)
_	Lakeside to Fullerton Ranch		10,790	87		13	1.0	0.5	4	75	ις
Nicolaus Rd. Fullerton Ranch to Joiner			10,790	87		13	1.0	0.5	40	82	ځ
Nicolaus Rd. East of Joiner	East of Joiner		7,070	87		13	1.0	0.5	32	09	0
loiner Parkway Nicolaus to 1st	Nicolaus to 1st		8,360	87		13	1.0	0.5	40	85	ς
loiner Parkway South of 1st	South of 1st		13,890	87		13	1.0	0.5	40	100	ς

j.c. brennan & associates

Appendix A FHWA-RD-77-108 Highway Traffic Noise Prediction Model

Predicted Levels

2017-104 Existing Ldn Description: Ldn/CNEL: Project #:

Soft
rd/Soft:

	100					
egment	Roadway Name	Segment Description	Autos	Medium Trucks	Heavy Trucks	Total
,	Nicolaus Rd.	West of Lakeside	56.2	45.2	47.0	57.0
7	Nicolaus Rd.	Lakeside to Fullerton Ranch	56.9	45.9	47.7	57.7
က	Nicolaus Rd.	Fullerton Ranch to Joiner	56.1	45.1	46.9	56.9
4	Nicolaus Rd.	East of Joiner	59.9	49.6	51.8	6.09
2	Joiner Parkway	Nicolaus to 1st	55.0	44.0	45.8	55.8
9	Joiner Parkway	South of 1st	56.2	45.1	47.0	56.9

Appendix A

FHWA-RD-77-108 Highway Traffic Noise Prediction Model

Noise Contour Output

2016-154 Oakwood Landing EIR Existing Project #:

Soft Description: Ldn/CNEL: Hard/Soft:

	2	CC	/ /	ĸ	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	VI Original DA	
)9	65	70	75	Segment Description	ment Roadway Name	nent
200		13 IS 11 AIIIC	Distallo			100	

	Roadway Name Segment Description 75 70 65 60 55	colaus Rd. West of Lakeside 5 11 23 50 109	Lakeside to Fullerton Ranch 5 11 25 53	Fullerton Ranch to Joiner 5 11 25 53	East of Joiner 7 15	Nicolaus to 1st 4 10 21 45	South of 1st 6 13 29 63
100	Roadway	Nicolaus Rd.	Nicolaus Rd.	Nicolaus Rd.	Nicolaus Rd.	Joiner Parkway	Joiner Parkway
3,001:	Segment	-	7	က	4	2	9

Appendix A FHWA-RD-77-108 Highway Traffic Noise Prediction Model Data Input Sheet

Project #:

2017-104 Existing + Project Ldn

Description: Ldn/CNEL:

		Offset (dB)	-5	-5	ځ	0	ς,	رې
		Distance Of	80	75	82	09	85	100
		Speed Di	40	40	40	35	40	40
	% Hvy.	Trucks	0.5	0.5	0.5	0.5	0.5	0.5
	% Med.	Trucks	1.0	1.0	1.0	1.0	1.0	1.0
		Night %	13	13	13	13	13	13
		Eve %						
		Day %	87	87	87	87	87	87
		ADT	10,260	11,000	11,150	7,180	8,590	14.340
		Segment Description	West of Lakeside	Lakeside to Fullerton Ranch	Fullerton Ranch to Joiner	East of Joiner	Nicolaus to 1st	South of 1st
E C	Soft	Roadway Name	Nicolaus Rd.	Nicolaus Rd.	Nicolaus Rd.	Nicolaus Rd.	Joiner Parkway	Joiner Parkway
	Hard/Soft:	Segment	1	2	က	4	2	9

j.c. brennan & associates

Appendix A FHWA-RD-77-108 Highway Traffic Noise Prediction Model

Predicted Levels

2017-104 Existing + Project Project #:

Description: Ldn/CNEL:

Ldn Soft Hard/Soft:

:						
egment	Roadway Name	Segment Description	Autos	Medium Trucks Heavy Trucks		Total
1	Nicolaus Rd.	West of Lakeside	56.3	45.3	47.1	57.1
7	Nicolaus Rd.	Lakeside to Fullerton Ranch	57.0	46.0	47.8	57.8
က	Nicolaus Rd.	Fullerton Ranch to Joiner	56.3	45.2	47.1	57.0
4	Nicolaus Rd.	East of Joiner	59.9	49.7	51.9	6.09
2	Joiner Parkway	Nicolaus to 1st	55.1	44.1	45.9	55.9
9	Joiner Parkway	South of 1st	56.3	45.3	47.1	57.1

Appendix A

FHWA-RD-77-108 Highway Traffic Noise Prediction Model

Noise Contour Output

Project #:

2016-154 Oakwood Landing EIR Existing + Project Ldn Description: Ldn/CNEL: Hard/S

d/Soft: Soft	Soft			Distances to	Distances to Traffic Noise Contours	e Contours	-
egment	Roadway Name	Segment Description	75	70	65	09	55
٦	Nicolaus Rd.	West of Lakeside	2	11	24	51	110
7	Nicolaus Rd.	Lakeside to Fullerton Ranch	2	12	25	54	115
က	Nicolaus Rd.	Fullerton Ranch to Joiner	2	12	25	54	116
4	Nicolaus Rd.	East of Joiner	7	15	32	69	149
2	Joiner Parkway	Nicolaus to 1st	2	10	21	45	86
9	Joiner Parkway	South of 1st	9	4	30	64	138

Appendix A
FHWA-RD-77-108 Highway Traffic Noise Prediction Model
Data Input Sheet
Project #: 2017-104
Description: Cumulative
Ldn/CNEL: Ldn

Hard/S

Solution Relation Segment Description ADT Day % Eve % Night % Trucks Weet of Lakeside 25,200 87 13 1.0 Nicolaus Rd. Lakeside to Fullerton Ranch to Joiner Nicolaus Rd. Fullerton Ranch to Joiner Parkway 25,350 87 13 1.0 Nicolaus Rd. East of Joiner Darkway Nicolaus to 1st 16,400 87 13 1.0 Joiner Parkway South of 1st 25,900 87 13 1.0	i #00/7	: # ⁰										
Roadway Name Segment Description ADT Day % Eve % Night % Trucks Trucks Speed Distance Calculation Nicolaus Rd. Lakeside to Fullerton Ranch 25,350 87 13 1.0 0.5 40 75 Nicolaus Rd. Fullerton Ranch to Joiner 25,350 87 13 1.0 0.5 40 85 Nicolaus Rd. East of Joiner 16,400 87 13 1.0 0.5 40 85 Joiner Parkway Nicolaus to 1st 25,900 87 13 1.0 0.5 40 85 Joiner Parkway South of 1st 25,900 87 13 1.0 0.5 40 100		2011						% Med.	% Hvy.			
West of Lakeside 25,200 87 13 1.0 0.5 40 Lakeside to Fullerton Ranch to Joiner 25,350 87 13 1.0 0.5 40 Fullerton Ranch to Joiner 25,350 87 13 1.0 0.5 40 East of Joiner 16,400 87 13 1.0 0.5 35 y Nicolaus to 1st 25,900 87 13 1.0 0.5 40 y South of 1st 25,900 87 13 1.0 0.5 40	ent	Roadway Name	Segment Description	ADT	Day %	Eve %	Night %	Trucks	Trucks	Speed	Distance	Offset (dB)
Lakeside to Fullerton Ranch 25,350 87 13 1.0 0.5 40 Fullerton Ranch to Joiner 25,350 87 13 1.0 0.5 40 East of Joiner 16,400 87 13 1.0 0.5 35 y Nicolaus to 1st 16,600 87 13 1.0 0.5 40 y South of 1st 25,900 87 13 1.0 0.5 40		Nicolaus Rd.		25,200	87		13	1.0	0.5	40	80	-5
Fullerton Ranch to Joiner 25,350 87 13 1.0 0.5 40 East of Joiner 16,400 87 13 1.0 0.5 35 y Nicolaus to 1st 16,600 87 13 1.0 0.5 40 y South of 1st 25,900 87 13 1.0 0.5 40		Nicolaus Rd.	Lakeside to Fullerton Ranch	25,350	87		13	1.0	0.5	40	75	-5
East of Joiner 16,400 87 13 1.0 0.5 35 Nicolaus to 1st 16,600 87 13 1.0 0.5 40 South of 1st 25,900 87 13 1.0 0.5 40		Nicolaus Rd.		25,350	87		13	1.0	0.5	40	82	ς
Nicolaus to 1st 16,600 87 13 1.0 0.5 40 South of 1st 25,900 87 13 1.0 0.5 40		Nicolaus Rd.	East of Joiner	16,400	87		13	1.0	0.5	32	09	0
South of 1st 25,900 87 13 1.0 0.5 40		Joiner Parkway	Nicolaus to 1st	16,600	87		13	1.0	0.5	40	85	ψ
		Joiner Parkway	South of 1st	25,900	87		13	1.0	0.5	40	100	ς,

j.c. brennan & associates

Appendix A FHWA-RD-77-108 Highway Traffic Noise Prediction Model

Predicted Levels

2017-104 Cumulative Project #:

Description: Ldn/CNEL: Hard/Soft:

Ldn

0/001.	3011					
Segment	Roadway Name	Segment Description	Autos	Medium Trucks Heavy Trucks	Heavy Trucks	Total
1	Nicolaus Rd.	West of Lakeside	60.2	49.2	51.0	61.0
7	Nicolaus Rd.	Lakeside to Fullerton Ranch	9.09	49.6	51.4	61.4
က	Nicolaus Rd.	Fullerton Ranch to Joiner	59.8	48.8	50.6	9.09
4	Nicolaus Rd.	East of Joiner	63.5	53.3	55.5	64.5
2	Joiner Parkway	Nicolaus to 1st	58.0	47.0	48.8	58.8
9	Joiner Parkway	South of 1st	58.9	47.9	49.7	29.7

Appendix A

FHWA-RD-77-108 Highway Traffic Noise Prediction Model

Noise Contour Output

2016-154 Oakwood Landing EIR Cumulative Ldn Soft Project #:

Description: Ldn/CNEL: Hard/Soft:

rd/Soft: Soft	Soft				Traffic Nois	Distances to Traffic Noise Contours	-
Segment	Roadway Name	Segment Description	75	70	65	09	22
1	Nicolaus Rd.	West of Lakeside	6	20	43	93	201
7	Nicolaus Rd.	Lakeside to Fullerton Ranch	တ	20	43	93	201
က	Nicolaus Rd.	Fullerton Ranch to Joiner	တ	20	43	93	201
4	Nicolaus Rd.	East of Joiner	12	26	26	120	258
2	Joiner Parkway	Nicolaus to 1st	7	15	33	20	152
9	Joiner Parkway	South of 1st	6	20	44	92	204

j.c. brennan & associates

Appendix A
FHWA-RD-77-108 Highway Traffic Noise Prediction Model
Data Input Sheet
Project #: 2017-104
Description: Cumulative + Project
Ldn/CNEL: Ldn

	Offset (dB)	-, -,	-Ç-	-5	0	رې	<u>ئ</u>
	Offse						
	Distance	80	22	82	09	85	100
	Speed	40	40	40	32	40	40
% Hvy.	Trucks	0.5	0.5	0.5	0.5	0.5	0.5
% Med.	Trucks	1.0	1.0	1.0	1.0	1.0	1.0
	Night %	13	13	13	13	13	13
	Eve %						
	Day %	87	87	87	87	87	87
	ADT	25,390	25,560	25,710	16,510	16,830	26,370
	Segment Description	West of Lakeside	Lakeside to Fullerton Ranch	Fullerton Ranch to Joiner	East of Joiner	Nicolaus to 1st	South of 1st
Soft	Roadway Name	Nicolaus Rd.	Nicolaus Rd.	Nicolaus Rd.	Nicolaus Rd.	Joiner Parkway	Joiner Parkway
Hard/Soft:	Segment	1	2	က	4	2	9

j.c. brennan & associates

Appendix A FHWA-RD-77-108 Highway Traffic Noise Prediction Model

Predicted Levels

Project #:

2017-104 Cumulative + Project I dn Description: Ldn/CNEL:

Lan	t C
VONEL:	rd/Soft

	100					
egment	Roadway Name	Segment Description	Autos	Medium Trucks Heavy Trucks	Heavy Trucks	Total
ļ	Nicolaus Rd.	West of Lakeside	60.2	49.2	51.0	61.0
7	Nicolaus Rd.	Lakeside to Fullerton Ranch	2.09	49.7	51.5	61.5
က	Nicolaus Rd.	Fullerton Ranch to Joiner	59.9	48.9	20.7	2.09
4	Nicolaus Rd.	East of Joiner	63.6	53.3	55.5	64.5
2	Joiner Parkway	Nicolaus to 1st	58.0	47.0	48.9	58.8
9	Joiner Parkway	South of 1st	58.9	47.9	49.7	29.7

Appendix A

FHWA-RD-77-108 Highway Traffic Noise Prediction Model

Noise Contour Output

2016-154 Oakwood Landing EIR Cumulative + Project Ldn Project #:

Description: Ldn/CNEL: Hard/Sof

Soft: Soft	Soft			Distances to Traffic Noise Contours	Traffic Nois	e Contours	-
gment	Roadway Name	Segment Description	75	70	65	09	55
1	Nicolaus Rd.	West of Lakeside	6	20	43	94	202
7	Nicolaus Rd.	Lakeside to Fullerton Ranch	6	20	44	94	202
က	Nicolaus Rd.	Fullerton Ranch to Joiner	o	20	44	94	203
4	Nicolaus Rd.	East of Joiner	12	26	26	120	259
2	Joiner Parkway	Nicolaus to 1st	7	15	33	71	153
9	Joiner Parkway	South of 1st	10	21	45	96	207

Appendix B

FHWA Traffic Noise Prediction Model (FHWA-RD-77-108) Noise Prediction Worksheet

Project Information:

Job Number: 2017-104 Project Name: Fullerton Ranch Roadway Name: Nicolaus Road

Traffic Data:

Year: **Future** Average Daily Traffic Volume: 25,710 Percent Daytime Traffic: 87 Percent Nighttime Traffic: 13 Percent Medium Trucks (2 axle): 1 Percent Heavy Trucks (3+ axle): 0.5 Assumed Vehicle Speed (mph): 40 Intervening Ground Type (hard/soft): Soft

Traffic Noise Levels:

					L _{dn} , (aB	
					Medium	Heavy	
Location:	Description	Distance	Offset (dB)	Autos	Trucks	Trucks	Total
1	Nearest Backyards	70		66	55	57	67

Traffic Noise Contours (No Calibration Offset):

L _{dn} Contour, dB	Distance from Centerline, (ft)
75	20
70	44
65	94
60	203

Notes:

Appendix B

FHWA Traffic Noise Prediction Model (FHWA-RD-77-108) Noise Barrier Effectiveness Prediction Worksheet

Project Information: Job Number: 2017-104

Project Name: Fullerton Ranch Roadway Name: Nicolaus Road

Location(s): 1

Noise Level Data: Year: Future

Auto L_{dn}, dB: 66

$$\label{eq:medium} \begin{split} & \text{Medium Truck L}_{dn}, \, \text{dB: } 55 \\ & \text{Heavy Truck L}_{dn}, \, \text{dB: } 57 \end{split}$$

Site Geometry: Receiver Description: Nearest Backyards

Centerline to Barrier Distance (C_1): 55 Barrier to Receiver Distance (C_2): 15

Automobile Elevation: 0 Medium Truck Elevation: 2

Heavy Truck Elevation: 8 Pad/Ground Elevation at Receiver: 0

Receiver Elevation¹: 5
Base of Barrier Elevation: 0

Starting Barrier Height 6

Barrier Effectiveness:

Top of			L _{dr}	_ո , dB		Barrier B	reaks Line o	f Sight to
Barrier	Barrier		Medium	Heavy			Medium	Heavy
Elevation (ft)	Height ² (ft)	Autos	Trucks	Trucks	Total	Autos?	Trucks?	Trucks?
6	6	60	49	52	61	Yes	Yes	Yes
7	7	58	48	51	59	Yes	Yes	Yes
8	8	57	46	50	58	Yes	Yes	Yes
9	9	56	45	49	57	Yes	Yes	Yes
10	10	55	44	47	56	Yes	Yes	Yes
11	11	54	43	46	55	Yes	Yes	Yes
12	12	53	42	46	54	Yes	Yes	Yes
13	13	52	42	44	53	Yes	Yes	Yes
14	14	52	41	44	53	Yes	Yes	Yes

Notes: 1.Standard receiver elevation is five feet above grade/pad elevations at the receiver location(s)

Appendix K

Traffic Study

TRAFFIC AND CIRCULATION SECTION OF THE FULLERTON RANCH PROJECT IS/MND

Prepared for:

Submitted on August 16, 2017 by:

The Fountains in Roseville 1013 Galleria Blvd., Suite 255 Roseville, CA 95678

916.773.1900

www.fehrandpeers.com

TABLE OF CONTENTS

1. Environmental Setting1
2. Analysis Methods 6
3. Project Travel Characteristics10
4. Regulatory Setting12
5. Thresholds of Significance14
6. Existing Plus Project Impacts and Mitigation Measures16
7. Existing Plus Project Impacts and Mitigation Measures
FIGURES
1. Fullerton Ranch Project Study Area2
2. Pedestrian and Bicycle Facilties – Existing Conditions3
3. Fullerton Ranch Existing Roadway System5
4. Peak Hour Traffic Volumes and Lane Configuration Existing Conditions
5. Peak Hour Traffic Volumes and Lane Configuration Existing Plus Project Conditions

FIGURES (Continued)

6. Peak Hour Traffic Volumes and Lane Configuration Cumulative Conditions25
7. Peak Hour Traffic Volumes and Lane Configuration Cumulative Plus Project Conditions26
TABLES
1. LOS Criteria - Intersection 6
2. Peak Hour Intersection Level of Service Existing Conditions
3. Project Trip Generation11
4. Peak Hour Intersection Level of Service Existing Plus Project Conditions16
5. Two-Way Average Daily Traffic Existing Plus Project Conditions18
6. Peak Hour Intersection Level of Service Cumulatie and Cumulative Plus Project Conditions24
7. Two-Way Average Daily Traffic Cumulatie and Cumulative Plus Project Conditions27

The Fullerton Ranch Project site is located on the south of Nicolaus Road west of Joiner Parkway and East of Lakeside Drive; directly east of the existing Glenmoor Subdivision Development and east of the future Lincoln Independence Project. Access to the 81 single family residences would be provided by a new intersection on Nicolaus Road, and from existing roadways, Abbeyhill Road, Savannah Drive, and Milan Way.

This section of the Initial Study / Mitigated Negative Declaration (IS/MND) analyzed the potential impacts of the proposed Fullerton Ranch Project on the surrounding transportation system including intersections, roadways, bicycle/pedestrian facilities, transit facilities/services and construction traffic. This report identifies the significant impacts of the proposed Project and recommends mitigation measures to lessen their significance.

Section 1 - Environmental Setting

PROJECT LOCATION

The Project site is located on the south of Nicolaus Road west of Joiner Parkway and East of Lakeside Drive. The proposed Fullerton Ranch Project would be located directly east of the existing Glenmoor Subdivision Development and east of the future Lincoln Independence Project. Therefore, the transportation analysis contained in this report tiers off the analysis completed for Existing + Project and Cumulative + Project Scenarios from Independence of Lincoln Development Project EIR (2016).

Access to the 81 single family residences would be provided by a new intersection on Nicolaus Road and from existing roadways, Abbeyhill Road, Savannah Drive, and Milan Way. Figure 1 displays the regional location of the Project site relative to the surrounding transportation system. Figure 2 displays roadway classification, number of lanes, speed limits, and intersection control types within the study area.

STUDY AREA ROADWAYS AND INTERSECTIONS

The following describes the key roadways in the study area.

State Route 65 is a north-south state highway that begins at Interstate 80 (I-80) and extends north through Lincoln to SR 70 south of Marysville. SR 65 is a four-lane freeway from I-80 to the at-grade intersection with Nelson Lane. It continues as a four-lane divided highway from Nelson Lane to north of Wise Road. North of Wise Road, it becomes a two-lane state highway connecting the area to Yuba County and Marysville to the north. The section of SR 65 between Lincoln Boulevard and Riosa Road is known as the Lincoln Bypass. The Lincoln Bypass opened in 2012 to facilitate travel between South Placer County and Yuba County and reduce through traffic in the City of Lincoln. The former SR 65 alignment through Downtown Lincoln is now called Lincoln Boulevard.

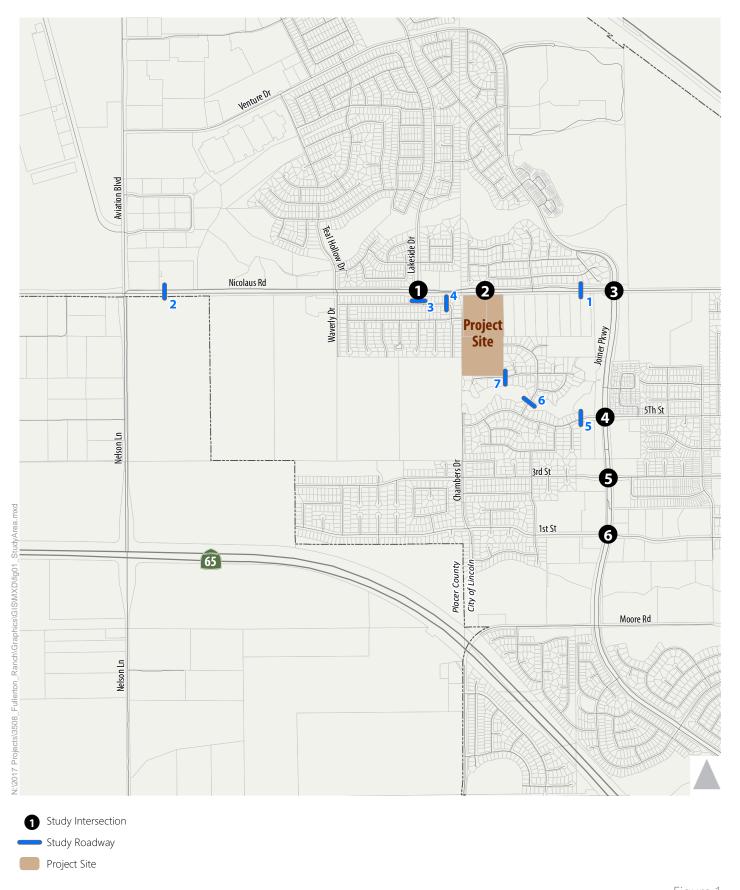
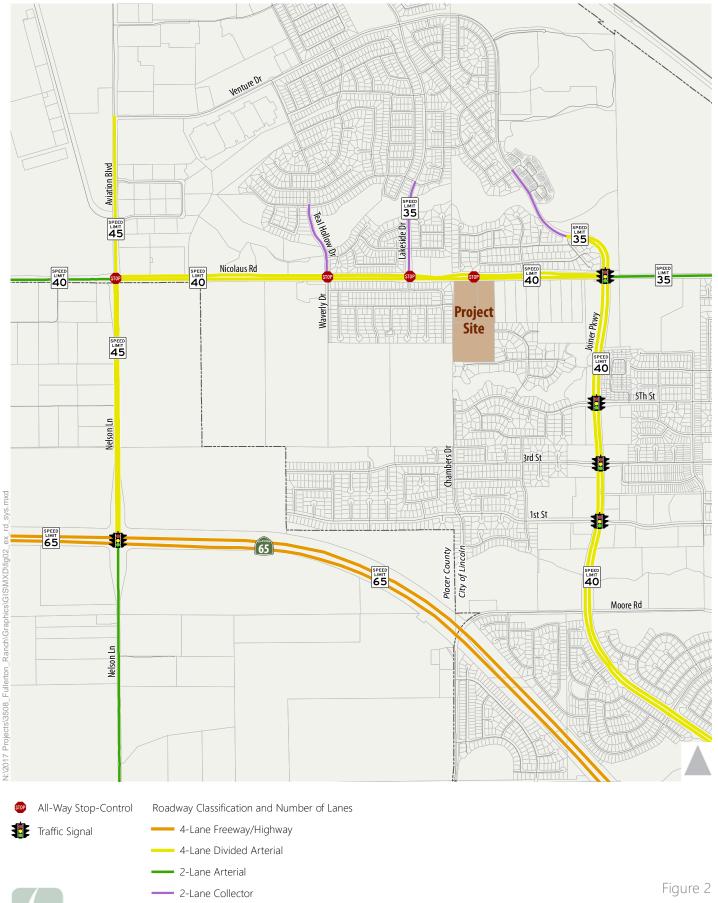



Figure 1

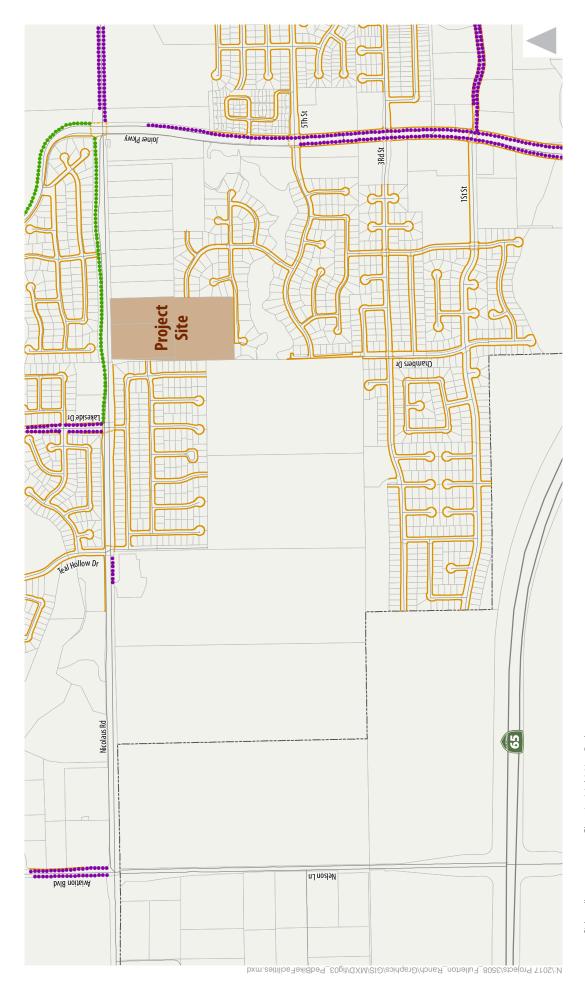
APPENDIX I

TRANSPORTATION AND CIRCULATION

Nicolaus Road is an east-west major arterial roadway from Joiner Parkway to Pleasant Grove Road in unincorporated Placer County and a collector street from Joiner Parkway to Seventh Street. Within the study area, it is a four-lane divided roadway between Nelson Lane and Joiner Parkway. It is two lanes east of Joiner Parkway and a two-lane rural roadway west of Nelson Lane. It has a grade separated overcrossing of the SR 65 bypass. In addition, Nicolaus Road is an STAA truck route, which means that California legal trucks may use it to deliver goods and materials to industrial uses in the Lincoln Airport Industrial Area.

Joiner Parkway is a major arterial street that spans much of the City of Lincoln from south to north. Within the study area, Joiner Parkway is a four-lane divided arterial. North of Nicolaus Road, Joiner Parkway narrows from four to two lanes.

Lakeside Drive, Celtic Drive, Savannah Drive and Milan Way are all two-lane collector streets that serve existing residential neighborhoods. Savannah Drive, Abbeyhill Road, and Milan Way would provide access to the Fullerton Ranch Project.


EXISTING PEDESTRIAN AND BICYCLE FACILITIES

The following types of bicycle facilities exist within the study area:

- Multi-use paths (Class I) are paved trails that are separated from roadways, and allow for shared use by both cyclists and pedestrians.
- ✓ On-street bike lanes (Class II) are designated for use by bicycles by striping, pavement legends, and signs.

Figure 3 displays existing bicycle facilities within the project vicinity. A Class I multi-use path exists along Nicolaus Road (north side) between Joiner Parkway and Lakeside Drive. Class II bike lanes exist at all other segments marked on Figure 3, including portions of Aviation Boulevard, Nicolaus Road west of Teal Hollow Drive/Waverly Drive, Nicolaus Road east of Joiner Parkway, parts of Joiner Parkway, and First Street east of Joiner Parkway. The south side of the segment of Nicolaus Road west of Waverly Drive has a shoulder of suitable width to facilitate bicycle travel. However, lane marking and signage is not present to designate it as bike lane.

As also seen in Figure 3, the pedestrian network in the study area includes sidewalks along a majority of residential streets. Arterial streets such as Nicolaus Road and Joiner Parkway also feature sidewalks, although there are gaps particularly where abutting properties have not been developed. The south side of the segment of Nicolaus Road west of Waverly Drive does not have a sidewalk. All intersections have three or more crosswalks except for Waverly Drive/Nicolaus Road, which has two crosswalks, and Nicolaus Road/Nelson Lane, which has no crosswalks and no adjacent pedestrian facilities.

••••• Class I - Multi-Use Path Sidewalk Crosswalk

••••• Class II - Bike Lane

TRANSIT SERVICE

Transit service in Lincoln consists of the "Lincoln Route", which is operated by Placer County Transit. Although this route serves downtown and other areas of the City, it does not currently extend to the northwest quadrant of the City, in which the project site is located. The closest transit route is located approximately 1.2 miles to the south-east near the corner of 3rd Street / R Street in downtown Lincoln.

SECTION 2 - ANALYSIS METHODS

The operational performance of the roadway network is commonly described with the term Level of Service, or LOS. LOS is a qualitative description of operating conditions, ranging from LOS A (free-flow traffic conditions with little or no delay) to LOS F (oversaturated conditions where traffic flows exceed design capacity, resulting in long queues and delays). The LOS analysis methods outlined in the *Highway Capacity Manual* (HCM) (Transportation Research Board, 2000 and 2010) were used in this study.

Table 1 summarizes the relationship between the control delay and LOS for signalized and unsignalized intersections. The delay ranges for unsignalized intersections are lower than for signalized intersections as drivers expect less delay at unsignalized intersections.

Table	1 LOS Criteria - Intersections		
Level		Average Delay (S	Seconds/Vehicle)
of Servic e	Description (for Signalized Intersections)	Signalized Intersections	Unsignalized Intersections
Α	Operations with very low delay occurring with favorable traffic signal progression and/or short cycle lengths.	≤10.0	≤10.0
В	Operations with low delay occurring with good progression and/or short cycle lengths.	> 10.0 to 20.0	> 10.0 to 15.0
С	Operations with average delays resulting from fair progression and/or longer cycle lengths. Individual cycle failures begin to appear.	> 20.0 to 35.0	> 15.0 to 25.0
D	Operations with longer delays due to a combination of unfavorable progression, long cycle lengths, or high V/C ratios. Many vehicles stop and individual cycle failures are noticeable.	> 35.0 to 55.0	> 25.0 to 35.0
E	Operations with high delay values indicating poor progression, and long cycle lengths. Individual cycle failures are frequent occurrences. This is considered to be the limit of acceptable delay.	> 55.0 to 80.0	> 35.0 to 50.0
F	Operations with delays unacceptable to most drivers occurring due to over-saturation, poor progression, or very long cycle lengths.	> 80.0	> 50.0

Note: LOS = level of service; V/C ratio= volume-to-capacity ratio

LOS at signalized intersections and roundabouts based on average delay for all vehicles. LOS at unsignalized intersections is reported for entire intersection and for minor street movement with greatest delay.

Source: Transportation Research Board 2010

The HCM procedures were applied using the Synchro 8 traffic analysis software. The Synchro analysis relies on peak hour factors and heavy vehicle percentages that were measured in the field. Other model inputs include lane configurations, traffic volumes, and traffic controls (including signal phasing/timing). For side-street stop-controlled intersections, delay is calculated for each stop-controlled movement and for the uncontrolled left turns, if any, from the main street. The delay and LOS for the entire intersection and for the worst movement are reported for side-street stop intersections.

ANALYSIS SCENARIOS

The transportation system was analyzed for the following scenarios:

Existing Conditions – establishes the existing setting, which is used to measure the significance of Project impacts. It should be noted that for the Fullerton Ranch IS/MND, the traffic analysis from the Independence of Lincoln Development Project EIR (2016) Existing + Project Analysis was used to represent Existing Conditions.

Existing Plus Project Conditions – adds traffic from the proposed Project to existing conditions.

Cumulative No Project Conditions – represents cumulative travel conditions based on output from the Placer County Travel Demand Model assuming no development on the Project site. It should be noted that for the Fullerton Ranch IS/MND, the traffic analysis from the Independence of Lincoln Development Project EIR (2016) Cumulative + Project Analysis was used to represent Existing Conditions.

Cumulative Plus Project Conditions – adds traffic from the proposed Project to the Cumulative No Project condition.

DATA COLLECTION

Study facilities were selected based on the Project's expected travel characteristics (i.e., location and amount of Project trips) as well as facilities susceptible to being impacted by the Project.

INTERSECTIONS

The following Six (6) existing intersections were selected for detailed intersection level of service analysis.

- 1. Nicolaus Road / Lakeside Drive;
- 2. Nicolaus Road / Project Access;
- 3. Nicolaus Road / Joiner Parkway;
- 4. Joiner Parkway / 5th Street;
- 5. Joiner Parkway / 3rd Street; and
- 6. Joiner Parkway / 1st Street.

In addition, the following seven (7) roadway segments were also evaluated for average daily traffic (ADT) volumes:

- 1. Nicolaus Road west of Joiner Parkway;
- 2. Nicolaus Road east of Nelson Lane
- 3. Lakeside south of Nicolaus Road;
- 4. Celtic Drive west of project site;
- 5. Fifth (5th) Street west of Joiner Parkway
- 6. Savannah Drive east of project site
- 7. Milan Way west of Savannah Drive and south of the project site

This report analyzes project impacts during the following analysis periods:

- ✓ Weekday AM Peak Hour the AM peak hour is defined as the consecutive 60-minute period that has the greatest traffic volume within the 7:00 to 9:00 a.m. peak period.
- ▲ Weekday PM Peak Hour the PM peak hour is defined as the consecutive 60-minute period that has the greatest traffic volume within the 4:00 to 6:00 p.m. peak period

Peak hours were defined on the basis of individual intersection peak hours because (1) it is more conservative to analyze peak hours at the intersection level, (2) intersections are relatively isolated from each other so balancing is not always critical, and (3) there are no coordinated corridors being studied. The most common AM peak hour was from 7:30 to 8:30 a.m., while the most common PM peak hour was from 4:30 to 5:30 p.m.

EXISTING INTERSECTION OPERATIONS

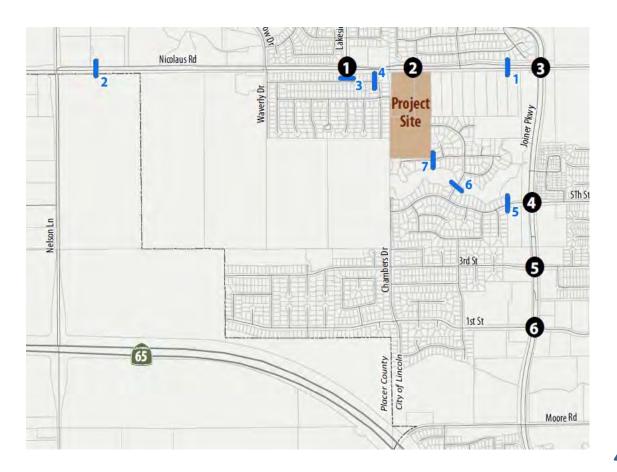

Existing operations were analyzed for the weekday AM and PM peak hours at the six study intersections based on the volumes, geometry and intersection control shown in Figure 4. Based on the results presented Table 2, all intersections currently operate at LOS C or better. These results match existing conditions, which generally reveal modest levels of queuing and vehicle delay during the study periods.

Table 2 Peak Hour Intersection Level of Service - Existing Conditions										
Intersection	Control	AM Pe	ak Hour	PM Pea	ak Hour					
intersection	Control	Delay ¹	LOS	Delay ¹	LOS					
Nicolaus Road / Lakeside Drive	AWSC	14.0	В	10.8	В					
Nicolaus Road / Fullerton Ranch Access (Does Not Exist)	SSSC	0.0	А	0.0	А					
Nicolaus Road / Joiner Parkway	Signal	22.3	С	18.0	В					
Joiner Parkway / 5 th Street	Signal	16.2	В	14.2	В					
Joiner Parkway / 3 rd Street	Signal	17.5	В	14.9	В					
Joiner Parkway /1st Street	Signal	28.7	С	20.5	С					

Notes: LOS = level of service. AWSC = All-Way Stop Control and SSSC = Side Street Stop Control

Source: Fehr & Peers 2017

¹ For signalized and all-way stop controlled intersections, average intersection delay is reported in seconds per vehicle for all approaches.

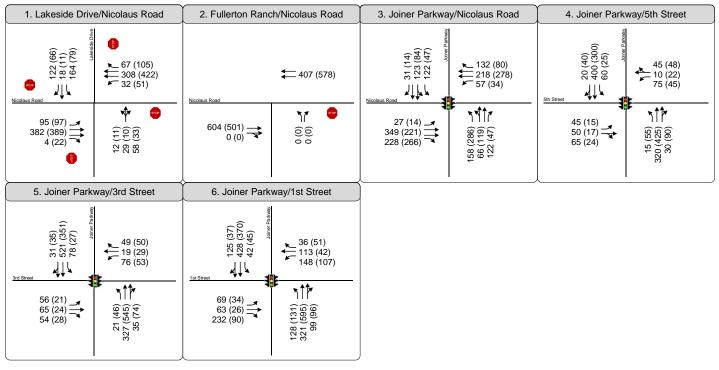


Figure 4
Peak Hour Traffic Volumes
and Lane Configurations Existing Conditions

The all-way stop controlled intersection of Lakeside Drive / Nicolaus Road operates at acceptable LOS B conditions during both AM and PM peak hours. The signalized intersection of Joiner Parkway / Nicolaus Road operates at acceptable LOS C conditions during the AM peak hour and acceptable LOS B conditions during the PM peak hour. And the signalized intersection of Joiner Parkway / 1st Street operates at acceptable LOS C conditions during both AM and PM peak hours.

SECTION 3 - PROJECT TRAVEL CHARACTERISTICS

PROJECT DESCRIPTION

The Fullerton Ranch Project site is located on the south of Nicolaus Road west of Joiner Parkway and East of Lakeside Drive; directly east of the existing Glenmoor Subdivision Development and east of the future Lincoln Independence Project. Access to the 81 single family residences would be provided by a new intersection on Nicolaus Road, and from existing roadways, Celtic Drive, Lakeside Drive, Abbeyhill Road, Savannah Drive, and Milan Way. The Nicolaus Road / Project Access intersection will provide full access for the proposed Fullerton Ranch Project (81 single family residential units), including:

- An Eastbound right-turn in;
- A Westbound left-turn in;
- o A Northbound left-turn out; and
- A Northbound right-turn out.

TRIP GENERATION

Table 3 shows the estimated trips generated for the proposed 81 single family residential Fullerton Ranch Project during weekday daily, AM peak hour, and PM peak hour conditions. As shown below, the project would generate approximately 771daily vehicle trips, 61 new AM peak hour trips, and 81 new PM peak hour trips. The trips generated by the residential land uses are based on trip rates from the *Trip Generation Manual* (9th Edition, Institute of Transportation Engineers 2012).

TRIP DISTRIBUTION/ASSIGNMENT

The distribution of project generated vehicles trips was based on the following information and analysis methods:

1. Existing directional travel patterns to and from the housing development south of Nicolaus Road between Waverly Drive and Joiner Parkway.

- 2. Existing travel patterns along Nicolaus Road, Nelson Lane, and Joiner Parkway (to understand regional travel patterns).
- 3. Complementary land uses (i.e., employment, retail, and schools) within the study area.

Table 16-3 Project Trip Generation												
	Quantity		_	rin Data	. 1	Trips						
Land Use (ITE Code)		Unit	Trip Rate ¹		Daile	A.M. Peak Hour			P.M. Peak Hour			
			Daily	AM	PM	Daily	In	Out	Total	In	Out	Total
Single Family Residential (210)	81	du	9.52	0.75	1.00	771	15	46	61	51	30	81
Tot	Total External Vehicle Trips						15	46	61	51	30	81

Notes: du = dwelling units

Source: Fehr & Peers 2017

The AM peak hour trip distribution for the 81 single family residential units was determined to be:

- 1. 52% to and from the west on Nicolaus Road;
- 2. 15% to and from the east on Nicolaus Road;
- 3. 3% to and from the north on Joiner Parkway;
- 4. 25% to and from the south on Joiner Parkway;
- 5. 2% to and from the south-east on 1st Street; and
- 6. 3% to and from the south-west on 1st Street.

The PM peak hour trip distribution for the 81 single family residential units was determined to be:

- 1. 57% to and from the west on Nicolaus Road;
- 2. 13% to and from the east on Nicolaus Road;
- 3. 2% to and from the north on Joiner Parkway;
- 4. 25% to and from the south on Joiner Parkway;
- 5. 2% to and from the south-east on 1st Street; and
- 6. 1% to and from the south-west on 1st Street.

¹Trip rate for single family residential units based on LU categories 210 from the *Trip Generation Manual* (Institute of Transportation Engineers 2012).

SECTION 4 - REGULATORY SETTING

Existing transportation polices, laws, and regulations that would apply to the proposed Project are summarized below. This information provides a context for the impact discussion related to the Project's consistency with applicable regulatory conditions and development of significance criteria for evaluating Project impacts.

FEDERAL AND STATE REGULATIONS

The California Department of Transportation (Caltrans) is responsible for operating and maintaining the state highway system. In the project vicinity, none of the six study intersections fall under Caltrans' jurisdiction.

LOCAL REGULATIONS

City of Lincoln General Plan

The Transportation & Circulation Element of the *City of Lincoln General Plan* (March 2008) includes the following policies that are relevant to transportation and circulation.

- Policy T-2.2: New Development. The City shall ensure that streets and highways will be available to serve new development by requiring detailed traffic studies and necessary improvements as a part of all major development proposals.
- ▶ Policy T-2.3: Level of Service for Local Streets and Intersections. Strive to maintain a LOS C at all signalized intersections in the City during the p.m. peak hours. Exceptions to this standard may be considered for intersections where the city determines that the required road improvements are not acceptable (i.e., due to factors such as the cost of improvements exceeding benefits achieved, results are contrary to achieving a pedestrian design, or other factors) or that based upon overriding considerations regarding project benefits, an alternative LOS may be accepted. For purposes of this policy, City intersections along McBean Park Drive between East Avenue and G Street, and G Street between First Street and Seventh Street, are excluded from the LOS C standard, and will operate at a lower LOS. [Note that G Street is also known as Lincoln Boulevard and/or "Old Highway 65."]
- ▶ Policy T-2.14: Developer Requirements. The City shall require developers to construct at least the first two lanes of any road (including curbs, gutters and sidewalks) within their projects.
- ▶ Policy T-4.3: Promote Public Transit. The City shall promote the use of public transit through development conditions requiring park-and-ride lots, bus turnouts and passenger shelters along major streets adjacent to appropriate land uses.

- Policy T-5.1: Develop Bike Lanes. The City shall require bike lanes in the design and construction of major new street and highway improvements, and to establish bike lanes on those city streets wide enough to accommodate bicycles safely.
- Policy T-5.4: Bicycle and Pedestrian Crossings. The City shall provide pedestrian/bicycle crossings at appropriate intervals along new roadways that will adequately serve new large-scale commercial office, industrial development, and residential development as well as parks and schools.
- Policy T-5.6: Trails and Pathways to Retail and Employment Centers. The City shall promote pedestrian convenience and safety through development conditions requiring sidewalks, walking paths, or hiking trails that connect residential areas with commercial, shopping, and employment centers. Where feasible, trails will be looped and interconnected.
- Policy T-5.7: Trails and Pathways along Creeks and Wetland Areas. The City shall encourage the development of trails and pathways along the edges of creeks and wetland areas. Where feasible, trails will be looped and interconnected.
- Policy T-5.9: Pedestrian Access. The City shall encourage specific plans and development plans to include design of pedestrian access that enables residents to walk from their homes to places of work, recreation and shopping.

The Health & Safety Element of the City of Lincoln General Plan (March 2008) includes the following policies that are relevant to transportation and circulation.

- Policy HS-3.10: Travel Demand Measures. Coordinating with the PCAPCD, the City shall require large development projects to mitigate air quality impacts. As feasible, mitigations may include, but are not limited to, the following:
 - providing bicycle access and bicycle parking facilities,
 - providing preferential parking for high-occupancy vehicles, car pools, or alternative fuels vehicles (including neighborhood electric vehicles or NEVs), and
 - establishing telecommuting programs or satellite work centers.
- Policy HS-3.18: Design for Transportation Alternatives. The City shall encourage all new development to be designed to promote pedestrian and bicycle access and circulation (including the use of NEVs), to the greatest extent feasible.

Policy T-2.3 establishes the City of Lincoln's LOS C policy for signalized intersections during the PM peak hour. Because the City does not have an adopted LOS policy for unsignalized intersections or other time periods (i.e., AM peak hour), this study applies this LOS C standard to all City of Lincoln intersections—signalized and unsignalized—during both the AM and PM peak hour, consistent with previous traffic analyses prepared for the City of Lincoln. Unacceptable AM peak hour and/or

unsignalized conditions are conservatively treated as significant impacts if caused or exacerbated (to a significant degree) by the project, even if such a result is not prescribed under the City's level of service policy.

City of Lincoln 2012 Bicycle Transportation Plan Update

The City of Lincoln Bicycle Transportation Plan Update (2012) includes the following goals policies related to bicycle circulation in new development areas that are relevant to the project.

- **Policy 1.5:** Provide bicycle connections that allow for regional bike travel to and from the City of Lincoln.
- Policy 1.6: Integrate bicycle planning with other community planning, including land use and transportation planning.
- **Policy 2.1:** Require new development projects to reserve the right-of-way for multi-use trails shown in the proposed system of bikeways.
- Policy 2.3: Provide pedestrian/bicycle crossings at appropriate intervals along new roadways
 that will adequately serve new large-scale commercial office, industrial development, and
 residential development.

Section 5 - Thresholds of Significance

The following section describes the standards of significance utilized to analyze and determine the project's potential impacts related to transportation and circulation. These criteria take into account the applicable level of service policies and standards from Appendix G of the CEQA Guidelines and the City of Lincoln and Caltrans adopted policies.

INTERSECTIONS

Impacts to intersections are considered significant if the project would:

- 1. Cause the LOS to worsen from acceptable to unacceptable levels according to the following:
 - a. For all intersections within Lincoln city limits, LOS C or better is considered acceptable and LOS D-F is considered unacceptable.
 - b. For the SR 65/Nelson Lane intersection, LOS E or better is considered acceptable and LOS F is considered unacceptable.
- 2. Worsen unacceptable existing (or projected cumulative) operations according to the following:

a. For all intersections within Lincoln city limits, it is considered unacceptable if the average vehicle delay increases by five seconds or more for an intersection that is already (or projected to be) operating at an unacceptable LOS without the project.

BICYCLE AND PEDESTRIAN FACILITIES

The following significance criteria related to bicycle and pedestrian facilities reflect whether the project would conflict with adopted plans, policies, or programs regarding bicycle and pedestrian facilities. Impacts to bicycle and pedestrian facilities are considered significant if the project would:

- 1. Disrupt or interfere with existing or planned bicycle and pedestrian facilities.
- 2. Create a demand for bicycling or walking above the capacity which is provided or planned.
- 3. Create inconsistencies with adopted pedestrian or bicycle system plans, guidelines, policies, or standards.

TRANSIT FACILITIES

The following significance criteria related to transit facilities reflect whether the project would conflict with adopted plans, policies, or programs regarding transit facilities. Impacts to the transit system are considered significant if the project would:

- 1. Create a demand for mass transit services above the capacity which is provided or planned.
- 2. Interfere with existing or planned transit facilities.

EMERGENCY VEHICLE ACCESS AND EMERGENCY EVACUATION

Impacts to transportation and circulation are considered significant if the project would:

- 1. Result in inadequate emergency access.
- 2. Fail to provide an adequate means for residents/visitors to evacuate the project site in a reasonable period of time in the event of an emergency.

CONSTRUCTION IMPACTS

Impacts to the transportation and circulation system are considered significant if construction activities for the project would:

1. Create a prolonged impact on travel conditions or facilities, including inadequate emergency vehicle access, traffic hazards to bicyclists and pedestrians, damage to roadbeds, or substantial truck traffic on roadways not designated as truck routes.

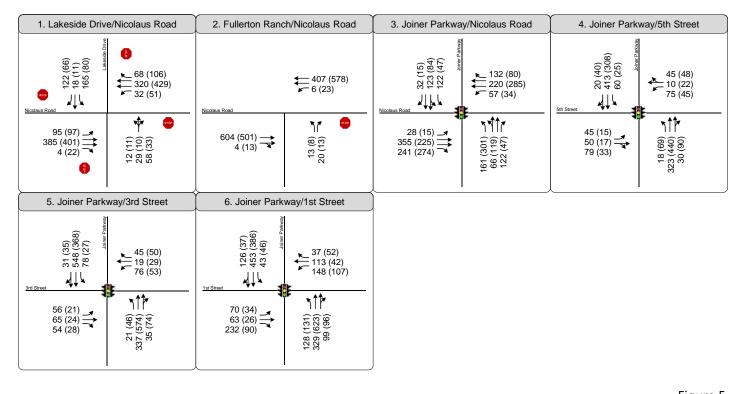
SECTION 6 – EXISTING PLUS PROJECT IMPACTS AND MITIGATION MEASURES

An Existing Plus Project analysis was performed to identify potential impacts under existing conditions. This scenario focuses on the Project-specific effects of the Project. Existing Plus Project operations were analyzed for the weekday AM and PM peak hours at the study intersections. Existing Plus Project operations were analyzed at the six study intersections based on the volumes, geometry and intersection control shown in Figure 5. Table 4 displays the results of the existing plus project operations analysis. According to this table, the addition of project generated traffic at all six study intersections would only result in a minor change in control delay. All intersections would operate at LOS C or better under existing plus project conditions during both AM and PM peak hour conditions.

Table 4 Peak Hour Intersection Level of Service - Existing + Project Conditions										
Intersection	Control	AM Pea	ak Hour	PM Pea	ak Hour					
intersection	Control	Delay ¹	LOS	Delay ¹	LOS					
Nicolaus Road / Lakeside Drive	AWSC	16.5	В	13.4	В					
Nicolaus Road / Fullerton Ranch Access (Does Not Exist)	SSSC	0.1 (17.4 NB LT)	A C (NB LT)	0.4 8.7 (WB LT)	A A					
Nicolaus Road / Joiner Parkway	Signal	23.6	С	19.4	В					
Joiner Parkway / 5 th Street	Signal	16.4	В	14.3	В					
Joiner Parkway / 3 rd Street	Signal	17.7	В	15.0	В					
Joiner Parkway /1st Street	Signal	28.9	С	20.6	С					

Notes: LOS = level of service. AWSC = All-Way Stop Control and SSSC = Side Street Stop Control

Source: Fehr & Peers 2017


It should be noted that the Fullerton Ranch Access / Nicolaus Road side-street stop controlled intersection will provide full access for the proposed Fullerton Ranch Project (81 single family residential units), including:

- An Eastbound right-turn in;
- A Westbound left-turn in;
- o A Northbound left-turn out; and
- o A Northbound right-turn out.

¹ For signalized and all-way stop controlled intersections, average intersection delay is reported in seconds per vehicle for all approaches.

Peak Hour Traffic Volumes and Lane Configurations -Existing Plus Project Conditions

Table 5 presents ADT estimates for each study roadway segment and project access point under Existing and Existing Plus Project conditions. By providing full access at the Fullerton Ranch Driveway / Nicolaus Road side-street stop controlled intersection, a lower number of project generated traffic would use Lakeside Drive south of Nicolaus Road and Celtic Drive west of the project site.

Table 5 Two-Way Average Daily Traffic – Existing and Existing Plus Project Conditions							
Roadway Segment	Average Daily Traffic (Existing Conditions)	Average Daily Traffic (Existing Plus Project Conditions)					
Nicolaus Road west of Joiner Parkway	8,700	8,905					
Nicolaus Road east of Nelson Lane	7,300	7,640					
Lakeside south of Nicolaus Road	1,000	1,020					
Celtic Drive / Abbeyhill Road west of Project Site	400	420					
Fifth Street west of Joiner Parkway	1,600	1,840					
Savannah Drive east of Project Site	700	910					
Milan Way west of Savannah Drive and south of the Project Site	250	280					

Note: N.A. = Not Applicable Source Fehr & Peers 2017

As shown in Table 5, the project would:

- ▲ Increase traffic levels along Nicolaus Road on both sides of the project site. However, Nicolaus Road would be operating well below capacity.
- ✓ Increase the ADT at the project's points of access, which under existing plus project conditions includes Lakeside Drive, Celtic Drive Abbeyhill Lane, Fifth Street, Savannah Drive and Milan Way. The resultant volumes are all well below the capacity of a two-lane collector street.

Impact 1: Impacts to City of Lincoln Intersections

The Project would not cause any of the study intersection to deteriorate to an unacceptable LOS. Therefore, the Project's intersection impacts would be **less than significant**.

As shown in Table 4, the addition of Project generated traffic at all six study intersections would only result in a minor change in control delay. All intersections would operate at LOS C or better under existing plus project conditions during both AM and PM peak hour conditions.

Intersection impacts would be less than significant.

Mitigation Measure

No mitigation required.

Impact 2: Impacts to Pedestrian Facilities

The project would not create a demand for pedestrian travel above the capacity which is provided or planned. Therefore, the project's intersection impacts would be **less than significant** impact.

The Project would extend the existing sidewalk on the south side of Nicolaus Road along the frontage of the proposed Fullerton Ranch Project. In addition, all the internal collector streets would also provide continuous sidewalks connecting the 81 single family residences to Abbeyhill Road (to the west), Savannah Drive (to the east) and Milan Way (to the south).

Pedestrian Facilities impacts would be less than significant.

Mitigation Measure

No mitigation required.

Impact 3: Impacts to Bicycle Facilities

The project would not create inconsistencies with any adopted policies related to bicycle systems or any plan bicycle system improvements. This would be a **less-than-significant** impact

The City of Lincoln Bikeway Master Plan shows the following planned bicycle facilities in the project vicinity:

- Planned Class II bike lane on south side of Nicolaus Road between Waverly Drive and Joiner Parkway.
- Planned Class I multi-use trail on north side of Nicolaus Road between Waverly Drive and Nelson Lane.
- Planned Class I multi-use trail that would extend southerly from Nicolaus Road west of Waverly Drive, and then easterly along Markham Ravine, and then southerly parallel to Chambers Drive to beyond First Street.
- ✓ Planned Class III bike lane connecting Nicolaus Road, through the Glenmoor Subdivision via Abbeyhill Road, through the project site, to Savannah Drive.

Therefore, the project is in compliance with the planned bicycle system in the *City of Lincoln Bikeway Master Plan*. This would be a **less-than-significant with mitigation**.

Mitigation Measures

Construct the segment of the Class II bike lane along the project frontage on the south side of Nicolaus Road. And alternative is to dedicate the right-of-way and pay the Project's fair share towards the Class II bike lane on the south side of Nicolaus Road between Waverly Drive and Joiner Parkway.

Construct the Class III bike lane connecting Nicolaus Road, through the Glenmoor Subdivision via Abbeyhill Road, through the project site, to Savannah Drive.

Impact 4: Impacts to Transit Facilities

The project is a residential development comprised of 81 single family residences. Transit service in Lincoln consists of the "Lincoln Route", which is operated by Placer County Transit. Although this route serves downtown and other areas of the City, it does not currently extend to the northwest quadrant of the City, in which the project site is located.

It should be noted that a bus stop is planned to be constructed on Nicolaus Road approximately 0.75 miles to the west as part of the proposed L. Based on future growth in the City of Lincoln, an extension of the existing Lincoln Route or a second transit route may serve the north-west area of the City of Lincoln.

Therefore, based on the number of residential units and the fact that the Lincoln Route does not currently extend to the area, this would be a **less-than-significant with mitigation**.

Mitigation Measure

Pay the Project's fair share towards the cost of constructing the transit stop on both westbound and eastbound Nicolaus Road as part of the future Lincoln Independence Project.

Impact 5: Impacts to Emergency Vehicle Access, Evacuation, and Circulation

The project would provide adequate emergency vehicle access to and from the project site and internal circulation consistent with the City and County policies and standards. This impact would be **less than significant.**

The nearest police station to the project site is the Lincoln Police Department, located approximately 1.7 miles east of the Nicolaus Road / Fullerton Ranch access intersection at the intersection of 7th Street and H Street. The nearest fire station is the Lincoln Fire Station (No. 34), which is south of the Joiner Parkway/First Street intersection and about 1.2 miles away from the Nicolaus Road / Fullerton Ranch access intersection. Most emergency vehicles arriving from Lincoln would need to pass through the Nicolaus Road/Joiner Parkway intersection, which is equipped with emergency vehicle pre-emption. The project site includes a primary access points (Nicolaus Road / Fullerton Ranch Access) as well as secondary access points from (Fifth Street, Celtic Drive, Abbeyhill Road, Savannah Drive and Milan Way). The primary access would permit all turning movements and be designed to City standards that accommodate turning requirements for fire trucks. Therefore, the project would provide adequate emergency vehicle access to and from the project site consistent with the City and County policies and standards. This would be a less-than-significant impact.

Mitigation Measure

No mitigation required.

Impact 6: Construction Impacts

The project could result in temporary impacts to transportation facilities including heavy vehicle and truck traffic, and potential damage to roadbeds. This would be a significant impact.

The project would generate a variety of truck and employee trips during its construction. Because the magnitude of these trips during peak hours would be less than that of the project, absolute impacts (in terms of delay and queuing) when compared to project operations would not be significant. However, construction activity would require heavy vehicles to access the site and may include the possibility of temporary traffic lane closures, travel hazards to bicyclists and pedestrians, increased loading and potential damage to roadbeds, or substantial truck traffic on roadways not designated as truck routes. These activities could result in temporarily degraded roadway operating conditions, and introduce potentially hazardous travel conditions for vehicles, bicycles, and pedestrians. This would be a **significant** impact.

Mitigation Measure 6: Construction impacts.

Prior to issuance of a grading permit, or Subdivision Improvements (whichever comes first) the project applicant shall develop a Construction Traffic Management Plan (TMP) that adheres to various performance standards describe below.

- Prior to the beginning of construction for each project phase, the project applicant shall develop a Construction TMP to the satisfaction of the City 'The plan shall include items such as: the number and size of trucks per day, expected arrival/departure times, truck circulation patterns, location of truck staging areas, location/amount of employee parking, and any proposed use of traffic control/partial street closures on public streets. The overall goal of the Construction TMP will be to ensure maintenance of acceptable operating conditions and to maintain a high level of safety for all roadway users. The Construction TMP shall adhere to the following performance standards throughout project construction:
 - 1. Any lane closures on eastbound Nicolaus Road during project construction should be limited to a single lane during off-peak hours (9:00 a.m. to 2:30 p.m.), and shall not create unsafe travel conditions for bicyclists or pedestrians.
 - 2. 3. Delivery/refuse trucks shall not idle/stage on Nicolaus Road nor shall any single lane closures impede traffic flow on eastbound / westbound Nicolaus Road.
 - 4. Roadways, sidewalks, crosswalks, and bicycle facilities shall be maintained clear of debris (e.g., rocks) that could otherwise impede travel and impact public safety and swept daily at the end of the construction day.

APPENDIX I

TRANSPORTATION AND CIRCULATION

A copy of the Construction TMP shall be submitted to local emergency response agencies and these agencies shall be notified at least 30 days before the commencement of construction that would partially or fully obstruct roadways.

Significance after Mitigation

Implementation of this mitigation measure would reduce this impact to a **less-than-significant** level because adequate access and safety of the roadways would be maintained during construction activities.

SECTION 7 – CUMULATIVE CONDITIONS IMPACTS AND MITIGATION MEASURES

A Cumulative Conditions analysis was performed to identify potential impacts of the proposed Project under Cumulative AM and PM peak hour conditions. Local roadway and regional freeway improvements, corresponding Travel Demand Model Forecasts, and intersection and roadway segment operations analysis results are presented in this section.

Traffic Forecasts

The cumulative analysis consists of two scenarios:

- Cumulative No Project Conditions This scenario represents reasonably foreseeable land developments and roadway improvements (see description below) anticipated under cumulative conditions. Under this scenario, the project site is assumed to remain undeveloped. It should be noted that for the Fullerton Ranch IS/MND, the traffic analysis from the Independence of Lincoln Development Project EIR (2016) Cumulative + Project Analysis was used to represent Existing Conditions.
- 2. Cumulative Plus Project conditions This scenario assumes development of the project under the same cumulative setting to measure the project's contribution to cumulative impacts.

This study uses a version of the Placer County cumulative year TDF model that has been updated to include the SR 65 Lincoln Bypass. In addition, this version of the TDF model was utilized in the transportation impact studies for the Independence of Lincoln Development Project EIR (2016). Planned roadway improvements and land use changes from these and other previous projects are incorporated into this version of the TDF model.

Within the study area, the following roadway improvements are anticipated under cumulative conditions (based on their inclusion in the City's Public Facilities Element):

▲ Traffic signal at the Nicolaus Road / Lakeside Drive intersection

All other study intersections were assumed to have identical lane configurations and traffic controls as existing conditions. To develop peak hour turning movements under both cumulative scenarios, the "difference method" was employed. The "difference method" accounts for model error through the following adjustment technique:

Cumulative Forecast = Existing Traffic Count + (Cumulative Model Volume – Base Year Model Volume)

Intersection Operations

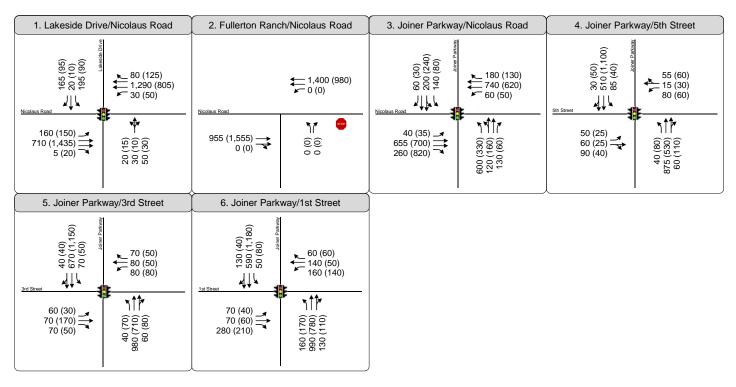
Table 6 presents the results of the cumulative operations analyses. According to this table, vehicle traffic generated by the 81 single family residential Fullerton Ranch project would only result in a minor change in control delay. Cumulative operations were analyzed for the weekday AM and PM peak hours at the six study intersections based on the volumes, geometry and intersection control shown in Figure 6.Cumulative Plus Project operations were analyzed for the weekday AM and PM peak hours at the six study intersections based on the volumes, geometry and intersection control shown in Figure 7.

Table 6 Peak Hour Intersection Level of Service –
Cumulative and Cumulative Plus Project Conditions

Intersection	LOS Standard	Control	Cumulative No Project Conditions			Cumulative Plus Project Conditions				
			AM Peak Hour		PM Peak Hour		AM Peak Hour		PM Peak Hour	
			Delay ¹	LOS	Delay ¹	LOS	Delay ¹	LOS	Delay ¹	LOS
Nicolaus Road / Lakeside Drive	С	Signal	33.7	С	24.9	С	34.1	С	25.1	С
Nicolaus Road / Fullerton Ranch Access (Does Not Exist)	С	Side Street Stop Controlled	0.0 Does Not Exist	A Does Not Exist	0.0 Does Not Exist	A Does Not Exist	1.6 (19.5) (NB LT)	A (C) (NB LT)	0.5 (10.0) (WB LT)	A (A) (WB LT)
Nicolaus Road / Joiner Parkway	С	Signal	29.9	С	26.5	С	29.9	С	27.1	С
Joiner Parkway / 5 th Street	С	Signal	23.5	С	20.1	С	23.6	С	20.4	С
Joiner Parkway / 3 rd Street	С	Signal	22.6	С	26.4	С	22.6	С	26.5	С
Joiner Parkway/1st Street	С	Signal	28.4	С	32.0	С	28.5	С	32.1	С

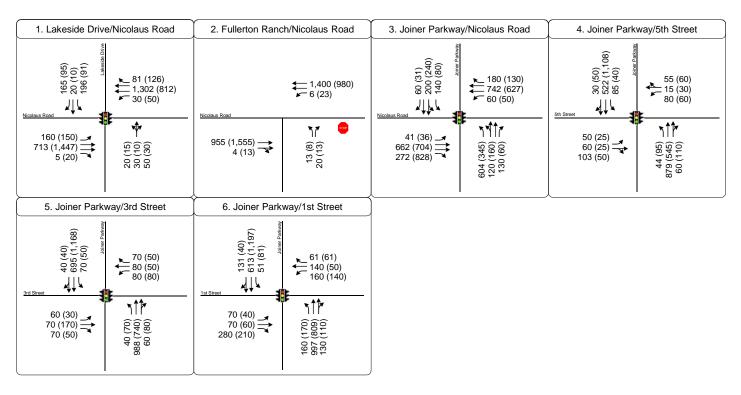
Notes: LOS = level of service. SSSC = Side-street stop control. **Bolded** cells represent significant impacts.

Source: Fehr & Peers 2017


All intersections would operate at LOS C or better under existing plus project conditions during both AM and PM peak hour conditions. Similar to Existing Plus Project Conditions, the Fullerton Ranch Access / Nicolaus Road side-street stop controlled intersection will provide full access for the proposed Fullerton Ranch Project (81 single family residential units), including:

- An Eastbound right-turn in;
- A Westbound left-turn in;
- A Northbound left-turn out; and
- o A Northbound right-turn out.

¹ For signalized intersections and all-way stop controlled intersections, average intersection delay is reported in seconds per vehicle for all approaches. For side-street stop controlled intersections, the delay and LOS for the most-delayed individual movement is shown in parentheses, and delay/LOS for the entire intersection is shown without parentheses.



Peak Hour Traffic Volumes and Lane Configurations -Cumulative Conditions

Peak Hour Traffic Volumes and Lane Configurations -Cumulative Plus Project Conditions

Table 7 presents ADT estimates for each study roadway segment and project access point under Cumulative and Cumulative Plus Project conditions. By providing full access at the Fullerton Ranch Driveway / Nicolaus Road side-street stop controlled intersection, a lower number of project generated traffic would use Lakeside Drive South of Nicolaus Road and Celtic Drive / Abbeyhill Road west of the project site.

Table 7 Two-Way Average Daily Traffic – Cumulative and Cumulative Plus Project Conditions							
Average Daily Traffic							
Existing Conditions	Cumulative No Project Conditions	Cumulative Plus Project Conditions					
8,700	27,100	27,305					
7,300	24,400	24,740					
1,000	1,100	1,120					
400	450	470					
1,600	4,100	4,340					
700	700	910					
250	250	280					
	8,700 7,300 1,000 400 1,600 700	Existing Conditions Cumulative No Project Conditions 8,700 27,100 7,300 24,400 1,000 1,100 400 450 1,600 4,100 700 700					

Source: Fehr & Peers 2017

Impact 7: Cumulative Impacts to City of Lincoln Intersections

The project would not cause any of the study intersection to deteriorate to an unacceptable LOS. Therefore, the project's intersection impacts would be **less than significant**. As shown in Table 6, the addition of project generated traffic at all six study intersections would only result in a minor change in control delay. All intersections would operate at LOS C or better under cumulative plus project conditions during both AM and PM peak hour conditions.

Intersection impacts would be less than significant.

Mitigation Measure

No mitigation required.

Impact 8: Cumulative Impacts to Pedestrian Facilities

The project would not create a demand for pedestrian travel above the capacity which is provided or planned. Therefore, the project's intersection impacts would be **less than significant** impact. The Project would provide extend the existing sidewalk on the south side of Nicolaus Road along the frontage of the proposed Fullerton Ranch Project. In addition, all the internal collector streets would also provide continuous sidewalks connecting the 81 single family residences to the Celtic Drive / Abbeyhill Road (to the west), Savannah Drive (to the east) and Milan Way (to the south).

Pedestrian Facilities impacts would be less than significant.

Mitigation Measure

No mitigation required.

Impact 9: Cumulative Impacts to Bicycle Facilities

The project would not create inconsistencies with any adopted policies related to bicycle systems or any plan bicycle system improvements. This would be a **less-than-significant** impact

The City of Lincoln Bikeway Master Plan shows the following planned bicycle facilities in the project vicinity:

- Planned Class II bike lane on south side of Nicolaus Road between Waverly Drive and Joiner Parkway.
- Planned Class I multi-use trail on north side of Nicolaus Road between Waverly Drive and Nelson Lane.
- Planned Class I multi-use trail that would extend southerly from Nicolaus Road west of Waverly Drive, and then easterly along Markham Ravine, and then southerly parallel to Chambers Drive to beyond First Street.
- ✓ Planned Class III bike lane connecting Nicolaus Road, through the Glenmoor Subdivision via Abbeyhill Road, through the project site, to Savannah Drive.

Therefore, the project is in compliance with the planned bicycle system in the *City of Lincoln Bikeway Master Plan*. This would be a **less-than-significant with mitigation**.

Mitigation Measures

Construct the segment of the Class II bike lane along the project frontage on the south side of Nicolaus Road. And alternative is to dedicate the right-of-way and pay the Project's fair share towards the Class II bike lane on the south side of Nicolaus Road between Waverly Drive and Joiner Parkway. Construct the Class III bike lane connecting Nicolaus Road, through the Glenmoor Subdivision via Abbeyhill Road, through the project site, to Savannah Drive.

APPENDIX A - EXISTING

										Lanes, v	olullies,	Tillings
	•	→	•	•	•	•	4	†	~	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	ሻ	^	7		4		ሻ	^	7
Volume (vph)	95	382	4	32	308	67	12	29	58	164	18	122
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	174		174	176		176	0		0	0		174
Storage Lanes	1		1	1		1	0		0	1		1
Taper Length (ft)	60			60			60			60		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850			0.850		0.921				0.850
Flt Protected	0.950			0.950				0.994		0.950		
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	0	1705	0	1770	1863	1583
Flt Permitted	0.950			0.950				0.994		0.950		
Satd. Flow (perm)	1770	3539	1583	1770	3539	1583	0	1705	0	1770	1863	1583
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		1129			1030			428			612	
Travel Time (s)		25.7			23.4			9.7			13.9	
Peak Hour Factor	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76
Adj. Flow (vph)	125	503	5	42	405	88	16	38	76	216	24	161
Shared Lane Traffic (%)												
Lane Group Flow (vph)	125	503	5	42	405	88	0	130	0	216	24	161
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary												
31	Other											
Control Type: Unsignalized												

Control Type: Unsignalized Intersection Delay 14.0 Analysis Period (min) 15

Level of Service B

		_		—	•	<i>▶</i>
	-	*	*		,	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	∱ ∱			^	7	7
Volume (vph)	604	0	0	407	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)		0	150		0	25
Storage Lanes		0	0		1	1
Taper Length (ft)			60		60	
Lane Util. Factor	0.95	0.95	1.00	0.95	1.00	1.00
Frt						
Flt Protected						
Satd. Flow (prot)	3539	0	0	3539	1863	1863
Flt Permitted						
Satd. Flow (perm)	3539	0	0	3539	1863	1863
Link Speed (mph)	30			30	30	
Link Distance (ft)	1030			2067	308	
Travel Time (s)	23.4			47.0	7.0	
Peak Hour Factor	0.71	0.71	0.71	0.71	0.71	0.71
Adj. Flow (vph)	851	0	0	573	0	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	851	0	0	573	0	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12	J		12	12	J
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		9	15		15	9
Sign Control	Free	•		Free	Stop	-
Intersection Summary						
	Other					
Control Type: Unsignalized	Olliel					
				.1.	evel of Se	ruico A
IIntersection Delay 0.0				L	evel of 26	I VICE A

IIntersection Delay 0.0 Analysis Period (min) 15

	۶	→	•	€	←	•	•	†	<i>></i>	/	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	^	7	ሻ	414	7	ሻ	414	7
Volume (vph)	27	349	228	57	218	132	158	66	122	122	123	31
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	193		193	0		81	210		210	151		151
Storage Lanes	1		1	1		1	1		1	1		1
Taper Length (ft)	60			60			60			60		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	0.91	0.91	1.00	0.91	0.91	1.00
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950	0.973		0.950	0.987	
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1610	3299	1583	1610	3346	1583
Flt Permitted	0.950			0.950			0.950	0.973		0.950	0.987	
Satd. Flow (perm)	1770	3539	1583	1770	3539	1583	1610	3299	1583	1610	3346	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			351			203			188			125
Link Speed (mph)		35			35			40			35	
Link Distance (ft)		2067			258			1053			928	
Travel Time (s)		40.3			5.0			17.9			18.1	
Peak Hour Factor	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
Adj. Flow (vph)	42	537	351	88	335	203	243	102	188	188	189	48
Shared Lane Traffic (%)							50%			35%		
Lane Group Flow (vph)	42	537	351	88	335	203	121	224	188	122	255	48
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	, i		12	, i		12	, i		12	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Split	NA	Perm	Split	NA	Perm
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases			4			8			2			6
Detector Phase	7	4	4	3	8	8	2	2	2	6	6	6

Fullerton Ranch IS/MND 4:00 pm 08/01/2017 Existing Conditions Fehr & Peers

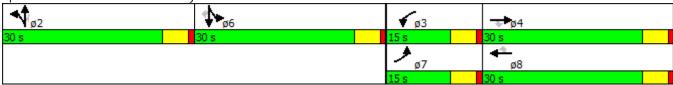
	٠	→	•	•	←	•	4	†	/	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	9.0	26.0	26.0	9.0	26.0	26.0	28.0	28.0	28.0	26.0	26.0	26.0
Total Split (s)	15.0	30.0	30.0	15.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Total Split (%)	14.3%	28.6%	28.6%	14.3%	28.6%	28.6%	28.6%	28.6%	28.6%	28.6%	28.6%	28.6%
Maximum Green (s)	10.0	25.0	25.0	10.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag						
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	Min	Min	Min	Min	Min	Min
Walk Time (s)		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Flash Dont Walk (s)		16.0	16.0		16.0	16.0	18.0	18.0	18.0	16.0	16.0	16.0
Pedestrian Calls (#/hr)		5	5		5	5	5	5	5	5	5	5
Act Effct Green (s)	7.7	18.4	18.4	8.8	22.0	22.0	12.6	12.6	12.6	12.4	12.4	12.4
Actuated g/C Ratio	0.11	0.26	0.26	0.12	0.31	0.31	0.18	0.18	0.18	0.18	0.18	0.18
v/c Ratio	0.22	0.58	0.52	0.40	0.30	0.32	0.42	0.38	0.43	0.43	0.43	0.13
Control Delay	38.4	27.7	6.5	40.6	22.5	5.9	34.2	30.2	8.5	35.3	31.4	0.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	38.4	27.7	6.5	40.6	22.5	5.9	34.2	30.2	8.5	35.3	31.4	0.7
LOS	D	С	Α	D	С	Α	С	С	Α	D	С	Α
Approach Delay		20.2			19.7			23.4			29.0	
Approach LOS		С			В			С			С	

Area Type: Other

Cycle Length: 105

Actuated Cycle Length: 70.4

Natural Cycle: 90


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.58

Intersection Signal Delay: 22.3 Intersection LOS: C
Intersection Capacity Utilization 38.7% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 3: Joiner Parkway & Nicolaus Road

										Larios, i	olamos	Tillings
	ᄼ	→	\rightarrow	•	←	•	1	†	/	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ĥ		ሻ	ĥ		ሻ	∱ }		ሻ	∱ }	
Volume (vph)	45	50	65	75	10	45	15	320	30	60	400	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	145		0	145		0	150		0	150		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	60			60			60			60		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt		0.916			0.878			0.987			0.993	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1706	0	1770	1635	0	1770	3493	0	1770	3514	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1770	1706	0	1770	1635	0	1770	3493	0	1770	3514	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		68			47			12			6	
Link Speed (mph)		35			35			40			40	
Link Distance (ft)		634			550			966			2010	
Travel Time (s)		12.4			10.7			16.5			34.3	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	47	53	68	79	11	47	16	337	32	63	421	21
Shared Lane Traffic (%)												
Lane Group Flow (vph)	47	121	0	79	58	0	16	369	0	63	442	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	J		12	J		12	J		12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases												
Detector Phase	7	4		3	8		5	2		1	6	
	•	•		ŭ			·	_		•	•	

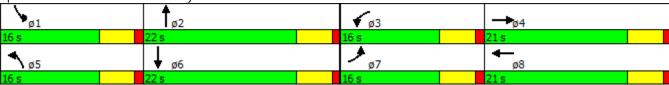
	۶	→	\rightarrow	•	←	•	•	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	16.0	21.0		16.0	21.0		16.0	21.0		16.0	21.0	
Total Split (s)	16.0	21.0		16.0	21.0		16.0	22.0		16.0	22.0	
Total Split (%)	21.3%	28.0%		21.3%	28.0%		21.3%	29.3%		21.3%	29.3%	
Maximum Green (s)	11.0	16.0		11.0	16.0		11.0	17.0		11.0	17.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		None	Min		None	Min	
Walk Time (s)		5.0			5.0			5.0			5.0	
Flash Dont Walk (s)		11.0			11.0			11.0			11.0	
Pedestrian Calls (#/hr)		5			5			5			5	
Act Effct Green (s)	8.0	8.9		8.7	11.6		7.2	19.2		8.4	24.0	
Actuated g/C Ratio	0.17	0.19		0.18	0.24		0.15	0.40		0.18	0.50	
v/c Ratio	0.16	0.32		0.24	0.13		0.06	0.26		0.20	0.25	
Control Delay	26.0	14.8		25.4	10.3		27.6	18.1		25.5	12.9	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	26.0	14.8		25.4	10.3		27.6	18.1		25.5	12.9	
LOS	С	В		С	В		С	В		С	В	
Approach Delay		17.9			19.0			18.5			14.5	
Approach LOS		В			В			В			В	

Area Type: Other

Cycle Length: 75

Actuated Cycle Length: 47.6

Natural Cycle: 75


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.32

Intersection Signal Delay: 16.2 Intersection LOS: B
Intersection Capacity Utilization 38.3% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 4: Joiner Parkway & 5th Street

	۶	→	•	•	-	•	•	†	~	/	 	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	7	ሻ	†	7	ሻ	† }		ሻ	↑ ↑	
Volume (vph)	56	65	54	76	19	49	21	327	35	78	521	31
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	145		145	150		150	140		0	140		0
Storage Lanes	1		1	1		1	1		0	1		0
Taper Length (ft)	60			60			60			60		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt			0.850			0.850		0.986			0.992	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3490	0	1770	3511	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1770	1863	1583	1770	1863	1583	1770	3490	0	1770	3511	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			177			177		14			7	
Link Speed (mph)		35			35			40			40	
Link Distance (ft)		621			610			897			966	
Travel Time (s)		12.1			11.9			15.3			16.5	
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Adj. Flow (vph)	71	82	68	96	24	62	27	414	44	99	659	39
Shared Lane Traffic (%)				, ,							007	g,
Lane Group Flow (vph)	71	82	68	96	24	62	27	458	0	99	698	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Lort	12	rugin	Lon	12	rugin	Lon	12	rugin	Lore	12	rtigrit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	1.00	9	15	1.00	9	15	1.00	9	15	1.00	9
Number of Detectors	1	2	1	1	2	1	1	2	,	1	2	ŕ
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru		Left	Thru	
Leading Detector (ft)	20	100	20	20	100	20	20	100		20	100	
Trailing Detector (ft)	0	0	0	0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0	0	0	0	0	0	0		0	0	
Detector 1 Size(ft)	20	6	20	20	6	20	20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	OFFER	OITEX	OITEX	OFFER	OITEX	OITEX	OITEX	OITEX		OITEX	OFFER	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 2 Position(ft)	0.0	94	0.0	0.0	94	0.0	0.0	94		0.0	94	
Detector 2 Fosition(it)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		OITEX			OITEX			OITEX			OITEX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	7	4	i cilii	3	8	i cilii	5	2		1	6	
Permitted Phases	1	4	4	J	U	8	5			, , , , , , , , , , , , , , , , , , ,	U	
Detector Phase	7	4	4	3	8	8	5	2		1	6	
שמוברוטו בוומאב	1	4	4	ა	0	0	ວ			ı	Ü	

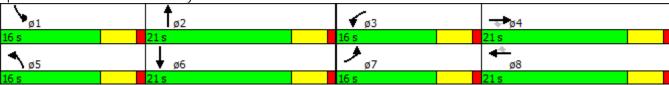
	٠	→	•	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Minimum Split (s)	16.0	21.0	21.0	16.0	21.0	21.0	16.0	21.0		16.0	21.0	
Total Split (s)	16.0	21.0	21.0	16.0	21.0	21.0	16.0	21.0		16.0	21.0	
Total Split (%)	21.6%	28.4%	28.4%	21.6%	28.4%	28.4%	21.6%	28.4%		21.6%	28.4%	
Maximum Green (s)	11.0	16.0	16.0	11.0	16.0	16.0	11.0	16.0		11.0	16.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None	None	None	None	None	None	Min		None	Min	
Walk Time (s)		5.0	5.0		5.0	5.0		5.0			5.0	
Flash Dont Walk (s)		11.0	11.0		11.0	11.0		11.0			11.0	
Pedestrian Calls (#/hr)		5	5		5	5		5			5	
Act Effct Green (s)	8.2	9.1	9.1	8.8	12.1	12.1	7.1	21.0		8.8	27.2	
Actuated g/C Ratio	0.15	0.16	0.16	0.16	0.22	0.22	0.13	0.38		0.16	0.49	
v/c Ratio	0.27	0.27	0.17	0.35	0.06	0.13	0.12	0.35		0.35	0.41	
Control Delay	28.7	26.3	0.9	29.3	23.2	0.6	28.9	21.0		29.3	17.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	28.7	26.3	0.9	29.3	23.2	0.6	28.9	21.0		29.3	17.5	
LOS	С	С	Α	С	С	Α	С	С		С	В	
Approach Delay		19.2			18.7			21.4			19.0	
Approach LOS		В			В			С			В	

Area Type: Other

Cycle Length: 74

Actuated Cycle Length: 55.7

Natural Cycle: 75


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.41

Intersection Signal Delay: 17.5 Intersection LOS: B
Intersection Capacity Utilization 42.1% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 5: Joiner Parkway & 3rd Street

	۶	→	•	•	←	•	•	†	~	/	ţ	√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†	7	ሻ	†	7	ሻ	∱ }		ሻ	∱ }	
Volume (vph)	69	63	232	148	113	36	128	321	99	42	428	125
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	124		124	129		129	111		0	169		0
Storage Lanes	1		1	1		1	1		0	1		0
Taper Length (ft)	60			60			60			60		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt			0.850			0.850		0.965			0.966	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3415	0	1770	3419	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1770	1863	1583	1770	1863	1583	1770	3415	0	1770	3419	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			297			195		45			42	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		1101			816			875			912	
Travel Time (s)		25.0			18.5			19.9			20.7	
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Adj. Flow (vph)	88	81	297	190	145	46	164	412	127	54	549	160
Shared Lane Traffic (%)												
Lane Group Flow (vph)	88	81	297	190	145	46	164	539	0	54	709	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	. .		12	J		12	J .		12	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2		1	2	
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru		Left	Thru	
Leading Detector (ft)	20	100	20	20	100	20	20	100		20	100	
Trailing Detector (ft)	0	0	0	0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0	0	0	0	0	0	0		0	0	
Detector 1 Size(ft)	20	6	20	20	6	20	20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases			4			8						
Detector Phase	7	4	4	3	8	8	5	2		1	6	

	۶	→	•	•	←	•	4	†	<i>></i>	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Minimum Split (s)	9.0	20.0	20.0	9.0	20.0	20.0	9.0	31.0		9.0	31.0	
Total Split (s)	20.0	20.0	20.0	20.0	20.0	20.0	20.0	35.0		20.0	35.0	
Total Split (%)	21.1%	21.1%	21.1%	21.1%	21.1%	21.1%	21.1%	36.8%		21.1%	36.8%	
Maximum Green (s)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	30.0		15.0	30.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Lead/Lag	Lag	Lag	Lag	Lead	Lead	Lead	Lead	Lead		Lag	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None	None	None	None	None	None	Min		None	Min	
Walk Time (s)		5.0	5.0		5.0	5.0		5.0			5.0	
Flash Dont Walk (s)		10.0	10.0		10.0	10.0		21.0			21.0	
Pedestrian Calls (#/hr)		5	5		5	5		5			5	
Act Effct Green (s)	10.5	9.3	9.3	12.7	11.1	11.1	11.9	26.2		13.1	21.8	
Actuated g/C Ratio	0.14	0.12	0.12	0.17	0.15	0.15	0.16	0.34		0.17	0.28	
v/c Ratio	0.36	0.36	0.66	0.65	0.54	0.12	0.59	0.45		0.18	0.71	
Control Delay	37.8	38.7	12.2	44.1	41.0	0.6	42.4	23.3		29.9	28.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	37.8	38.7	12.2	44.1	41.0	0.6	42.4	23.3		29.9	28.0	
LOS	D	D	В	D	D	Α	D	С		С	С	_
Approach Delay		21.6			37.6			27.7			28.1	
Approach LOS		С			D			С			С	

Area Type: Other

Cycle Length: 95

Actuated Cycle Length: 76.5

Natural Cycle: 80

Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.71 Intersection

Signal Delay: 28.7 Intersection LOS: C
Intersection Capacity Utilization 50.9% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 4: Joiner Parkway & 1st Street

										Larios, v	Oldinos,	
	۶	→	\rightarrow	•	←	•	•	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	7	^	7		4		7	†	7
Volume (vph)	97	389	22	51	422	105	11	10	33	79	11	66
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	174		174	176		176	0		0	0		174
Storage Lanes	1		1	1		1	0		0	1		1
Taper Length (ft)	60			60			60			60		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850			0.850		0.919				0.850
Flt Protected	0.950			0.950				0.990		0.950		
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	0	1695	0	1770	1863	1583
Flt Permitted	0.950			0.950				0.990		0.950		
Satd. Flow (perm)	1770	3539	1583	1770	3539	1583	0	1695	0	1770	1863	1583
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		1129			1030			428			612	
Travel Time (s)		25.7			23.4			9.7			13.9	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	104	418	24	55	454	113	12	11	35	85	12	71
Shared Lane Traffic (%)												
Lane Group Flow (vph)	104	418	24	55	454	113	0	58	0	85	12	71
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary												
Area Type: C	Other											
Control Typo: Uncignalized												

Control Type: Unsignalized

rsection Delay 10.8 Level of Service B

Intersection Delay 10.8 Analysis Period (min) 15

	→	•	•	+	•	/	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	†	LDIX	WDL	^	ሻ	7	
Volume (vph)	501	0	0	578	0	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Storage Length (ft)	1700	0	150	1700	0	25	
Storage Lanes		0	0		1	1	
Taper Length (ft)		Ü	60		60		
Lane Util. Factor	0.95	0.95	1.00	0.95	1.00	1.00	
Frt	0.70	0.70		0.70			
Flt Protected							
Satd. Flow (prot)	3539	0	0	3539	1863	1863	
Flt Permitted							
Satd. Flow (perm)	3539	0	0	3539	1863	1863	
Link Speed (mph)	30			30	30		
Link Distance (ft)	1030			2067	308		
Travel Time (s)	23.4			47.0	7.0		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	545	0	0	628	0	0	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	545	0	0	628	0	0	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(ft)	12			12	12		
Link Offset(ft)	0			0	0		
Crosswalk Width(ft)	16			16	16		
Two way Left Turn Lane							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)		9	15		15	9	
Sign Control	Free			Free	Stop		
Intersection Summary							
31	Other						
Control Type: Unsignalized							
Intersection Delay 0.0				IL	evel of Se	ervice A	
Analysis Dariad (min) 15							

Fullerton Ranch IS/MND 4:00 pm 08/01/2017 Existing Conditions Fehr & Peers

Analysis Period (min) 15

	۶	→	•	•	+	•	•	†	<i>></i>	/	+	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	^	7	ሻ	414	7	ሻ	41	7
Volume (vph)	14	221	266	34	278	80	286	119	47	47	84	14
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	193		193	0		81	210		210	151		151
Storage Lanes	1		1	1		1	1		1	1		1
Taper Length (ft)	60			60			60			60		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	0.91	0.91	1.00	0.91	0.91	1.00
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950	0.973		0.950	0.997	
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1610	3299	1583	1610	3380	1583
Flt Permitted	0.950		, , , ,	0.950		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.950	0.973		0.950	0.997	
Satd. Flow (perm)	1770	3539	1583	1770	3539	1583	1610	3299	1583	1610	3380	1583
Right Turn on Red	.,,,		Yes			Yes		02//	Yes		0000	Yes
Satd. Flow (RTOR)			289			125			125			125
Link Speed (mph)		35	207		35	.20		40	.20		35	.20
Link Distance (ft)		2067			258			1053			928	
Travel Time (s)		40.3			5.0			17.9			18.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	15	240	289	37	302	87	311	129	51	51	91	15
Shared Lane Traffic (%)		2.10	207	0,	002	0,	50%	127	01	10%	, ,	
Lane Group Flow (vph)	15	240	289	37	302	87	155	285	51	46	96	15
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12		20.1	12			12	·g
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		0.12.			0,			0,			0112/	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Split	NA	Perm	Split	NA	Perm
Protected Phases	7	4	TOTAL	3	8	1 OIIII	2 2	2	1 01111	5piit	6	1 01111
Permitted Phases	,	7	4	J	J	8			2	J	J	6
Detector Phase	7	4	4	3	8	8	2	2	2	6	6	6
Dottottoi i ilust	,	т		J	U	0				U	U	

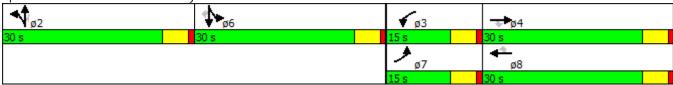
	۶	→	•	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	9.0	26.0	26.0	9.0	26.0	26.0	28.0	28.0	28.0	26.0	26.0	26.0
Total Split (s)	15.0	30.0	30.0	15.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Total Split (%)	14.3%	28.6%	28.6%	14.3%	28.6%	28.6%	28.6%	28.6%	28.6%	28.6%	28.6%	28.6%
Maximum Green (s)	10.0	25.0	25.0	10.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag						
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	Min	Min	Min	Min	Min	Min
Walk Time (s)		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Flash Dont Walk (s)		16.0	16.0		16.0	16.0	18.0	18.0	18.0	16.0	16.0	16.0
Pedestrian Calls (#/hr)		5	5		5	5	5	5	5	5	5	5
Act Effct Green (s)	6.8	11.6	11.6	7.6	14.1	14.1	12.4	12.4	12.4	9.2	9.2	9.2
Actuated g/C Ratio	0.13	0.21	0.21	0.14	0.26	0.26	0.23	0.23	0.23	0.17	0.17	0.17
v/c Ratio	0.07	0.32	0.51	0.15	0.33	0.17	0.42	0.38	0.11	0.17	0.17	0.04
Control Delay	32.1	22.5	7.5	30.5	19.3	3.2	25.7	21.9	0.5	25.9	24.0	0.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	32.1	22.5	7.5	30.5	19.3	3.2	25.7	21.9	0.5	25.9	24.0	0.2
LOS	С	С	Α	С	В	Α	С	С	Α	С	С	Α
Approach Delay		14.8			17.0			20.9			22.3	
Approach LOS		В			В			С			С	

Area Type: Other

Cycle Length: 105

Actuated Cycle Length: 54.3

Natural Cycle: 90


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.51

Intersection Signal Delay: 18.0 Intersection LOS: B
Intersection Capacity Utilization 38.1% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 3: Joiner Parkway & Nicolaus Road

Existing Conditions - PM Peak Hour Lanes, Volumes, Timings

Lane Group		۶	→	•	•	—	•	•	†	~	/	↓	4
Lane Configurations	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Volume (piph)													
Ideal Flow (phiph) 1900				24			48			90			40
Lane Unit Factor 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.95 0.95 1.00 0.95 0.95 Fit Protected	` ' '												
Ped Bike Factor 0.919 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.995 0.950													
Fit Protected													
File Protected													
Satid. Flow (prot) 1770 1682 0 1770 1649 0 1770 3428 0 1770 3463 0 Fil Permitted		0.950			0.950			0.950			0.950		
File Permitted 0.950 0.9			1682	0		1649	0		3428	0		3463	0
Said, Flow (perm) 1770 1682 0 1770 1649 0 1770 3428 0 1770 3463 0 768 76	4 7		.002	Ū		.0.,			0.20			0.00	J
Right Turn on Red			1682	0		1649	0		3428	0		3463	0
Said Flow (RTOR)		1770	1002		1770	1017		1770	0 120		1770	0 100	
Link Speed (mph)			25	103		51	103		31	103		18	103
Link Distance (ft) 645 664 951 2020 Travel Time (s) 12.6 12.9 16.2 34.4 Confl. Peak, (#/rr) 5 5 5 5 5 Peak Hour Factor 0.95	, ,												
Travel Time (s)													
Confil Peds. (#/hr)	` ,												
Peak Hour Factor 0.95	• /		12.0	5		12.7	5		10.2	5		34.4	5
Adj. Flow (vph) 16 18 25 47 23 51 58 447 95 26 316 42 Shared Lane Traffic (%) Same Group Flow (vph) 16 43 0 47 74 0 58 542 0 26 358 0 Enter Blocked Intersection No	, ,	0.05	0.05		0.05	0.05		N 05	N 05		N 05	0.05	
Shared Lane Traffic (%) Lane Group Flow (wph) 16 43 0 47 74 0 0 58 542 0 26 358 0													
Lane Group Flow (vph)	, , , ,	10	10	25	47	23	JI	50	447	73	20	310	42
Enter Blocked Intersection No No No No No No No	. ,	16	12	Λ	17	7.1	0	50	5/2	Λ	26	250	0
Left Left Right Left Right Left Right Left Left Right Left Left Right Right Left Left Right Right	` ` '												
Median Width(ft) 12 12 12 24 24 Link Offsel(ft) 0 1.00													
Link Offset(ff) 0 0 0 0 0 Crosswalk Width(ff) 16 16 16 16 Two way Left Turn Lane 1.00 </td <td>•</td> <td>Len</td> <td></td> <td>Right</td> <td>Len</td> <td></td> <td>Rigili</td> <td>Leit</td> <td></td> <td>Rigiii</td> <td>Leit</td> <td></td> <td>Rigiii</td>	•	Len		Right	Len		Rigili	Leit		Rigiii	Leit		Rigiii
Crosswalk Width(ft) 16 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00													
Two way Left Turn Lane Headway Factor 1.00	. ,												
Headway Factor 1.00			10			10			16			10	
Turning Speed (mph) 15 9 15 9 15 9 15 9 Number of Detectors 1 2 1 2 1 2 1 2 Detector Template Left Thru Left Thru Left Thru Left Thru Leading Detector (ft) 20 100 20 100 20 100 20 100 Trailing Detector (ft) 0		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1 00	1.00	1.00	1.00
Number of Detectors 1 2 1 0 0 0 0 0 0 0 0			1.00			1.00			1.00			1.00	
Detector Template			0	9		0	9		0	9		0	9
Leading Detector (ft) 20 100 20 100 20 100 Trailing Detector (ft) 0 <													
Trailing Detector (ft) 0 0 0 0 0 0 0 Detector 1 Position(ft) 0 0 0 0 0 0 0 0 Detector 1 Size(ft) 20 6 20 6 20 6 20 6 Detector 1 Type Cl+Ex Cl-Ex	•												
Detector 1 Position(ft) 0 0 0 0 0 0 0 0 0 Devenor of the position of the posi													
Detector 1 Size(ft) 20 6 20 6 20 6 Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Channel Detector 1 Extend (s) 0.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Detector 1 Type													
Detector 1 Channel Detector 1 Extend (s) 0.0			~										
Detector 1 Extend (s) 0.0		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Queue (s) 0.0													
Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 94 96 6 6 6 6													
Detector 2 Position(ft) 94 94 94 94 Detector 2 Size(ft) 6 6 6 6 Detector 2 Type CI+Ex CI+Ex CI+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 0.0 Turn Type Prot NA Prot NA Prot NA Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases Detector Phase 7 4 3 8 5 2 1 6	` ,												
Detector 2 Size(ft) 6 6 6 6 6 Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type Prot NA Prot NA Prot NA Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases 7 4 3 8 5 2 1 6	J 1 7	0.0			0.0			0.0			0.0		
Detector 2 Type Cl+Ex Cl+Ex Cl+Ex Detector 2 Channel 0.0 0.0 0.0 0.0 Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type Prot NA Prot NA Prot NA Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases 7 4 3 8 5 2 1 6													
Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type Prot NA Prot NA Prot NA Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases Detector Phase 7 4 3 8 5 2 1 6													
Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type Prot NA Prot NA Prot NA Prot NA Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases 7 4 3 8 5 2 1 6			CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Turn Type Prot NA Prot NA Prot NA Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases Detector Phase 7 4 3 8 5 2 1 6													
Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases Detector Phase 7 4 3 8 5 2 1 6													
Permitted Phases Detector Phase 7 4 3 8 5 2 1 6					Prot						Prot		
Detector Phase 7 4 3 8 5 2 1 6		7	4		3	8		5	2		1	6	
Switch Phase	Detector Phase	7	4		3	8		5	2		1	6	
	Switch Phase												

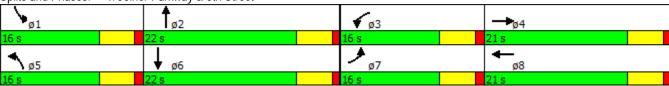
	•	→	•	•	+	•	•	†	/	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	16.0	21.0		16.0	21.0		16.0	21.0		16.0	21.0	
Total Split (s)	16.0	21.0		16.0	21.0		16.0	22.0		16.0	22.0	
Total Split (%)	21.3%	28.0%		21.3%	28.0%		21.3%	29.3%		21.3%	29.3%	
Maximum Green (s)	11.0	16.0		11.0	16.0		11.0	17.0		11.0	17.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		None	Min		None	Min	
Walk Time (s)		5.0			5.0			5.0			5.0	
Flash Dont Walk (s)		11.0			11.0			11.0			11.0	
Pedestrian Calls (#/hr)		5			5			5			5	
Act Effct Green (s)	6.8	8.0		7.6	10.3		7.9	28.8		7.1	23.7	
Actuated g/C Ratio	0.16	0.18		0.17	0.24		0.18	0.66		0.16	0.54	
v/c Ratio	0.06	0.13		0.15	0.17		0.18	0.24		0.09	0.19	
Control Delay	25.0	14.1		23.3	9.5		22.9	10.3		24.5	14.8	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	25.0	14.1		23.3	9.5		22.9	10.3		24.5	14.8	
LOS	С	В		С	Α		С	В		С	В	
Approach Delay		17.0			14.9			11.6			15.4	
Approach LOS		В			В			В			В	

Area Type: Other

Cycle Length: 75

Actuated Cycle Length: 43.8

Natural Cycle: 75


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.24 Intersection Signal Delay: 14.2 Intersection Capacity Utilization 40.3%

Intersection LOS: B ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 4: Joiner Parkway & 5th Street

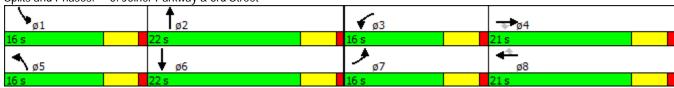
	۶	→	•	•	←	•	4	†	~	/		4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†	7	ሻ	↑	7	ሻ	∱ ∱		*	∱ ∱	
Volume (vph)	21	24	28	53	29	50	46	545	74	27	351	35
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor			0.98			0.98		1.00			1.00	
Frt			0.850			0.850		0.982			0.986	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3462	0	1770	3480	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1770	1863	1553	1770	1863	1553	1770	3462	0	1770	3480	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			175			175		18			13	
Link Speed (mph)		35			35			40			40	
Link Distance (ft)		826			796			901			951	
Travel Time (s)		16.1			15.5			15.4			16.2	
Confl. Peds. (#/hr)			5			5			5			5
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	22	26	30	56	31	53	49	580	79	29	373	37
Shared Lane Traffic (%)												
Lane Group Flow (vph)	22	26	30	56	31	53	49	659	0	29	410	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	3		12	3		24			24	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2		1	2	
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru		Left	Thru	
Leading Detector (ft)	20	100	20	20	100	20	20	100		20	100	
Trailing Detector (ft)	0	0	0	0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0	0	0	0	0	0	0		0	0	
Detector 1 Size(ft)	20	6	20	20	6	20	20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	7	4	. 3	3	8	. 3	5	2		1	6	
Permitted Phases	•		4			8		_		•	Ū	
Detector Phase	7	4	4	3	8	8	5	2		1	6	
Switch Phase								_				

	۶	→	•	•	•	•	4	†	<i>></i>	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Minimum Split (s)	16.0	21.0	21.0	16.0	21.0	21.0	16.0	21.0		16.0	21.0	
Total Split (s)	16.0	21.0	21.0	16.0	21.0	21.0	16.0	22.0		16.0	22.0	
Total Split (%)	21.3%	28.0%	28.0%	21.3%	28.0%	28.0%	21.3%	29.3%		21.3%	29.3%	
Maximum Green (s)	11.0	16.0	16.0	11.0	16.0	16.0	11.0	17.0		11.0	17.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None	None	None	None	None	None	Min		None	Min	
Walk Time (s)		5.0	5.0		5.0	5.0		5.0			5.0	
Flash Dont Walk (s)		11.0	11.0		11.0	11.0		11.0			11.0	
Pedestrian Calls (#/hr)		5	5		5	5		5			5	
Act Effct Green (s)	7.0	8.1	8.1	7.9	13.1	13.1	7.7	26.5		7.2	26.2	
Actuated g/C Ratio	0.15	0.18	0.18	0.17	0.28	0.28	0.17	0.57		0.16	0.57	
v/c Ratio	0.08	0.08	0.07	0.18	0.06	0.09	0.17	0.33		0.11	0.21	
Control Delay	26.1	22.4	0.3	24.5	16.2	0.3	24.7	14.8		25.7	14.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	26.1	22.4	0.3	24.5	16.2	0.3	24.7	14.8		25.7	14.4	
LOS	С	С	Α	С	В	Α	С	В		С	В	
Approach Delay		15.0			13.5			15.4			15.1	
Approach LOS		В			В			В			В	

Area Type: Other

Cycle Length: 75

Actuated Cycle Length: 46.1


Natural Cycle: 75

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.33 Intersection Signal Delay: 14.9 Intersection Capacity Utilization 43.5% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service A

Splits and Phases: 5: Joiner Parkway & 3rd Street

										•	rolullies,	
	۶	→	•	•	←	•	4	†	/	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ች	†	7	ች	↑	7	ሻ	đβ		*	∱ ∱	
Volume (vph)	34	26	90	107	42	51	131	595	96	45	370	37
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	124	.,	124	129	.,,,,	129	111	.,,,	0	169		0
Storage Lanes	1		1	1		1	1		0	1		0
Taper Length (ft)	60		•	60		•	60			60		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt	1.00		0.850			0.850		0.979	0.70		0.986	0.70
Flt Protected	0.950		0.000	0.950		0.000	0.950	0.777		0.950	0.700	
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3465	0	1770	3490	0
Flt Permitted	0.950	1003	1303	0.950	1003	1000	0.950	3403	U	0.950	3470	U
Satd. Flow (perm)	1770	1863	1583	1770	1863	1583	1770	3465	0	1770	3490	0
Right Turn on Red	1770	1003	Yes	1770	1003	Yes	1770	3403	Yes	1770	3470	Yes
Satd. Flow (RTOR)			195			195		20	103		12	103
Link Speed (mph)		30	175		30	175		30			30	
Link Distance (ft)		1101			816			875			912	
Travel Time (s)		25.0			18.5			19.9			20.7	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	35	27	94	111	44	53	136	620	100	47	385	39
Shared Lane Traffic (%)	30	21	94	111	44	ეა	130	020	100	47	300	39
` ,	35	27	94	111	11	53	136	720	0	17	424	0
Lane Group Flow (vph) Enter Blocked Intersection				111	44 No.				0	47		
	No	No	No Diabt	No	No	No Diabt	No	No	No Dialet	No	No.	No Diabt
Lane Alignment	Left	Left 12	Right	Left	Left 12	Right	Left	Left 12	Right	Left	Left 12	Right
Median Width(ft)												
Link Offset(ft)		0 16			0 16			0 16			0 16	
Crosswalk Width(ft)		10			10			10			10	
Two way Left Turn Lane	1.00	1 00	1 00	1.00	1.00	1.00	1.00	1 00	1.00	1 00	1 00	1.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	2	9	15	2	9	15	2	9	15	2	9
Number of Detectors	1			1	2	1 Diaht	1	2 Thru		1	2 Thru	
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru		Left	Thru	
Leading Detector (ft)	20	100	20	20	100	20	20	100		20	100	
Trailing Detector (ft)	0	0	0	0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0	0	0	0	0	0	0		0	0	
Detector 1 Size(ft)	20	6	20	20	6	20	20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0	_		0.0	_	_	0.0		_	0.0	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases			4			8						
Detector Phase	7	4	4	3	8	8	5	2		1	6	

	٠	→	•	•	←	•	4	†	/	>	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Minimum Split (s)	9.0	20.0	20.0	9.0	20.0	20.0	9.0	31.0		9.0	31.0	
Total Split (s)	20.0	20.0	20.0	20.0	20.0	20.0	20.0	35.0		20.0	35.0	
Total Split (%)	21.1%	21.1%	21.1%	21.1%	21.1%	21.1%	21.1%	36.8%		21.1%	36.8%	
Maximum Green (s)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	30.0		15.0	30.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Lead/Lag	Lag	Lag	Lag	Lead	Lead	Lead	Lead	Lead		Lag	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None	None	None	None	None	None	Min		None	Min	
Walk Time (s)		5.0	5.0		5.0	5.0		5.0			5.0	
Flash Dont Walk (s)		10.0	10.0		10.0	10.0		21.0			21.0	
Pedestrian Calls (#/hr)		5	5		5	5		5			5	
Act Effct Green (s)	8.9	8.2	8.2	10.3	11.3	11.3	11.0	29.7		8.1	24.7	
Actuated g/C Ratio	0.15	0.13	0.13	0.17	0.19	0.19	0.18	0.49		0.13	0.40	
v/c Ratio	0.14	0.11	0.25	0.37	0.13	0.12	0.43	0.42		0.20	0.30	
Control Delay	30.1	31.0	1.5	32.3	28.2	0.5	32.7	18.1		33.0	20.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	30.1	31.0	1.5	32.3	28.2	0.5	32.7	18.1		33.0	20.6	
LOS	С	С	Α	С	С	Α	С	В		С	С	
Approach Delay		13.0			23.3			20.4			21.8	
Approach LOS		В			С			С			С	

Area Type: Other

Cycle Length: 95

Actuated Cycle Length: 61

Natural Cycle: 70

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.43

Intersection Signal Delay: 20.5 Intersection LOS: C
Intersection Capacity Utilization 47.9% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 4: Joiner Parkway & 1st Street

APPENDIX B – EXISTING PLUS PROJECT

	•	→	•	•	•	4	4	†	/	>	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	^	7		4		ሻ	1	7
Volume (vph)	95	385	4	32	320	68	12	29	58	165	18	122
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	174		174	176		176	0		0	0		174
Storage Lanes	1		1	1		1	0		0	1		1
Taper Length (ft)	60			60			60			60		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850			0.850		0.921				0.850
Flt Protected	0.950			0.950				0.994		0.950		
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	0	1705	0	1770	1863	1583
Flt Permitted	0.950			0.950				0.994		0.950		
Satd. Flow (perm)	1770	3539	1583	1770	3539	1583	0	1705	0	1770	1863	1583
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		1129			1030			428			612	
Travel Time (s)		25.7			23.4			9.7			13.9	
Peak Hour Factor	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76
Adj. Flow (vph)	125	507	5	42	421	89	16	38	76	217	24	161
Shared Lane Traffic (%)												
Lane Group Flow (vph)	125	507	5	42	421	89	0	130	0	217	24	161
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12	-		12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Stop			Stop			Stop			Stop	
Intersection Summary												
Area Type: (Other											

Area Type:

Control Type: Unsignalized

Intersection Delay 16.5
Analysis Period (min) 15

Level of Service B

	→	•	•	←	4	<i>></i>
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	† 1>		ሻ	^	ሻ	7
Volume (vph)	604	4	6	407	13	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)		0	150		0	25
Storage Lanes		0	1		1	1
Taper Length (ft)			60		60	
Lane Util. Factor	0.95	0.95	1.00	0.95	1.00	1.00
Frt	0.999					0.850
Flt Protected			0.950		0.950	
Satd. Flow (prot)	3536	0	1770	3539	1770	1583
Flt Permitted			0.950		0.950	
Satd. Flow (perm)	3536	0	1770	3539	1770	1583
Link Speed (mph)	30			30	30	
Link Distance (ft)	1030			2067	308	
Travel Time (s)	23.4			47.0	7.0	
Peak Hour Factor	0.71	0.71	0.71	0.71	0.71	0.71
Adj. Flow (vph)	851	6	8	573	18	28
Shared Lane Traffic (%)						
Lane Group Flow (vph)	857	0	8	573	18	28
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		9	15		15	9
Sign Control	Free			Free	Stop	
Intersection Summary						
Area Type:	Other					

Control Type: Unsignalized Intersection Delay 0.1

Level of Service A

Analysis Period (min) 15

											olarii oo j	9-
	•	→	•	•	←	•	•	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	^	7	ሻ	41₽	7	ሻ	41	7
Volume (vph)	28	355	241	57	220	132	161	66	122	122	123	32
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	193		193	0		81	210		210	151		151
Storage Lanes	1		1	1		1	1		1	1		1
Taper Length (ft)	60			60			60			60		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	0.91	0.91	1.00	0.91	0.91	1.00
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950	0.973		0.950	0.987	
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1610	3299	1583	1610	3346	1583
Flt Permitted	0.950			0.950			0.950	0.973		0.950	0.987	
Satd. Flow (perm)	1770	3539	1583	1770	3539	1583	1610	3299	1583	1610	3346	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			371			203			188			125
Link Speed (mph)		35			35			40			35	
Link Distance (ft)		2067			258			1053			928	
Travel Time (s)		40.3			5.0			17.9			18.1	
Peak Hour Factor	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
Adj. Flow (vph)	43	546	371	88	338	203	248	102	188	188	189	49
Shared Lane Traffic (%)							50%			35%		
Lane Group Flow (vph)	43	546	371	88	338	203	124	226	188	122	255	49
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	<u> </u>		12	J		12	J		12	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Split	NA	Perm	Split	NA	Perm
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases			4			8			2			6
Detector Phase	7	4	4	3	8	8	2	2	2	6	6	6

Fullerton Ranch IS/MND 4:00 pm 08/01/2017 Existing + Project Conditions Fehr & Peers

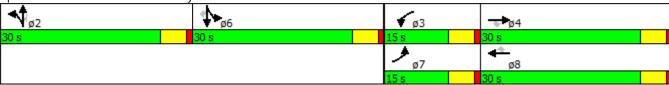
	•	→	•	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	9.0	26.0	26.0	9.0	26.0	26.0	28.0	28.0	28.0	26.0	26.0	26.0
Total Split (s)	15.0	30.0	30.0	15.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Total Split (%)	14.3%	28.6%	28.6%	14.3%	28.6%	28.6%	28.6%	28.6%	28.6%	28.6%	28.6%	28.6%
Maximum Green (s)	10.0	25.0	25.0	10.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag						
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	Min	Min	Min	Min	Min	Min
Walk Time (s)		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Flash Dont Walk (s)		16.0	16.0		16.0	16.0	18.0	18.0	18.0	16.0	16.0	16.0
Pedestrian Calls (#/hr)		5	5		5	5	5	5	5	5	5	5
Act Effct Green (s)	7.7	18.6	18.6	8.8	22.1	22.1	12.7	12.7	12.7	12.4	12.4	12.4
Actuated g/C Ratio	0.11	0.26	0.26	0.12	0.31	0.31	0.18	0.18	0.18	0.18	0.18	0.18
v/c Ratio	0.22	0.59	0.54	0.40	0.31	0.32	0.43	0.38	0.43	0.43	0.43	0.13
Control Delay	38.6	27.9	6.5	40.7	22.6	5.9	34.5	30.3	8.4	35.4	31.5	0.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	38.6	27.9	6.5	40.7	22.6	5.9	34.5	30.3	8.4	35.4	31.5	0.7
LOS	D	С	Α	D	С	Α	С	С	Α	D	С	Α
Approach Delay		20.1			19.8			23.6			29.1	
Approach LOS		С			В			С			С	

Area Type: Other

Cycle Length: 105

Actuated Cycle Length: 70.7

Natural Cycle: 90


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.59

Intersection Signal Delay: 23.6 Intersection LOS: C
Intersection Capacity Utilization 38.9% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 3: Joiner Parkway & Nicolaus Road

											rolanios	
	•	-	\rightarrow	•	•	•	•	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		ሻ	ĵ»		ሻ	∱ }		ሻ	∱ }	
Volume (vph)	45	50	79	75	10	45	18	323	30	60	413	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	145		0	145		0	150		0	150		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	60			60			60			60		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt		0.908			0.878			0.987			0.993	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1691	0	1770	1635	0	1770	3493	0	1770	3514	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1770	1691	0	1770	1635	0	1770	3493	0	1770	3514	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		84			47			12			6	
Link Speed (mph)		35			35			40			40	
Link Distance (ft)		648			664			951			2019	
Travel Time (s)		12.6			12.9			16.2			34.4	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	47	53	84	79	11	47	19	340	32	63	435	21
Shared Lane Traffic (%)	.,	00	0.	.,	• • •	.,	. ,	0.10	Ü.	00	100	
Lane Group Flow (vph)	47	137	0	79	58	0	19	372	0	63	456	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Lore	12	rugin	Loit	12	rtigiit	Loit	12	rugin	Loit	12	rtigrit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	1.00	9	15	1.00	9	15	1.00	9	15	1.00	9
Number of Detectors	1	2	,	1	2	,	1	2	,	1	2	,
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	ONEX	OI! EX		OI! EX	OT LA		OI LX	OI · LX		OI. LA	OI LA	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)	0.0	94		0.0	94		0.0	94		0.0	94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		OI. EX			OI. EX			OI . EX			OI. EX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1 100	6	
Permitted Phases	,	7		J	U		J			'	U	
Detector Phase	7	4		3	8		5	2		1	6	
Detector Fridae	,	4		J	U		J	۷		ı	U	

Fullerton Ranch IS/MND 4:00 pm 08/01/2017 Existing + Project Conditions Fehr & Peers

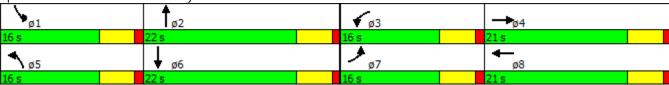
	٠	-	\rightarrow	•	←	•	4	†	/	>	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	16.0	21.0		16.0	21.0		16.0	21.0		16.0	21.0	
Total Split (s)	16.0	21.0		16.0	21.0		16.0	22.0		16.0	22.0	
Total Split (%)	21.3%	28.0%		21.3%	28.0%		21.3%	29.3%		21.3%	29.3%	
Maximum Green (s)	11.0	16.0		11.0	16.0		11.0	17.0		11.0	17.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		None	Min		None	Min	
Walk Time (s)		5.0			5.0			5.0			5.0	
Flash Dont Walk (s)		11.0			11.0			11.0			11.0	
Pedestrian Calls (#/hr)		5			5			5			5	
Act Effct Green (s)	8.0	9.0		8.7	11.6		7.2	19.1		8.4	23.9	
Actuated g/C Ratio	0.17	0.19		0.18	0.24		0.15	0.40		0.18	0.50	
v/c Ratio	0.16	0.35		0.24	0.13		0.07	0.26		0.20	0.26	
Control Delay	26.0	14.1		25.5	10.3		27.6	18.1		25.5	13.0	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	26.0	14.1		25.5	10.3		27.6	18.1		25.5	13.0	
LOS	С	В		С	В		С	В		С	В	
Approach Delay		17.1			19.1			18.6			14.6	
Approach LOS		В			В			В			В	

Area Type: Other

Cycle Length: 75

Actuated Cycle Length: 47.6

Natural Cycle: 75


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.35

Intersection Signal Delay: 16.4 Intersection LOS: B
Intersection Capacity Utilization 43.7% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 4: Joiner Parkway & 5th Street

										Larios		
	•	→	•	•	←	•	•	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†	7	ሻ	†	7	ሻ	∱ }		ሻ	∱ }	
Volume (vph)	56	65	54	76	19	45	21	337	35	78	548	31
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	145		145	150		150	140		0	140		0
Storage Lanes	1		1	1		1	1		0	1		0
Taper Length (ft)	60		•	60		•	60			60		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	1.00	1.00	0.98	1.00	1.00	0.98	1.00	1.00	0.70	1.00	1.00	0.70
Frt			0.850			0.850		0.986			0.992	
Flt Protected	0.950		0.000	0.950		0.000	0.950	0.700		0.950	0.772	
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3479	0	1770	3505	0
Flt Permitted	0.950	1003	1303	0.950	1003	1000	0.950	3477	U	0.950	3303	U
Satd. Flow (perm)	1770	1863	1554	1770	1863	1554	1770	3479	0	1770	3505	0
Right Turn on Red	1770	1003	Yes	1770	1003	Yes	1770	3477	Yes	1770	3303	Yes
Satd. Flow (RTOR)			177			177		13	163		7	163
Link Speed (mph)		35	177		35	1//		40			40	
Link Distance (ft)		826			796			901			951	
		16.1			15.5			15.4			16.2	
Travel Time (s)		10.1	г		15.5	Е		15.4	Е		10.2	Е
Confl. Peds. (#/hr)	0.70	0.70	5	0.70	0.70	5	0.70	0.70	5	0.70	0.70	5
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Adj. Flow (vph)	71	82	68	96	24	57	27	427	44	99	695	39
Shared Lane Traffic (%)	74	0.0	4.0	0.4	0.4		07	474	•	00	704	
Lane Group Flow (vph)	71	82	68	96	24	57	27	471	0	99	734	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2		1	2	
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru		Left	Thru	
Leading Detector (ft)	20	100	20	20	100	20	20	100		20	100	
Trailing Detector (ft)	0	0	0	0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0	0	0	0	0	0	0		0	0	
Detector 1 Size(ft)	20	6	20	20	6	20	20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	7	4	. 57111	3	8		5	2		1	6	
1.0000041110303	,	7		J	U		J	_		'	0	

Fullerton Ranch IS/MND 4:00 pm 08/01/2017 Existing + Project Conditions Fehr & Peers

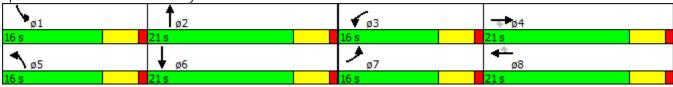
	•	→	•	•	←	•	4	†	/	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases			4			8						
Detector Phase	7	4	4	3	8	8	5	2		1	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Minimum Split (s)	16.0	21.0	21.0	16.0	21.0	21.0	16.0	21.0		16.0	21.0	
Total Split (s)	16.0	21.0	21.0	16.0	21.0	21.0	16.0	21.0		16.0	21.0	
Total Split (%)	21.6%	28.4%	28.4%	21.6%	28.4%	28.4%	21.6%	28.4%		21.6%	28.4%	
Maximum Green (s)	11.0	16.0	16.0	11.0	16.0	16.0	11.0	16.0		11.0	16.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None	None	None	None	None	None	Min		None	Min	
Walk Time (s)		5.0	5.0		5.0	5.0		5.0			5.0	
Flash Dont Walk (s)		11.0	11.0		11.0	11.0		11.0			11.0	
Pedestrian Calls (#/hr)		5	5		5	5		5			5	
Act Effct Green (s)	8.1	9.1	9.1	8.7	12.1	12.1	7.0	21.2		8.8	27.4	
Actuated g/C Ratio	0.14	0.16	0.16	0.16	0.22	0.22	0.12	0.38		0.16	0.49	
v/c Ratio	0.28	0.27	0.17	0.35	0.06	0.12	0.12	0.36		0.36	0.43	
Control Delay	28.8	26.4	0.9	29.4	23.3	0.5	29.0	21.1		29.5	18.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	28.8	26.4	0.9	29.4	23.3	0.5	29.0	21.1		29.5	18.0	
LOS	С	С	Α	С	С	Α	С	С		С	В	
Approach Delay		19.3			19.3			21.5			19.4	
Approach LOS		В			В			С			В	

Area Type: Other

Cycle Length: 74

Actuated Cycle Length: 56.1

Natural Cycle: 75


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.43

Intersection Signal Delay: 17.7 Intersection LOS: B
Intersection Capacity Utilization 43.3% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 5: Joiner Parkway & 3rd Street

												riiiiiigs
	•	→	•	•	←	•	4	†	/	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†	7	ች	1	7	ሻ	∱ }		*	∱ ∱	
Volume (vph)	70	63	232	148	113	37	128	329	99	43	453	126
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	124	.,	124	129	.,,,,	129	111	.,	0	169		0
Storage Lanes	1		1	1		1	1		0	1		0
Taper Length (ft)	60		•	60		•	60			60		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt			0.850			0.850		0.965	0.70		0.967	0.70
Flt Protected	0.950		0.000	0.950		0.000	0.950	0.700		0.950	0.707	
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3415	0	1770	3422	0
Flt Permitted	0.950	1000	1000	0.950	1000	1000	0.950	0110		0.950	O IZZ	
Satd. Flow (perm)	1770	1863	1583	1770	1863	1583	1770	3415	0	1770	3422	0
Right Turn on Red	1770	1000	Yes	1770	1000	Yes	1770	0110	Yes	1770	O IZZ	Yes
Satd. Flow (RTOR)			297			195		43	103		39	103
Link Speed (mph)		30	271		30	175		30			30	
Link Distance (ft)		1101			816			875			912	
Travel Time (s)		25.0			18.5			19.9			20.7	
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Adj. Flow (vph)	90	81	297	190	145	47	164	422	127	55	582	162
Shared Lane Traffic (%)	70	01	271	170	140	47	104	422	127	33	302	102
Lane Group Flow (vph)	90	81	297	190	145	47	164	549	0	55	744	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left		Left	Left		Left	Left		Left	Left	
Median Width(ft)	Leit	12	Right	Leit	12	Right	Leit	12	Right	Leit	12	Right
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9
Number of Detectors	13	2	1	13	2	1	13	2	7	13	2	7
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru		Left	Thru	
Leading Detector (ft)	20	100	20	20	100	20	20	100		20	100	
Trailing Detector (ft)	0	0	0	0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0	0	0	0	0	0	0		0	0	
Detector 1 Size(ft)	20	6	20	20	6	20	20	6		20	6	
	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Type	CI+EX	CI+EX	CI+EX	CI+EX	CI+EX	CI+EX	CI+EX	CI+EX		CI+EX	CI+EX	
Detector 1 Channel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Extend (s)		0.0		0.0								
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6 CL Ev			6 CL Ev			6 CL Ev			6 CI+Ex	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+EX	
Detector 2 Channel		0.0			0.0			0.0			0.0	
Detector 2 Extend (s)	Dust	0.0	Dem	Dust	0.0	Dem	Dust	0.0		Dust	0.0	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	7	4		3	8	0	5	2		1	6	
Permitted Phases	-		4	_		8	_	_		4		
Detector Phase	7	4	4	3	8	8	5	2		1	6	

Fullerton Ranch IS/MND 4:00 pm 08/01/2017 Existing + Project Conditions Fehr & Peers

	•	→	•	•	←	•	4	†	~	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Minimum Split (s)	9.0	20.0	20.0	9.0	20.0	20.0	9.0	31.0		9.0	31.0	
Total Split (s)	20.0	20.0	20.0	20.0	20.0	20.0	20.0	35.0		20.0	35.0	
Total Split (%)	21.1%	21.1%	21.1%	21.1%	21.1%	21.1%	21.1%	36.8%		21.1%	36.8%	
Maximum Green (s)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	30.0		15.0	30.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Lead/Lag	Lag	Lag	Lag	Lead	Lead	Lead	Lead	Lead		Lag	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None	None	None	None	None	None	Min		None	Min	
Walk Time (s)		5.0	5.0		5.0	5.0		5.0			5.0	
Flash Dont Walk (s)		10.0	10.0		10.0	10.0		21.0			21.0	
Pedestrian Calls (#/hr)		5	5		5	5		5			5	
Act Effct Green (s)	10.5	9.3	9.3	12.8	11.2	11.2	12.0	26.9		13.3	22.8	
Actuated g/C Ratio	0.14	0.12	0.12	0.16	0.14	0.14	0.15	0.35		0.17	0.29	
v/c Ratio	0.38	0.36	0.66	0.65	0.54	0.12	0.60	0.45		0.18	0.72	
Control Delay	38.5	39.3	12.3	44.8	41.6	0.6	43.1	23.6		30.1	28.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	38.5	39.3	12.3	44.8	41.6	0.6	43.1	23.6		30.1	28.4	
LOS	D	D	В	D	D	Α	D	С		С	С	
Approach Delay		22.0			38.1			28.1			28.6	
Approach LOS		С			D			С			С	

Area Type: Other

Cycle Length: 95

Actuated Cycle Length: 77.6

Natural Cycle: 80

Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.72 Intersection

Signal Delay: 28.9 Intersection LOS: C
Intersection Capacity Utilization ICU Level of Service A

51.6% Analysis Period (min) 15

Splits and Phases: 4: Joiner Parkway & 1st Street

										Lancs, v	olumes,	Hillings
	۶	→	•	•	•	•	4	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	¥	^	7		4		¥	+	7
Volume (vph)	97	401	22	51	429	106	11	10	33	80	11	66
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	174		174	176		176	0		0	0		174
Storage Lanes	1		1	1		1	0		0	1		1
Taper Length (ft)	60			60			60			60		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850			0.850		0.919				0.850
Flt Protected	0.950			0.950				0.990		0.950		
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	0	1695	0	1770	1863	1583
Flt Permitted	0.950			0.950				0.990		0.950		
Satd. Flow (perm)	1770	3539	1583	1770	3539	1583	0	1695	0	1770	1863	1583
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		1129			1030			428			612	
Travel Time (s)		25.7			23.4			9.7			13.9	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	104	431	24	55	461	114	12	11	35	86	12	71
Shared Lane Traffic (%)												
Lane Group Flow (vph)	104	431	24	55	461	114	0	58	0	86	12	71
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Stop			Stop			Stop			Stop	

Area Type: Other

Control Type: Unsignalized Intersection Delay 13.4

Analysis Period (min) 15

ILevel of Service B

	→	•	•	←	•	<i>></i>
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑ ↑		ሻ	^	ሻ	7
Volume (vph)	501	13	23	578	8	13
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)		0	150		0	25
Storage Lanes		0	1		1	1
Taper Length (ft)			60		60	
Lane Util. Factor	0.95	0.95	1.00	0.95	1.00	1.00
Frt	0.996					0.850
Flt Protected			0.950		0.950	
Satd. Flow (prot)	3525	0	1770	3539	1770	1583
Flt Permitted			0.950		0.950	
Satd. Flow (perm)	3525	0	1770	3539	1770	1583
Link Speed (mph)	30			30	30	
Link Distance (ft)	1030			2067	308	
Travel Time (s)	23.4			47.0	7.0	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	545	14	25	628	9	14
Shared Lane Traffic (%)						
Lane Group Flow (vph)	559	0	25	628	9	14
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		9	15		15	9
Sign Control	Free			Free	Stop	
Intersection Summary						
<i>J</i> I	Other					
Control Type: Unsignalized						
Intersection Delay 0.4				Le	evel of Se	ervice A
Analosta Dadad (mta) 15						

Analysis Period (min) 15

										24.1007	rolullies,	ge
	•	→	•	•	•	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ች	^	7	ሻ	41	7	*	414	7
Volume (vph)	15	225	274	34	285	80	301	119	47	47	84	15
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	193		193	0		81	210		210	151		151
Storage Lanes	1		1	1		1	1		1	1		1
Taper Length (ft)	60			60			60			60		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	0.91	0.91	1.00	0.91	0.91	1.00
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950		0.000	0.950		0.000	0.950	0.973	0.000	0.950	0.997	0.000
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1610	3299	1583	1610	3380	1583
Flt Permitted	0.950	0007	1000	0.950	0007	1000	0.950	0.973	1000	0.950	0.997	1000
Satd. Flow (perm)	1770	3539	1583	1770	3539	1583	1610	3299	1583	1610	3380	1583
Right Turn on Red	1770	0007	Yes	1770	0007	Yes	1010	0277	Yes	1010	0000	Yes
Satd. Flow (RTOR)			298			125			125			125
Link Speed (mph)		35	270		35	125		40	125		35	120
Link Distance (ft)		2067			258			1053			928	
Travel Time (s)		40.3			5.0			17.9			18.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	16	245	298	37	310	87	327	129	51	51	91	16
Shared Lane Traffic (%)	10	243	270	31	310	07	50%	127	31	10%	71	10
Lane Group Flow (vph)	16	245	298	37	310	87	163	293	51	46	96	16
Enter Blocked Intersection	No	No	290 No	No	No	No	No	293 No	No	No	No	No
	Left			Left				Left		Left	Left	
Lane Alignment	Leit	Left 12	Right	Len	Left 12	Right	Left	12	Right	Len	12	Right
Median Width(ft)												
Link Offset(ft)		0 16			0 16			0 16			0 16	
Crosswalk Width(ft)		10			10			10			10	
Two way Left Turn Lane	1 00	1 00	1.00	1.00	1 00	1 00	1.00	1.00	1.00	1 00	1 00	1 00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	2	9	15	2	9	15	2	9	15	2	9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Split	NA	Perm	Split	NA	Perm
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases			4			8			2			6
Detector Phase	7	4	4	3	8	8	2	2	2	6	6	6

Fullerton Ranch IS/MND 4:00 pm 08/01/2017 Existing Plus Project Conditions Fehr & Peers

•	_	•	• •	•	-	_	•••	•	•	•	_	•••	
	Lai	nes	S, 1	Vc	lu	m	es		Γi	m	ir	ıgs	•

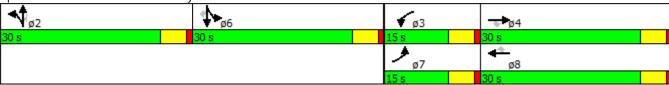
	•	→	•	•	←	•	•	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	9.0	26.0	26.0	9.0	26.0	26.0	28.0	28.0	28.0	26.0	26.0	26.0
Total Split (s)	15.0	30.0	30.0	15.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Total Split (%)	14.3%	28.6%	28.6%	14.3%	28.6%	28.6%	28.6%	28.6%	28.6%	28.6%	28.6%	28.6%
Maximum Green (s)	10.0	25.0	25.0	10.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag						
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	Min	Min	Min	Min	Min	Min
Walk Time (s)		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Flash Dont Walk (s)		16.0	16.0		16.0	16.0	18.0	18.0	18.0	16.0	16.0	16.0
Pedestrian Calls (#/hr)		5	5		5	5	5	5	5	5	5	5
Act Effct Green (s)	6.8	11.7	11.7	7.5	14.2	14.2	12.6	12.6	12.6	9.2	9.2	9.2
Actuated g/C Ratio	0.12	0.21	0.21	0.14	0.26	0.26	0.23	0.23	0.23	0.17	0.17	0.17
v/c Ratio	0.07	0.32	0.52	0.15	0.34	0.17	0.44	0.38	0.11	0.17	0.17	0.04
Control Delay	32.2	22.6	7.5	30.7	19.5	3.2	25.9	21.9	0.5	26.1	24.2	0.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	32.2	22.6	7.5	30.7	19.5	3.2	25.9	21.9	0.5	26.1	24.2	0.2
LOS	С	С	Α	С	В	Α	С	С	Α	С	С	Α
Approach Delay		14.9			17.2			21.1			22.3	
Approach LOS		В			В			С			С	

Area Type: Other

Cycle Length: 105

Actuated Cycle Length: 54.6

Natural Cycle: 90


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.52

Intersection Signal Delay: 19.4 Intersection LOS: B
Intersection Capacity Utilization 38.7% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 3: Joiner Parkway & Nicolaus Road

Lane Group											Larios, i	rolanios	······gs
		•	→	\rightarrow	•	•	•	4	†	/	-	↓	4
Volume (typh)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Volume (typh)	Lane Configurations	ሻ	ĵ.		ሻ	î,		7	♦ %		7	ት Ъ	
Ideal Flow (ryhph)				33			48			90			40
Storage Langth (ff)		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Lanes				0									
Taper Length (ff)													
Lane UIL Factor 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.		60			60						60		
Ped Bike Factor			1.00	1.00		1.00	1.00		0.95	0.95		0.95	0.95
Fith													
File Producted 0.950 0.9													
Satd Flow (prot) 170		0.950	0.70.		0.950	0.077		0.950	0.77		0.950	0.700	
Fit Permitted			1657	0		1649	0		3429	0		3466	0
Satis Flow (perm) 1770 1657 0 1770 1649 0 1770 3429 0 1770 3466 0 1766 1767 1768			.00,						0.27			0.00	J
Name			1657	0		1649	0		3429	0		3466	0
Salid. Flow (RTOR) 35	ν ,	1770	1007		1770	1017		1770	0127		1770	0100	
Link Speed (mph)	· ·		35	103		51	103		30	103		17	103
Link Distance (ft)													
Travel Time (s)	1 1 7												
Confi. Peds. (#/hr)	` '												
Peak Hour Factor 0.95 0.	, ,		12.0	5		12.7	5		10.2	5		34.4	5
Adj. Flow (vph)	` '	0.05	0.05		0.05	0.05		0.05	0.05		0.05	0.05	
Shared Lane Traffic (%) Lane Group Flow (vph) 16 53 0 47 74 0 74 558 0 26 366 0 0													
Lane Group Flow (vph) 16 53 0 47 74 0 74 558 0 26 366 0		10	18	35	47	23	51	74	403	95	20	324	42
Enter Blocked Intersection	, ,	1/	гэ	0	47	7.4	0	7.4	ГГО	0	27	2//	0
Left Left Right Median Width(fft) 12 12 12 12 12 12 12 1													
Median Width(fft) 12 16 10 100 100 100 100 100 100 100 100 100 100 100 100 100													
Link Offset(fit) 0 0 0 0 0 Crosswalk Width(fit) 16 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00 </td <td></td> <td>Leit</td> <td></td> <td>Right</td> <td>Leit</td> <td></td> <td>Right</td> <td>Leit</td> <td></td> <td>Right</td> <td>Len</td> <td></td> <td>Right</td>		Leit		Right	Leit		Right	Leit		Right	Len		Right
Crosswalk Width(ff) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00													
Two way Left Turn Lane Headway Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Headway Factor 1.00			16			16			16			16	
Turning Speed (mph) 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 Number of Detectors 1 2 1 0 <th< td=""><td>,</td><td>4.00</td><td>4.00</td><td>4.00</td><td>1.00</td><td>4.00</td><td>4.00</td><td>4.00</td><td>4.00</td><td>4.00</td><td>1.00</td><td>4.00</td><td>4.00</td></th<>	,	4.00	4.00	4.00	1.00	4.00	4.00	4.00	4.00	4.00	1.00	4.00	4.00
Number of Detectors 1 2 1 0			1.00			1.00			1.00			1.00	
Detector Template Left Thru Left Thru Left Thru Leading Detector (ft) 20 100 20 100 20 100 Trailing Detector (ft) 0 0 0 0 0 0 0 Detector 1 Position(ft) 0 0 0 0 0 0 0 Detector 1 Position(ft) 20 6 20 6 20 6 20 6 Detector 1 Size(ft) 20 6 20 6 20 6 20 6 Detector 1 Type CI+Ex			0	9		0	9		•	9		0	9
Leading Detector (ft) 20 100 20 100 20 100 Trailing Detector (ft) 0 0 0 0 0 0 0 0 Detector 1 Position(ft) 0					•								
Trailing Detector (ft) 0 0 0 0 0 0 0 Detector 1 Position(ft) 0 0 0 0 0 0 0 0 Detector 1 Size(ft) 20 6 20 6 20 6 20 6 Detector 1 Type CI+Ex													
Detector 1 Position(fft) 0 0 0 0 0 0 0 Detector 1 Size(ft) 20 6 20 6 20 6 Detector 1 Type Cl+Ex Cl+Ex Cl+Ex Cl+Ex Cl+Ex Detector 1 Channel Detector 1 Extend (s) 0.0 <td></td>													
Detector 1 Size(ft) 20 6 20 6 20 6 Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Channel Detector 1 Extend (s) 0.0													
Detector 1 Type CI+Ex													
Detector 1 Channel Detector 1 Extend (s) 0.0 <													
Detector 1 Extend (s) 0.0		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Queue (s) 0.0													
Detector 1 Delay (s) 0.0 Turn Type Prot NA Prot<	` ,												
Detector 2 Position(ft) 94 94 94 94 Detector 2 Size(ft) 6 6 6 6 Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type Prot NA Prot NA Prot NA	. ,												
Detector 2 Size(ft) 6 6 6 6 6 Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type Prot NA Prot NA Prot NA		0.0			0.0			0.0			0.0		
Detector 2 Type Cl+Ex Cl+Ex Cl+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 0.0 Turn Type Prot NA Prot NA Prot NA	` '												
Detector 2 Channel 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Turn Type Prot NA Prot NA Prot NA Prot NA NA Prot NA NA Prot	, ,												
Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type Prot NA Prot NA Prot NA			CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Turn Type Prot NA Prot NA Prot NA Prot NA	Detector 2 Channel												
,	Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
	Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
		7	4		3	8		5	2		1	6	

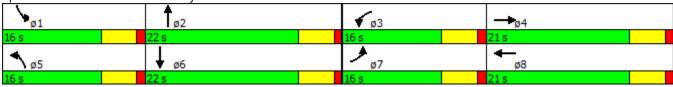
Fullerton Ranch IS/MND 4:00 pm 08/01/2017 Existing Plus Project Conditions Fehr & Peers

_		
Lanes.	Volumes.	Timinas

	۶	→	\rightarrow	•	←	•	•	†	<i>></i>	>	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases												
Detector Phase	7	4		3	8		5	2		1	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	16.0	21.0		16.0	21.0		16.0	21.0		16.0	21.0	
Total Split (s)	16.0	21.0		16.0	21.0		16.0	22.0		16.0	22.0	
Total Split (%)	21.3%	28.0%		21.3%	28.0%		21.3%	29.3%		21.3%	29.3%	
Maximum Green (s)	11.0	16.0		11.0	16.0		11.0	17.0		11.0	17.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		None	Min		None	Min	
Walk Time (s)		5.0			5.0			5.0			5.0	
Flash Dont Walk (s)		11.0			11.0			11.0			11.0	
Pedestrian Calls (#/hr)		5			5			5			5	
Act Effct Green (s)	7.0	8.1		7.8	10.4		8.5	29.2		7.3	23.9	
Actuated g/C Ratio	0.16	0.18		0.18	0.24		0.19	0.66		0.17	0.54	
v/c Ratio	0.06	0.16		0.15	0.17		0.22	0.24		0.09	0.19	
Control Delay	25.7	13.2		23.8	9.8		23.1	10.2		25.1	14.9	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	25.7	13.2		23.8	9.8		23.1	10.2		25.1	14.9	
LOS	С	В		С	Α		С	В		С	В	
Approach Delay		16.1			15.2			11.7			15.6	
Approach LOS		В			В			В			В	

Area Type: Other

Cycle Length: 75 Actuated Cycle Length: 44 Natural Cycle: 75


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.24 Intersection Signal Delay: 14.3

Intersection LOS: B Intersection Capacity Utilization 40.8% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 4: Joiner Parkway & 5th Street

								Lanes, volumes, rimings		Tillings		
	•	→	\rightarrow	•	←	•	4	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	†	7	ች	1	7	ሻ	↑ ↑		*	∱ ∱	
Volume (vph)	21	24	28	53	29	50	46	574	74	27	368	35
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	145	1700	145	150	1700	150	140	1700	0	140	1700	0
Storage Lanes	1		1	1		1	1		0	1		0
Taper Length (ft)	60		'	60		'	60		0	60		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	1.00	1.00	0.98	1.00	1.00	0.98	1.00	1.00	0.75	1.00	1.00	0.75
Frt			0.850			0.850		0.983			0.987	
Flt Protected	0.950		0.030	0.950		0.030	0.950	0.703		0.950	0.707	
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3467	0	1770	3484	0
Flt Permitted	0.950	1003	1303	0.950	1003	1303	0.950	3407	U	0.950	3404	U
Satd. Flow (perm)	1770	1863	1553	1770	1863	1553	1770	3467	0	1770	3484	0
Right Turn on Red	1770	1003	Yes	1770	1003	Yes	1770	3407	Yes	1770	3404	Yes
			175			175		17	162		12	162
Satd. Flow (RTOR)		25	1/5		25	175		40				
Link Speed (mph)		35			35						40	
Link Distance (ft)		826			796			901			951	
Travel Time (s)		16.1	_		15.5	_		15.4	_		16.2	_
Confl. Peds. (#/hr)	0.04	0.04	5	0.04	0.04	5	0.04	0.04	5	0.04	0.04	5
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	22	26	30	56	31	53	49	612	79	29	391	37
Shared Lane Traffic (%)												
Lane Group Flow (vph)	22	26	30	56	31	53	49	691	0	29	428	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2		1	2	
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru		Left	Thru	
Leading Detector (ft)	20	100	20	20	100	20	20	100		20	100	
Trailing Detector (ft)	0	0	0	0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0	0	0	0	0	0	0		0	0	
Detector 1 Size(ft)	20	6	20	20	6	20	20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Type Detector 2 Channel		OTTEX			OI7 LX			OI LX			OI LX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	7	4	i cilii	3	8	I CIIII	5	2		1	6	
FIOUGUIGU FIIdSES	1	4		ა	0		ິນ	۷		I	U	

Fullerton Ranch IS/MND 4:00 pm 08/01/2017 Existing Plus Project Conditions Fehr & Peers

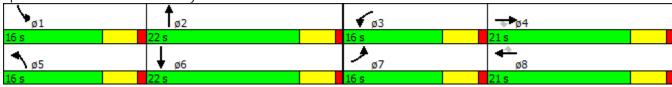
	۶	→	•	•	+	•	•	†	~	/	 	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases			4			8						
Detector Phase	7	4	4	3	8	8	5	2		1	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Minimum Split (s)	16.0	21.0	21.0	16.0	21.0	21.0	16.0	21.0		16.0	21.0	
Total Split (s)	16.0	21.0	21.0	16.0	21.0	21.0	16.0	22.0		16.0	22.0	
Total Split (%)	21.3%	28.0%	28.0%	21.3%	28.0%	28.0%	21.3%	29.3%		21.3%	29.3%	
Maximum Green (s)	11.0	16.0	16.0	11.0	16.0	16.0	11.0	17.0		11.0	17.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None	None	None	None	None	None	Min		None	Min	
Walk Time (s)		5.0	5.0		5.0	5.0		5.0			5.0	
Flash Dont Walk (s)		11.0	11.0		11.0	11.0		11.0			11.0	
Pedestrian Calls (#/hr)		5	5		5	5		5			5	
Act Effct Green (s)	7.0	8.1	8.1	7.9	13.0	13.0	7.7	26.8		7.2	26.5	
Actuated g/C Ratio	0.15	0.17	0.17	0.17	0.28	0.28	0.17	0.58		0.16	0.57	
v/c Ratio	0.08	0.08	0.07	0.19	0.06	0.09	0.17	0.34		0.11	0.21	
Control Delay	26.2	22.5	0.4	24.6	16.3	0.3	24.9	15.1		25.9	14.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	26.2	22.5	0.4	24.6	16.3	0.3	24.9	15.1		25.9	14.4	
LOS	С	С	Α	С	В	Α	С	В		С	В	
Approach Delay		15.0			13.6			15.8			15.1	
Approach LOS		В			В			В			В	

Area Type: Other

Cycle Length: 75

Actuated Cycle Length: 46.4

Natural Cycle: 75


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.34

Intersection Signal Delay: 15.0 Intersection LOS: B
Intersection Capacity Utilization 44.3% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 5: Joiner Parkway & 3rd Street

Lane Group		Lanes, volumes											
Line Configurations		•	→	•	•	←	•	4	†	/	-	↓	1
Lane Configurations	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Volume (ynip)		*	*	#	*	*	#	*	∳ ሴ		*	≜ሴ	
Ideal Flow (ryhph)										96		386	37
Storage Length (fi) 124													
Storage Lanes			1700			1700			1700			1700	
Taper Length (II)													
Lane UIL Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95 0.95 0.95 0.95 Firth Protected 0.950 0.950 0.950 0.950 0.950 0.950 File Protected 0.950 0.950 0.950 0.950 0.950 0.950 File Protected 0.950 0.950 0.950 0.950 0.950 0.950 Sald, Flow (prot) 1770 1863 1583 1770 1863 1583 1770 3468 0.0 1770 3493 0.950 0.950 0.950 0.950 0.950 Sald, Flow (perm) 1770 1863 1583 1770 1863 1583 1770 3468 0.0 1770 3493 0.950 0.95				'						Ū			
Fit Protected 0.950			1 00	1 00		1 00	1.00		0.95	0.95		N 95	0.95
File Producted 0.950 0.9		1.00	1.00		1.00	1.00		1.00		0.75	1.00		0.75
Satid. Flow (prot) 1770 1863 1583 1770 1863 1583 1770 0.950		0.950		0.000	0.950		0.000	0.950	0.700		0.950	0.707	
File Permitted			1863	1583		1863	1583		3/168	Λ		3/103	O
Satid. Flow (perm) 1770 1863 1583 1770 1863 1583 1770 3468 0 1770 3493 0			1003	1303		1003	1303		3400	U		3473	U
Right Turn on Red			1863	1592		1863	1502		3/168	0		3/103	n
Satid. Flow (RTOR)	• .	1770	1003		1770	1003		1770	3400		1770	3473	
Link Speed (mph)									10	163		11	163
Link Distance (ft)	,		30	175		30	173						
Travel Time (s)													
Peak Hour Factor 0.96	` '												
Adj. Flow (vph) 35 27 94 111 44 54 136 650 100 48 402 39	` .	0.04		0.04	0.04		0.04	0.04		0.04	0.04		0.04
Shared Lane Traffic (%) Lane Group Flow (yph) 35 27 94 111 44 54 136 750 0 48 441 0													
Lane Group Flow (vph) 35 27 94 111 44 54 136 750 0 48 441 0		30	21	94	111	44	54	130	000	100	48	402	39
Enter Blocked Intersection	` ,	٦٢	27	0.4	111	4.4	Ε.4	10/	750	^	40	4.41	0
Left Left Right Right Median Width(ft) 12													
Median Width(ft) 12 16 6 6 6 6 6 7 7 7 8 16 10 20 20 10 20 10 20 20 20 20 20 20 20 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Link Offset(ft)		Lett		Right	Lett		Right	Lett		Right	Lett		Right
Crosswalk Width(ft) 16	• ,												
Two way Left Turn Lane Headway Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	. ,												
Headway Factor	` ,		16			16			16			16	
Turning Speed (mph)		1.00	4.00	4.00	1.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	1.00
Number of Detectors 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 0 0			1.00			1.00			1.00			1.00	
Detector Template Left Thru Right Left Thru Right Left Thru Detector 100 20 0			•			•			0	9		0	9
Leading Detector (ft) 20 100 20 20 100 20 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 20 100 0													
Trailing Detector (ft) 0													
Detector 1 Position(ft) 0													
Detector 1 Size(fit) 20 6 20 20 6 20 20 6 20 20 6 20 20 6 20													
Detector 1 Type CI+Ex													
Detector 1 Channel Detector 1 Extend (s) 0.0													
Detector 1 Extend (s) 0.0		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	Cl+Ex	
Detector 1 Queue (s) 0.0													
Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 94 92 94	` ,												
Detector 2 Position(ft) 94 94 94 94 Detector 2 Size(ft) 6 6 6 6 Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type Prot NA Perm Prot NA Perm Prot NA Prot NA Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases 4 8 8 8 8 8													
Detector 2 Size(ft) 6 6 6 6 6 Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type Prot NA Perm Prot NA Perm Prot NA Prot NA Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases 4 8 8 8 8 8		0.0		0.0	0.0		0.0	0.0			0.0		
Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 0.0 0.0 0.0 Turn Type Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases 4 8 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>94</td><td></td><td></td><td></td><td></td><td></td><td>94</td><td></td></td<>						94						94	
Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type Prot NA Perm Prot NA Perm Prot NA Prot NA Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases 4 8													
Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type Prot NA Perm Prot NA Perm Prot NA Prot NA Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases 4 8 <			CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Turn Type Prot NA Perm Prot NA Perm Prot NA Prot NA Prot NA Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases 4 8	Detector 2 Channel												
Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases 4 8													
Permitted Phases 4 8		Prot	NA	Perm	Prot	NA	Perm	Prot	NA		Prot	NA	
	Protected Phases	7	4		3	8		5	2		1	6	
Detector Phase 7 4 4 3 8 8 5 2 1 6	Permitted Phases			4			8						
	Detector Phase	7	4	4	3	8	8	5	2		1	6	

Fullerton Ranch IS/MND 4:00 pm 08/01/2017 Existing Plus Project Conditions Fehr & Peers

	۶	→	•	•	←	•	•	†	<i>></i>	>	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Minimum Split (s)	9.0	20.0	20.0	9.0	20.0	20.0	9.0	31.0		9.0	31.0	
Total Split (s)	20.0	20.0	20.0	20.0	20.0	20.0	20.0	35.0		20.0	35.0	
Total Split (%)	21.1%	21.1%	21.1%	21.1%	21.1%	21.1%	21.1%	36.8%		21.1%	36.8%	
Maximum Green (s)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	30.0		15.0	30.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Lead/Lag	Lag	Lag	Lag	Lead	Lead	Lead	Lead	Lead		Lag	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None	None	None	None	None	None	Min		None	Min	
Walk Time (s)		5.0	5.0		5.0	5.0		5.0			5.0	
Flash Dont Walk (s)		10.0	10.0		10.0	10.0		21.0			21.0	
Pedestrian Calls (#/hr)		5	5		5	5		5			5	
Act Effct Green (s)	8.9	8.2	8.2	10.3	11.3	11.3	11.0	30.1		8.2	25.1	
Actuated g/C Ratio	0.14	0.13	0.13	0.17	0.18	0.18	0.18	0.49		0.13	0.41	
v/c Ratio	0.14	0.11	0.25	0.37	0.13	0.12	0.43	0.44		0.20	0.31	
Control Delay	30.4	31.2	1.5	32.5	28.4	0.5	33.0	18.3		33.2	20.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	30.4	31.2	1.5	32.5	28.4	0.5	33.0	18.3		33.2	20.6	
LOS	С	С	Α	С	С	Α	С	В		С	С	
Approach Delay		13.1			23.4			20.5			21.9	
Approach LOS		В			С			С			С	

Area Type: Other

Cycle Length: 95

Actuated Cycle Length: 61.4

Natural Cycle: 70

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.44

Intersection Signal Delay: 20.6 Intersection LOS: C
Intersection Capacity Utilization 48.7% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 4: Joiner Parkway & 1st Street

APPENDIX C – CUMULATIVE NO PROJECT

	۶	→	•	•	←	•	•	†	<i>></i>	>		-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	ሻ	^	#		4		*	+	7
Volume (vph)	160	710	5	30	1290	80	20	30	50	195	20	165
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	174		174	176		176	0		0	0		174
Storage Lanes	1		1	1		1	0		0	1		1
Taper Length (ft)	60		-	60		-	60			60		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.70	0.850		0.70	0.850		0.933				0.850
Flt Protected	0.950		0.000	0.950		0.000		0.990		0.950		0.000
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	0	1721	0	1770	1863	1583
Flt Permitted	0.950	0007	1000	0.950	0007	1000	U	0.990	· ·	0.950	1000	1000
Satd. Flow (perm)	1770	3539	1583	1770	3539	1583	0	1721	0	1770	1863	1583
Right Turn on Red	1770	0007	Yes	1770	0007	Yes	U	1721	Yes	1770	1000	Yes
Satd. Flow (RTOR)			131			131		38	103			179
Link Speed (mph)		30	131		30	101		30			30	177
Link Distance (ft)		1129			1030			428			612	
Travel Time (s)		25.7			23.4			9.7			13.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	174	772	5	33	1402	87	22	33	54	212	22	179
	1/4	112	o	აა	1402	07	22	აა	34	212	ZZ	179
Shared Lane Traffic (%)	174	772	5	33	1402	87	0	109	0	212	22	179
Lane Group Flow (vph)							0					
Enter Blocked Intersection	No	No	No Diabt	No	No	No Diabt	No	No	No Diabt	No	No	No Diaht
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane	1.00	1.00	1.00	4.00	4.00	1.00	4.00	4.00	4.00	4.00	4.00	4.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	0	9	15	•	9	15	0	9	15	0	9
Number of Detectors	1	2	1	1	2	1	1	2		1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru		Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100	20	20	100		20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0		0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0		0	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6		20	6	20
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Split	NA		Split	NA	Perm
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases			4			8						6
Detector Phase	7	4	4	3	8	8	2	2		6	6	6

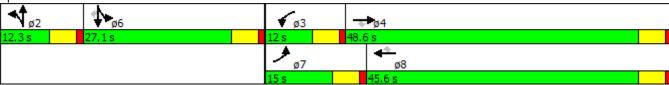
	ၨ	→	•	•	←	•	4	†	~	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Minimum Split (s)	12.0	27.1	27.1	12.0	27.1	27.1	12.0	12.0		27.1	27.1	27.1
Total Split (s)	15.0	48.6	48.6	12.0	45.6	45.6	12.3	12.3		27.1	27.1	27.1
Total Split (%)	15.0%	48.6%	48.6%	12.0%	45.6%	45.6%	12.3%	12.3%		27.1%	27.1%	27.1%
Maximum Green (s)	10.0	43.6	43.6	7.0	40.6	40.6	7.3	7.3		22.1	22.1	22.1
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0		5.0		5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag						
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	Min	Min		Min	Min	Min
Walk Time (s)		5.0	5.0		5.0	5.0				5.0	5.0	5.0
Flash Dont Walk (s)		17.1	17.1		17.1	17.1				17.1	17.1	17.1
Pedestrian Calls (#/hr)		10	10		10	10				10	10	10
Act Effct Green (s)	10.0	48.7	48.7	6.5	40.6	40.6		7.0		16.4	16.4	16.4
Actuated g/C Ratio	0.11	0.52	0.52	0.07	0.43	0.43		0.07		0.17	0.17	0.17
v/c Ratio	0.93	0.42	0.01	0.27	0.92	0.11		0.67		0.69	0.07	0.42
Control Delay	93.0	16.8	0.0	48.9	37.1	1.5		50.3		48.5	32.1	8.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0
Total Delay	93.0	16.8	0.0	48.9	37.1	1.5		50.3		48.5	32.1	8.4
LOS	F	В	Α	D	D	Α		D		D	С	Α
Approach Delay		30.7			35.3			50.3			30.3	
Approach LOS		С			D			D			С	

Area Type: Other

Cycle Length: 100

Actuated Cycle Length: 94.1

Natural Cycle: 90


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.93

Intersection Signal Delay: 33.7 Intersection LOS: C
Intersection Capacity Utilization 74.5% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 1: Lakeside Drive & Nicolaus Road

							Edites, Voluntes, 1
	→	•	•	+	•	/	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	↑ ↑		ሻ	^	ሻ	7	
Volume (vph)	955	0	0	1400	0	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Storage Length (ft)		0	150		0	25	
Storage Lanes		0	1		1	1	
Taper Length (ft)			60		60		
Lane Util. Factor	0.95	0.95	1.00	0.95	1.00	1.00	
Frt							
Flt Protected							
Satd. Flow (prot)	3539	0	1863	3539	1863	1863	
Flt Permitted							
Satd. Flow (perm)	3539	0	1863	3539	1863	1863	
Link Speed (mph)	30			30	30		
Link Distance (ft)	1030			2067	308		
Travel Time (s)	23.4			47.0	7.0		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	1038	0	0	1522	0	0	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	1038	0	0	1522	0	0	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(ft)	12			12	12	, i	
Link Offset(ft)	0			0	0		
Crosswalk Width(ft)	16			16	16		
Two way Left Turn Lane							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)		9	15		15	9	
Sign Control	Free			Free	Stop		
Intersection Summary							
<i>y</i> 1	Other						
Control Type: Unsignalized							
Intersection Dalay 0.0				17	oval of Ca	nuico A	

Level of Service A

Intersection Delay 0.0 Analysis Period (min) 15

										Larios, (olullioo ₁	Tillings
	•	→	•	•	←	*	1	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	† †	7	ሻ	† †	7	ሻ	414	7	*	4↑	7
Volume (vph)	40	655	260	60	740	180	600	120	130	140	200	60
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	193		193	0		81	210		210	151		151
Storage Lanes	1		1	1		1	1		1	1		1
Taper Length (ft)	60			60			60			60		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	0.91	0.91	1.00	0.91	0.91	1.00
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950	0.965		0.950	0.994	
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1610	3272	1583	1610	3370	1583
Flt Permitted	0.950			0.950			0.950	0.965		0.950	0.994	
Satd. Flow (perm)	1770	3539	1583	1770	3539	1583	1610	3272	1583	1610	3370	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			283			131			141			131
Link Speed (mph)		35			35			40			35	
Link Distance (ft)		2067			258			1053			928	
Travel Time (s)		40.3			5.0			17.9			18.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	43	712	283	65	804	196	652	130	141	152	217	65
Shared Lane Traffic (%)							50%			21%		
Lane Group Flow (vph)	43	712	283	65	804	196	326	456	141	120	249	65
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	J •		12	. .		12	J		12	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Split	NA	Perm	Split	NA	Perm
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases			4			8			2			6
Detector Phase	7	4	4	3	8	8	2	2	2	6	6	6
			-									

Fullerton Ranch IS/MND 4:00 pm 08/01/2017 Cumulative Conditions Fehr & Peers

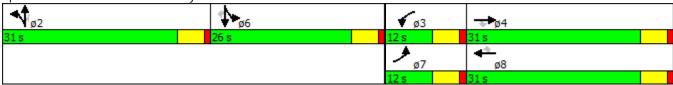
	۶	→	•	•	←	4	4	†	~	/	†	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	12.0	26.0	26.0	12.0	26.0	26.0	28.0	28.0	28.0	26.0	26.0	26.0
Total Split (s)	12.0	31.0	31.0	12.0	31.0	31.0	31.0	31.0	31.0	26.0	26.0	26.0
Total Split (%)	12.0%	31.0%	31.0%	12.0%	31.0%	31.0%	31.0%	31.0%	31.0%	26.0%	26.0%	26.0%
Maximum Green (s)	7.0	26.0	26.0	7.0	26.0	26.0	26.0	26.0	26.0	21.0	21.0	21.0
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag						
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	Min	Min	Min	Min	Min	Min
Walk Time (s)		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Flash Dont Walk (s)		16.0	16.0		16.0	16.0	18.0	18.0	18.0	16.0	16.0	16.0
Pedestrian Calls (#/hr)		5	5		5	5	5	5	5	5	5	5
Act Effct Green (s)	6.8	23.4	23.4	6.9	25.9	25.9	22.6	22.6	22.6	13.0	13.0	13.0
Actuated g/C Ratio	0.08	0.28	0.28	0.08	0.31	0.31	0.27	0.27	0.27	0.16	0.16	0.16
v/c Ratio	0.30	0.72	0.44	0.45	0.73	0.34	0.75	0.52	0.27	0.48	0.48	0.18
Control Delay	47.6	33.9	6.1	52.4	33.2	12.4	42.7	30.0	6.7	42.1	37.4	1.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	47.6	33.9	6.1	52.4	33.2	12.4	42.7	30.0	6.7	42.1	37.4	1.1
LOS	D	С	Α	D	С	В	D	С	Α	D	D	Α
Approach Delay		26.9			30.5			30.9			33.3	
Approach LOS		С			С			С			С	

Area Type: Other

Cycle Length: 100

Actuated Cycle Length: 83.7

Natural Cycle: 95


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.75

Intersection Signal Delay: 29.9 Intersection LOS: C
Intersection Capacity Utilization 63.5% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 3: Joiner Parkway & Nicolaus Road

	۶	→	•	•	←	•	•	†	<i>></i>	\	↓	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	f.		ሻ	f.		ሻ	ħβ		*	ħβ	
Volume (vph)	50	60	90	80	15	55	40	875	60	85	510	30
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	145		0	145		0	150		0	150		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	60			60			60			60		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor		0.99			0.98			1.00			1.00	
Frt		0.910			0.882			0.990			0.992	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1675	0	1770	1617	0	1770	3496	0	1770	3504	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1770	1675	0	1770	1617	0	1770	3496	0	1770	3504	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		79			58			9			7	
Link Speed (mph)		35			35			40			40	
Link Distance (ft)		578			664			954			2012	
Travel Time (s)		11.3			12.9			16.3			34.3	
Confl. Peds. (#/hr)			5			5			5			5
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	53	63	95	84	16	58	42	921	63	89	537	32
Shared Lane Traffic (%)												
Lane Group Flow (vph)	53	158	0	84	74	0	42	984	0	89	569	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	

	٠	→	*	•	+	•	•	†	~	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases												
Detector Phase	7	4		3	8		5	2		1	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	16.0	21.0		16.0	21.0		16.0	21.0		16.0	21.0	
Total Split (s)	16.0	21.0		16.0	21.0		16.0	32.0		16.0	32.0	
Total Split (%)	18.8%	24.7%		18.8%	24.7%		18.8%	37.6%		18.8%	37.6%	
Maximum Green (s)	11.0	16.0		11.0	16.0		11.0	27.0		11.0	27.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?		_			_			_			-	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		None	Min		None	Min	
Walk Time (s)		5.0			5.0			5.0			5.0	
Flash Dont Walk (s)		11.0			11.0			11.0			11.0	
Pedestrian Calls (#/hr)		5			5			5			5	
Act Effct Green (s)	7.8	9.5		8.7	12.7		7.5	28.2		8.8	31.8	
Actuated g/C Ratio	0.11	0.14		0.13	0.18		0.11	0.41		0.13	0.46	
v/c Ratio	0.27	0.53		0.38	0.22		0.22	0.69		0.40	0.35	
Control Delay	35.9	23.9		37.3	13.4		35.8	24.5		37.5	16.8	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	35.9	23.9		37.3	13.4		35.8	24.5		37.5	16.8	
LOS	D	С		D	В		D	С		D	В	
Approach Delay		26.9			26.1			25.0			19.6	
Approach LOS		С			С			С			В	

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 69.5 Natural Cycle: 80

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.69

Intersection Signal Delay: 23.5 Intersection LOS: C Intersection Capacity Utilization 61.6% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 4: Joiner Parkway & 5th Street

Lanes, Volumes, Timings ᄼ **EBL EBT EBR WBL NBT SBL** Lane Group **WBT WBR NBL** NBR **SBT SBR** Lane Configurations ሻ ٨ 7 ۲ ٠ 7 ኘ ተኈ **∱**} Volume (vph) 60 70 70 80 80 70 40 70 40 980 60 670 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Storage Length (ft) 145 145 150 150 140 0 140 0 Storage Lanes 0 1 1 1 1 1 1 0 Taper Length (ft) 60 60 60 60 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95 1.00 0.95 0.95 Ped Bike Factor 0.98 0.98 1.00 1.00 0.850 0.850 0.991 0.992 Frt 0.950 Flt Protected 0.950 0.950 0.950 Satd. Flow (prot) 1770 1863 1583 1770 1863 1583 1770 3501 0 1770 3504 0 Flt Permitted 0.950 0.950 0.950 0.950 Satd. Flow (perm) 1770 1863 1552 1770 1863 1552 1770 3501 0 1770 3504 0 Right Turn on Red Yes Yes Yes Yes Satd. Flow (RTOR) 7 154 154 8 Link Speed (mph) 35 35 40 40 Link Distance (ft) 954 874 1023 906 Travel Time (s) 17.0 19.9 15.4 16.3 5 5 5 Confl. Peds. (#/hr) 5 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 Peak Hour Factor 0.92 0.92 Adj. Flow (vph) 65 76 76 87 87 76 43 1065 65 76 728 43 Shared Lane Traffic (%) Lane Group Flow (vph) 65 76 76 87 87 76 0 76 771 43 1130 0 **Enter Blocked Intersection** No Lane Alignment Left Left Right Left Left Right Left Left Right Left Left Right Median Width(ft) 12 12 12 12 Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Turning Speed (mph) 15 9 15 9 15 9 15 Number of Detectors 2 1 2 1 1 2 2 **Detector Template** Left Right Thru Right Left Left Thru Left Thru Thru Leading Detector (ft) 20 100 20 20 100 20 20 100 20 100 Trailing Detector (ft) 0 0 0 0 0 0 0 0 0 0 Detector 1 Position(ft) 0 0 0 0 0 0 0 0 0 0 Detector 1 Size(ft) 20 20 20 6 6 20 20 6 20 6 Detector 1 Type CI+Ex **Detector 1 Channel** Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 2 Position(ft) 94 94 94 94 Detector 2 Size(ft) 6 6 6 6 Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex **Detector 2 Channel** 0.0 Detector 2 Extend (s) 0.0 0.0 0.0

Prot

7

NA

4

Perm

Prot

3

NA

8

Perm

Turn Type

Protected Phases

NA

6

Prot

1

NA

2

Prot

5

	۶	→	•	•	•	•	4	†	<i>></i>	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases			4			8						
Detector Phase	7	4	4	3	8	8	5	2		1	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Minimum Split (s)	16.0	21.0	21.0	16.0	21.0	21.0	16.0	21.0		16.0	21.0	
Total Split (s)	16.0	21.0	21.0	16.0	21.0	21.0	16.0	32.0		16.0	32.0	
Total Split (%)	18.8%	24.7%	24.7%	18.8%	24.7%	24.7%	18.8%	37.6%		18.8%	37.6%	
Maximum Green (s)	11.0	16.0	16.0	11.0	16.0	16.0	11.0	27.0		11.0	27.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None	None	None	None	None	None	Min		None	Min	
Walk Time (s)		5.0	5.0		5.0	5.0		5.0			5.0	
Flash Dont Walk (s)		11.0	11.0		11.0	11.0		11.0			11.0	
Pedestrian Calls (#/hr)		5	5		5	5		5			5	
Act Effct Green (s)	8.2	9.2	9.2	8.8	12.1	12.1	7.6	33.5		8.5	36.7	
Actuated g/C Ratio	0.12	0.13	0.13	0.13	0.18	0.18	0.11	0.49		0.12	0.53	
v/c Ratio	0.31	0.31	0.22	0.39	0.27	0.19	0.22	0.66		0.35	0.41	
Control Delay	35.9	33.4	1.5	37.0	30.7	1.1	35.3	24.3		36.5	17.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	35.9	33.4	1.5	37.0	30.7	1.1	35.3	24.3		36.5	17.3	
LOS	D	С	Α	D	С	Α	D	С		D	В	
Approach Delay		23.0			23.9			24.7			19.0	
Approach LOS		С			С			С			В	

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 68.9

Natural Cycle: 80

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.66

Intersection Signal Delay: 22.6 Intersection Capacity Utilization 56.9% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 5: Joiner Parkway & 3rd Street

	Lanc									ge		
	•	→	\rightarrow	•	←	•	1	†	/	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ች		7	ሻ	đβ		*	ተ ኈ	
Volume (vph)	70	70	280	160	140	60	160	990	130	50	590	130
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	124	.,,,,	124	129	.,,,,	129	111	.,,,	0	169		0
Storage Lanes	1		1	1		1	1		0	1		0
Taper Length (ft)	60		•	60		•	60			60		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt			0.850			0.850		0.983	0.70		0.973	0.70
Flt Protected	0.950		0.000	0.950		0.000	0.950	0.700		0.950	01770	
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3479	0	1770	3444	0
Flt Permitted	0.950	1000	1000	0.950	1000	1000	0.950	0177	J	0.950	0111	J
Satd. Flow (perm)	1770	1863	1583	1770	1863	1583	1770	3479	0	1770	3444	0
Right Turn on Red	1770	1000	Yes	1770	1000	Yes	1770	0177	Yes	1770	0111	Yes
Satd. Flow (RTOR)			304			218		18	103		32	103
Link Speed (mph)		30	304		30	210		30			30	
Link Distance (ft)		1101			816			875			912	
Travel Time (s)		25.0			18.5			19.9			20.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	76	76	304	174	152	65	174	1076	141	54	641	141
Shared Lane Traffic (%)	70	70	304	174	132	00	1/4	1076	141	34	041	141
Lane Group Flow (vph)	76	76	304	174	152	65	174	1217	0	54	782	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left		Left	Left		Left	Left		Left	Left	
Median Width(ft)	Leit	12	Right	Leit	12	Right	Leit	12	Right	Len	12	Right
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9
Number of Detectors	13	2	1	10	2	1	13	2	9	13	2	9
	Left	Thru		Left			Left	Thru		Left	Thru	
Detector Template	20	100	Right 20		Thru 100	Right 20	20					
Leading Detector (ft)				20				100		20	100	
Trailing Detector (ft)	0	0	0	0	0	0	0	0		0	0	
Detector 1 Position(ft)	0 20	0	0 20	0 20	0	0 20	0 20	0		0 20	0	
Detector 1 Size(ft)		6 CL Ev						6			6 CL Ev	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6 CL Ev			6 CL Ev			6 CL Ev			6 CL Ev	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		0.0			0.0			0.0			0.0	
Detector 2 Extend (s)	Б.	0.0	D	Б,	0.0	D.	Б.	0.0		Б.	0.0	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases			4			8	_					
Detector Phase	7	4	4	3	8	8	5	2		1	6	

1	_	-			-	_		-	-	-	_		
	L	ane	S,	V	olι	ım	es	. 1	Γiι	Υ	ir	nas	

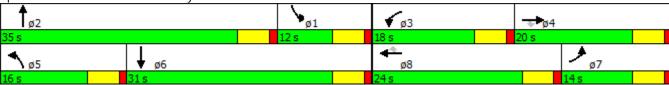
	•	→	•	•	←	•	4	†	/	\	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Minimum Split (s)	12.0	20.0	20.0	12.0	20.0	20.0	12.0	31.0		12.0	31.0	
Total Split (s)	14.0	20.0	20.0	18.0	24.0	24.0	16.0	35.0		12.0	31.0	
Total Split (%)	16.5%	23.5%	23.5%	21.2%	28.2%	28.2%	18.8%	41.2%		14.1%	36.5%	
Maximum Green (s)	9.0	15.0	15.0	13.0	19.0	19.0	11.0	30.0		7.0	26.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Lead/Lag	Lag	Lag	Lag	Lead	Lead	Lead	Lead	Lead		Lag	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None	None	None	None	None	None	Min		None	Min	
Walk Time (s)		5.0	5.0		5.0	5.0		5.0			5.0	
Flash Dont Walk (s)		10.0	10.0		10.0	10.0		21.0			21.0	
Pedestrian Calls (#/hr)		5	5		5	5		5			5	
Act Effct Green (s)	8.9	9.2	9.2	11.4	11.3	11.3	10.5	31.4		6.7	22.3	
Actuated g/C Ratio	0.12	0.12	0.12	0.15	0.15	0.15	0.14	0.43		0.09	0.30	
v/c Ratio	0.36	0.33	0.66	0.64	0.53	0.15	0.69	0.82		0.34	0.74	
Control Delay	37.3	35.2	11.7	43.1	37.4	0.8	48.9	27.0		41.2	27.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	37.3	35.2	11.7	43.1	37.4	8.0	48.9	27.0		41.2	27.4	
LOS	D	D	В	D	D	Α	D	С		D	С	
Approach Delay		19.9			33.8			29.8			28.3	
Approach LOS		В			С			С			С	

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 73.8

Natural Cycle: 80


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.82

Intersection Signal Delay: 28.4 Intersection LOS: C Intersection Capacity Utilization 64.1% ICU Level of Service C

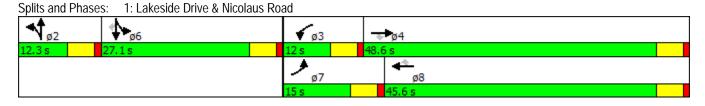
Analysis Period (min) 15

Splits and Phases: 4: Joiner Parkway & 1st Street

→ → ← ← ← ↑ → →	+ -	/
Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL	SBT S	SBR
Lane Configurations \ \frac{\dagger}{\tau} \ \frac{\dagger}{\tau} \ \frac{\dagger}{\tau} \ \ \frac{\dagger}{	†	7
Volume (vph) 150 1435 20 50 805 125 15 10 30 90		95
Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 190		900
Storage Length (ft) 174 176 176 0 0 0		174
Storage Lanes 1 1 1 0 0 1		1
Taper Length (ft) 60 60 60		
Lane Util. Factor 1.00 0.95 1.00 1.00 0.95 1.00 1.00 1.00 1.00	1.00 1	1.00
Ped Bike Factor 0.97 0.98 0.99).98
Frt 0.850 0.850 0.926		850
Flt Protected 0.950 0.950 0.987 0.950	0.0	
Satd. Flow (prot) 1770 3539 1583 1770 3539 1583 0 1686 0 1770	1863 15	583
Flt Permitted 0.950 0.950 0.987 0.950		
Satd. Flow (perm) 1770 3539 1531 1770 3539 1552 0 1683 0 1770	1863 15	551
Right Turn on Red Yes Yes Yes		Yes
Satd. Flow (RTOR) 131 136 33		131
Link Speed (mph) 30 30	30	
Link Distance (ft) 1129 1030 428	612	
Travel Time (s) 25.7 23.4 9.7	13.9	
Confl. Peds. (#/hr) 5 5 5	10.7	5
Confl. Bikes (#/hr) 2 2 2		2
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	0.92 0	0.92
Adj. Flow (vph) 163 1560 22 54 875 136 16 11 33 98		103
Shared Lane Traffic (%)		.00
Lane Group Flow (vph) 163 1560 22 54 875 136 0 60 0 98	11 1	103
Enter Blocked Intersection No		No
Lane Alignment Left Left Right Left Right Left Right Left Right Left		ight
Median Width(ft) 12 12 12	12	·9···
Link Offset(ft) 0 0	0	
Crosswalk Width(ft) 16 16	16	
Two way Left Turn Lane		
Headway Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00 1	1.00
Turning Speed (mph) 15 9 15 9 15 9 15		9
Number of Detectors 1 2 1 1 2 1 1 2 1	2	1
Detector Template Left Thru Right Left Thru Right Left Thru Left		ight
Leading Detector (ft) 20 100 20 20 100 20 20 100 20	100	20
Trailing Detector (ft) 0 0 0 0 0 0 0 0	0	0
Detector 1 Position(ft) 0 0 0 0 0 0 0 0	0	0
Detector 1 Size(ft) 20 6 20 20 6 20 20 6 20	6	20
Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex		+Ex
Detector 1 Channel		
Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0	0.0
Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		0.0
Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0
Detector 2 Position(ft) 94 94 94	94	0.0
Detector 2 Size(ft) 6 6	6	
Detector 2 Type CI+Ex CI+Ex CI+Ex	CI+Ex	
Detector 2 Channel	J.:	
Detector 2 Extend (s) 0.0 0.0 0.0	0.0	
Turn Type Prot NA Perm Prot NA Perm Split NA Split		erm

Fullerton Ranch IS/MND 4:00 pm 08/01/2017 Cumulative Conditions Fehr & Peers

	•	→	•	•	←	•	4	†	<i>></i>	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases			4			8						6
Detector Phase	7	4	4	3	8	8	2	2		6	6	6
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Minimum Split (s)	12.0	27.1	27.1	12.0	27.1	27.1	12.0	12.0		27.1	27.1	27.1
Total Split (s)	15.0	48.6	48.6	12.0	45.6	45.6	12.3	12.3		27.1	27.1	27.1
Total Split (%)	15.0%	48.6%	48.6%	12.0%	45.6%	45.6%	12.3%	12.3%		27.1%	27.1%	27.1%
Maximum Green (s)	10.0	43.6	43.6	7.0	40.6	40.6	7.3	7.3		22.1	22.1	22.1
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0		5.0		5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag						
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	Min	Min		Min	Min	Min
Walk Time (s)		5.0	5.0		5.0	5.0				5.0	5.0	5.0
Flash Dont Walk (s)		17.1	17.1		17.1	17.1				17.1	17.1	17.1
Pedestrian Calls (#/hr)		10	10		10	10				10	10	10
Act Effct Green (s)	10.2	44.4	44.4	6.7	35.7	35.7		6.5		11.3	11.3	11.3
Actuated g/C Ratio	0.12	0.53	0.53	0.08	0.42	0.42		0.08		0.13	0.13	0.13
v/c Ratio	0.76	0.84	0.03	0.38	0.58	0.18		0.37		0.41	0.04	0.32
Control Delay	62.8	24.6	0.1	48.8	20.9	3.9		30.2		39.5	32.8	6.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0
Total Delay	62.8	24.6	0.1	48.8	20.9	3.9		30.2		39.5	32.8	6.2
LOS	Е	С	Α	D	С	Α		С		D	С	Α
Approach Delay		27.9			20.1			30.2			23.0	
Approach LOS		С			С			С			С	
Intono antique Communication												


Area Type: Other

Cycle Length: 100 Actuated Cycle Length: 84.1 Natural Cycle: 100

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.84 Intersection Signal Delay: 24.9 Intersection Capacity Utilization 68.2% Analysis Period (min) 15

Intersection LOS: C
ICU Level of Service C

	-	`		•	•	/
	-	*	*		١,	′
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	∱ β		ሻ	^	ሻ	7
Volume (vph)	1555	0	0	980	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)		0	150		0	25
Storage Lanes		0	1		1	1
Taper Length (ft)			60		60	
Lane Util. Factor	0.95	0.95	1.00	0.95	1.00	1.00
Frt						
Flt Protected						
Satd. Flow (prot)	3539	0	1863	3539	1863	1863
Flt Permitted						
Satd. Flow (perm)	3539	0	1863	3539	1863	1863
Link Speed (mph)	30			30	30	
Link Distance (ft)	1030			2067	308	
Travel Time (s)	23.4			47.0	7.0	
Peak Hour Factor	0.71	0.71	0.71	0.71	0.71	0.71
Adj. Flow (vph)	2190	0	0	1380	0	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	2190	0	0	1380	0	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12	J		12	12	<u> </u>
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		9	15		15	9
Sign Control	Free	-		Free	Stop	-
0				1.00	0.06	
Intersection Summary						
<i>J</i> 1	Other					
Control Type: Unsignalized						
Intersection Delay 0.0				Le	evel of Se	ervice A

Intersection Delay 0.0 Analysis Period (min) 15

	۶	→	•	•	←	•	•	†	<i>></i>	\	+	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	^	7	ሻ	414	7	ሻ	414	7
Volume (vph)	35	700	820	50	620	130	330	160	60	80	240	30
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	193		193	0		81	210		210	151		151
Storage Lanes	1		1	1		1	1		1	1		1
Taper Length (ft)	60			60		-	60		-	60		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	0.91	0.91	1.00	0.91	0.91	1.00
Ped Bike Factor		0.70	0.98		0.70	0.98	0.7.	0.7.	0.98	0.7.	0.7.	0.98
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950		0.000	0.950		0.000	0.950	0.975	0.000	0.950	0.998	0.000
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1610	3305	1583	1610	3383	1583
Flt Permitted	0.950	0007	1000	0.950	0007	1000	0.950	0.975	1000	0.950	0.998	1000
Satd. Flow (perm)	1770	3539	1551	1770	3539	1551	1610	3305	1552	1610	3383	1553
Right Turn on Red	1770	0007	Yes	1770	0007	Yes	1010	0000	Yes	1010	0000	Yes
Satd. Flow (RTOR)			655			131			131			131
Link Speed (mph)		35	000		35	101		40	101		35	131
Link Distance (ft)		2067			258			1053			928	
Travel Time (s)		40.3			5.0			17.9			18.1	
Confl. Peds. (#/hr)		40.5	5		5.0	5		17.7	5		10.1	5
Confl. Bikes (#/hr)			2			2			2			J
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	38	761	891	54	674	141	359	174	65	87	261	33
Shared Lane Traffic (%)	30	701	071	J4	074	141	50%	174	0.5	10%	201	33
Lane Group Flow (vph)	38	761	891	54	674	141	179	354	65	78	270	33
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	LCII	12	Kigiit	Leit	12	Kigiit	Leit	12	Kigiit	LCII	12	Kigiit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	1.00	1.00	1.00	9	1.00	1.00	1.00	1.00	1.00	9
Number of Detectors	10	2	1	15	2	1	13	2	1	15	2	1
Detector Template	Left		Right	Left		Right			Right	Left		
·	20	Thru	•		Thru 100	•	Left	Thru	•		Thru	Right
Leading Detector (ft)		100	20	20		20	20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	6 CL Ev	20 CL Ev	20 CL Ev	6 CL Ev	20 Cl+Ex	20	6 CL Ev	20	20	6 CL Ev	20 CL Ev
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+EX	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Split	NA	Perm	Split	NA	Perm

Fullerton Ranch IS/MND 4:00 pm 08/01/2017 Cumulative Conditions Fehr & Peers

	٠	→	•	•	←	•	4	†	<i>></i>	/	+	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases			4			8			2			6
Detector Phase	7	4	4	3	8	8	2	2	2	6	6	6
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	12.0	26.0	26.0	12.0	26.0	26.0	28.0	28.0	28.0	26.0	26.0	26.0
Total Split (s)	12.0	31.0	31.0	12.0	31.0	31.0	31.0	31.0	31.0	26.0	26.0	26.0
Total Split (%)	12.0%	31.0%	31.0%	12.0%	31.0%	31.0%	31.0%	31.0%	31.0%	26.0%	26.0%	26.0%
Maximum Green (s)	7.0	26.0	26.0	7.0	26.0	26.0	26.0	26.0	26.0	21.0	21.0	21.0
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag						
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	Min	Min	Min	Min	Min	Min
Walk Time (s)		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Flash Dont Walk (s)		16.0	16.0		16.0	16.0	18.0	18.0	18.0	16.0	16.0	16.0
Pedestrian Calls (#/hr)		5	5		5	5	5	5	5	5	5	5
Act Effct Green (s)	6.7	27.0	27.0	6.8	27.0	27.0	15.4	15.4	15.4	12.5	12.5	12.5
Actuated g/C Ratio	0.09	0.35	0.35	0.09	0.35	0.35	0.20	0.20	0.20	0.16	0.16	0.16
v/c Ratio	0.25	0.61	0.92	0.35	0.54	0.22	0.56	0.53	0.16	0.30	0.49	0.09
Control Delay	42.8	26.6	24.5	45.0	25.2	7.1	36.3	31.7	0.8	34.2	34.0	0.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	42.8	26.6	24.5	45.0	25.2	7.1	36.3	31.7	0.8	34.2	34.0	0.5
LOS	D	С	С	D	С	Α	D	С	Α	С	С	Α
Approach Delay		25.8			23.5			29.7			31.2	
Approach LOS		С			С			С			С	
Intersection Summary												

Area Type: Other

Cycle Length: 100 Actuated Cycle Length: 76.9 Natural Cycle: 95

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.92 Intersection Signal Delay: 26.5 Intersection Capacity Utilization 75.4% Analysis Period (min) 15

Intersection LOS: C
ICU Level of Service D

Lanes, Volumes, Timings ᄼ **EBL EBT EBR WBL WBT NBT SBL** Lane Group **WBR NBL** NBR **SBT SBR** Lane Configurations ሻ Þ ኘ þ ተኈ ተኈ Volume (vph) 25 25 40 60 30 80 40 50 60 530 110 1100 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Storage Length (ft) 145 0 145 0 150 0 150 0 Storage Lanes 0 0 1 0 1 1 1 0 Taper Length (ft) 60 60 60 60 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95 1.00 0.95 0.95 Ped Bike Factor 0.99 0.99 0.99 1.00 0.907 0.901 0.974 0.993 Frt Flt Protected 0.950 0.950 0.950 0.950 Satd. Flow (prot) 1770 1668 0 1770 1656 0 1770 3427 0 1770 3509 0 Flt Permitted 0.950 0.950 0.950 0.950 Satd. Flow (perm) 1770 1668 0 1770 1656 0 1770 3427 0 1770 3509 0 Right Turn on Red Yes Yes Yes Yes Satd. Flow (RTOR) 42 63 30 6 Link Speed (mph) 35 35 40 40 Link Distance (ft) 557 698 953 2008 Travel Time (s) 10.9 13.6 16.2 34.2 5 5 5 Confl. Peds. (#/hr) 5 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 Peak Hour Factor 0.95 0.95 Adj. Flow (vph) 26 26 42 63 32 63 84 558 116 42 1158 53 Shared Lane Traffic (%) Lane Group Flow (vph) 26 68 0 63 95 0 84 0 42 1211 674 0 **Enter Blocked Intersection** No Right Lane Alignment Left Left Right Left Left Left Left Right Left Left Right Median Width(ft) 12 12 12 12 Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Turning Speed (mph) 15 15 9 15 9 15 **Number of Detectors** 2 1 2 1 2 2 **Detector Template** Left Left Thru Left Thru Left Thru Thru Leading Detector (ft) 20 100 20 100 20 100 20 100 Trailing Detector (ft) 0 0 0 0 0 0 0 0 Detector 1 Position(ft) 0 0 0 0 0 0 0 0 Detector 1 Size(ft) 20 6 20 6 20 6 20 6 Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex **Detector 1 Channel** Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 2 Position(ft) 94 94 94 94 Detector 2 Size(ft) 6 6 6 6 Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex

0.0

NA

8

Prot

3

Prot

7

0.0

NA

4

Detector 2 Channel

Protected Phases

Turn Type

Detector 2 Extend (s)

0.0

NA

6

Prot

1

0.0

NA

2

Prot

5

	۶	→	\rightarrow	•	←	•	4	†	<i>></i>	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases												
Detector Phase	7	4		3	8		5	2		1	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	16.0	21.0		16.0	21.0		16.0	21.0		16.0	21.0	
Total Split (s)	16.0	21.0		16.0	21.0		16.0	37.0		16.0	37.0	
Total Split (%)	17.8%	23.3%		17.8%	23.3%		17.8%	41.1%		17.8%	41.1%	
Maximum Green (s)	11.0	16.0		11.0	16.0		11.0	32.0		11.0	32.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		None	Min		None	Min	
Walk Time (s)		5.0			5.0			5.0			5.0	
Flash Dont Walk (s)		11.0			11.0			11.0			11.0	
Pedestrian Calls (#/hr)		5			5			5			5	
Act Effct Green (s)	7.1	8.3		8.4	11.4		8.9	40.7		7.7	37.1	
Actuated g/C Ratio	0.10	0.12		0.12	0.17		0.13	0.60		0.11	0.54	
v/c Ratio	0.14	0.28		0.29	0.29		0.36	0.33		0.21	0.64	
Control Delay	36.8	19.9		36.8	15.9		37.6	13.8		36.5	21.0	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	36.8	19.9		36.8	15.9		37.6	13.8		36.5	21.0	
LOS	D	В		D	В		D	В		D	С	
Approach Delay		24.6			24.2			16.4			21.5	
Approach LOS		С			С			В			С	

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 68.3

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.64

Intersection Signal Delay: 20.1 Intersection LOS: C
Intersection Capacity Utilization 59.5% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 4: Joiner Parkway & 5th Street

									Lanes, volumes, riming.			
	•	→	\rightarrow	•	←	•	4	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	†	7	ች	1	7	ሻ	∱ 1≽		*	∱ ∱	
Volume (vph)	30	170	50	80	50	50	70	710	80	50	1150	40
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	145	1700	145	150	1700	150	140	1700	0	140	1700	0
Storage Lanes	1		1	1		1	1		0	1		0
Taper Length (ft)	60		'	60		'	60			60		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	1.00	1.00	0.98	1.00	1.00	0.98	1.00	1.00	0.75	1.00	1.00	0.75
Frt			0.850			0.850		0.985			0.995	
Flt Protected	0.950		0.030	0.950		0.030	0.950	0.703		0.950	0.773	
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3473	0	1770	3517	0
Flt Permitted	0.950	1003	1303	0.950	1005	1303	0.950	3773	U	0.950	3317	U
Satd. Flow (perm)	1770	1863	1549	1770	1863	1549	1770	3473	0	1770	3517	0
Right Turn on Red	1770	1003	Yes	1770	1003	Yes	1770	3473	Yes	1770	3317	Yes
Satd. Flow (RTOR)			125			125		15	163		4	163
Link Speed (mph)		35	123		35	123		40			40	
Link Distance (ft)		784			698			910			953	
` '		15.3						15.5			16.2	
Travel Time (s)		15.5	г		13.6			15.5	г		10.2	г
Confl. Peds. (#/hr)	0.04	0.04	5	0.04	0.04	5	0.04	0.04	5	0.04	0.04	5
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	32	181	53	85	53	53	74	755	85	53	1223	43
Shared Lane Traffic (%)	00	4.04	F0	0.5	F0	F0	7.4	0.40	•	F0	4077	
Lane Group Flow (vph)	32	181	53	85	53	53	74	840	0	53	1266	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2		1	2	
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru		Left	Thru	
Leading Detector (ft)	20	100	20	20	100	20	20	100		20	100	
Trailing Detector (ft)	0	0	0	0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0	0	0	0	0	0	0		0	0	
Detector 1 Size(ft)	20	6	20	20	6	20	20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
		•										

	۶	→	•	•	←	•	•	†	~	/	 	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases			4			8						
Detector Phase	7	4	4	3	8	8	5	2		1	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Minimum Split (s)	16.0	21.0	21.0	16.0	21.0	21.0	16.0	21.0		16.0	21.0	
Total Split (s)	16.0	21.0	21.0	16.0	21.0	21.0	16.0	52.0		16.0	52.0	
Total Split (%)	15.2%	20.0%	20.0%	15.2%	20.0%	20.0%	15.2%	49.5%		15.2%	49.5%	
Maximum Green (s)	11.0	16.0	16.0	11.0	16.0	16.0	11.0	47.0		11.0	47.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None	None	None	None	None	None	Min		None	Min	
Walk Time (s)		5.0	5.0		5.0	5.0		5.0			5.0	
Flash Dont Walk (s)		11.0	11.0		11.0	11.0		11.0			11.0	
Pedestrian Calls (#/hr)		5	5		5	5		5			5	
Act Effct Green (s)	7.6	13.5	13.5	9.4	17.4	17.4	9.2	42.7		8.5	42.1	
Actuated g/C Ratio	0.09	0.15	0.15	0.11	0.20	0.20	0.10	0.49		0.10	0.48	
v/c Ratio	0.21	0.64	0.15	0.45	0.14	0.13	0.40	0.50		0.31	0.75	
Control Delay	47.3	50.5	1.0	50.9	36.2	0.7	49.7	18.9		48.1	25.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	47.3	50.5	1.0	50.9	36.2	0.7	49.7	18.9		48.1	25.1	
LOS	D	D	Α	D	D	Α	D	В		D	С	
Approach Delay		40.2			32.9			21.4			26.1	
Approach LOS		D			С			С			С	

Area Type: Other

Cycle Length: 105 Actuated Cycle Length: 88 Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.75

Intersection Signal Delay: 26.4 Intersection LOS: C
Intersection Capacity Utilization 67.7% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 5: Joiner Parkway & 3rd Street

								Lanes, volumes, rimings				
	•	→	•	•	←	•	4	†	/	/	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†	7	ች	1	7	ሻ	↑ ↑		*	† }	
Volume (vph)	40	60	210	140	50	60	170	780	110	80	1180	40
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	124	1700	124	129	1700	129	111	1700	0	169	1700	0
Storage Lanes	1		1	1		1	1		0	1		0
Taper Length (ft)	60		'	60		'	60			60		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt	1.00	1.00	0.850	1.00	1.00	0.850	1.00	0.981	0.75	1.00	0.995	0.75
Flt Protected	0.950		0.000	0.950		0.000	0.950	0.701		0.950	0.773	
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3472	0	1770	3522	0
Flt Permitted	0.950	1003	1303	0.950	1003	1303	0.950	3472	U	0.950	JJZZ	U
Satd. Flow (perm)	1770	1863	1583	1770	1863	1583	1770	3472	0	1770	3522	0
Right Turn on Red	1770	1003	Yes	1770	1003	Yes	1770	3472	Yes	1770	JJZZ	Yes
Satd. Flow (RTOR)			228			185		20	163		4	163
Link Speed (mph)		30	220		30	100		30			30	
Link Distance (ft)		1101			816			875			912	
Travel Time (s)		25.0			18.5			19.9			20.7	
` .	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.02	0.92	0.92
Peak Hour Factor										0.92		
Adj. Flow (vph)	43	65	228	152	54	65	185	848	120	87	1283	43
Shared Lane Traffic (%)	42	/ -	220	150	Ε.4	/ [105	0/0	^	07	100/	0
Lane Group Flow (vph)	43	65 N	228	152 N	54	65 No.	185 No.	968	0	87 No.	1326	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane	1.00	4.00	4.00	1.00	4.00	4.00	4.00	4.00	4.00	4.00	1.00	1.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	•	9	15	•	9	15	0	9	15	0	9
Number of Detectors	1	2	1	1	2	1	1	2		1	2	
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru		Left	Thru	
Leading Detector (ft)	20	100	20	20	100	20	20	100		20	100	
Trailing Detector (ft)	0	0	0	0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0	0	0	0	0	0	0		0	0	
Detector 1 Size(ft)	20	6	20	20	6	20	20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases			4			8						
Detector Phase	7	4	4	3	8	8	5	2		1	6	

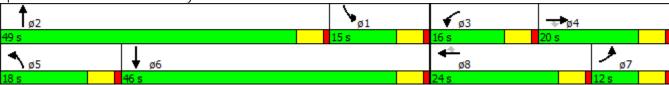
	•	→	•	•	←	•	4	†	<i>></i>	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Minimum Split (s)	12.0	20.0	20.0	12.0	20.0	20.0	12.0	31.0		12.0	31.0	
Total Split (s)	12.0	20.0	20.0	16.0	24.0	24.0	18.0	49.0		15.0	46.0	
Total Split (%)	12.0%	20.0%	20.0%	16.0%	24.0%	24.0%	18.0%	49.0%		15.0%	46.0%	
Maximum Green (s)	7.0	15.0	15.0	11.0	19.0	19.0	13.0	44.0		10.0	41.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Lead/Lag	Lag	Lag	Lag	Lead	Lead	Lead	Lead	Lead		Lag	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None	None	None	None	None	None	Min		None	Min	
Walk Time (s)		5.0	5.0		5.0	5.0		5.0			5.0	
Flash Dont Walk (s)		10.0	10.0		10.0	10.0		21.0			21.0	
Pedestrian Calls (#/hr)		5	5		5	5		5			5	
Act Effct Green (s)	9.1	9.1	9.1	10.6	12.1	12.1	12.4	39.2		15.2	39.4	
Actuated g/C Ratio	0.10	0.10	0.10	0.12	0.13	0.13	0.14	0.43		0.17	0.43	
v/c Ratio	0.24	0.35	0.63	0.75	0.22	0.18	0.77	0.65		0.30	0.88	
Control Delay	42.9	44.6	13.8	63.7	40.0	1.1	62.0	24.7		38.7	32.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	42.9	44.6	13.8	63.7	40.0	1.1	62.0	24.7		38.7	32.4	
LOS	D	D	В	Ε	D	Α	Ε	С		D	С	
Approach Delay		23.5			43.9			30.7			32.8	
Approach LOS		С			D			С			С	

Area Type: Other

Cycle Length: 100

Actuated Cycle Length: 91.7

Natural Cycle: 90


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.88

Intersection Signal Delay: 32.0 Intersection LOS: C
Intersection Capacity Utilization 70.2% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 4: Joiner Parkway & 1st Street

APPENDIX D – CUMULATIVE PLUS PROJECT

Lane Group									Lanes, volumes, rimings				
Line Configurations		•	→	\rightarrow	•	←	•	4	†	/	-	ţ	4
Volume (pyh) 160 713 5 30 1302 81 20 30 50 196 20 165 Ideal Flow (pyh) 1900	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Volume (pyh) 160 713 5 30 1302 81 20 30 50 196 20 165 Ideal Flow (pyh) 1900	Lane Configurations	*	*	7	*	44	7		43-		7	•	7
Ideal Flow (phiph) 1900								20		50			165
Storage Length (ft)													
Storage Lanes													
Taper Length (IT)													1
Lane Ulli, Factor 1.00 0.95 1.00 1.00 0.95 1.00 0.95 0.95 0.933 0.95 0.955 0.9				•			•				-		·
Fit Protected 0,950			0.95	1 00		0.95	1 00		1 00	1 00		1 00	1 00
File Promitted 0.950 0.9		1.00	0.70		1.00	0.70		1.00		1.00	1.00	1.00	
Said, Flow (prot) 1770 3539 1583 1770 3539 1583 0 1712 0 1770 1863 1583 1583 1770 1863 1583 1583 1770 1863 1583 1583 1770 1863 1583 1583 1770 1863 1583 1583 1770 1770 1863 1583 1583 1770 1770 1863 1583 1583 1770 1770 1863 1583 1770 1770 1863 1583 1770 1770 1863 1583 1770 1770 1863 1583 1770 1770 1770 1863 1583 1770 1770 1770 1863 1583 1770 1770 1770 1863 1583 1770		0.950		0.000	0.950		0.000				0.950		0.000
Fit Permitted			3530	1583		3530	1583	0		0		1863	1583
Satid. Flow (perm) 170 3539 1583 1770 3539 1583 0 1721 0 1770 1863 1583 1789 1789 1781 1789			3337	1000		3337	1000	U		U		1003	1303
Right Turn on Red			3539	1583		3530	1583	0		0		1863	1583
Satid. Flow (RTOR)		1770	3337		1770	3337		U	1721		1770	1003	
Link Speed (mph)									38	103			
Link Distance (ft)	` ,		30	131		30	131					30	177
Travel Time (s) 25.7 23.4 9.7 13.9 Peak Hour Factor 0.92 1.79 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90 <													
Peak Hour Factor 0.92 1.92 1.79 1.00 1.00 0.00	, ,												
Adj. Flow (vph) 174 775 5 33 1415 88 22 33 54 213 22 179	` ,	0.02		0.02	0.02		0.02	0.02		0.02	0.02		0.02
Shared Lane Traffic (%) Lane Group Flow (vph) 174 775 5 33 1415 88 0 109 0 213 22 179													
Lane Group Flow (vph) 174 775 5 33 1415 88 0 109 0 213 22 179		1/4	773	3	აა	1413	00	22	აა	34	213	ZZ	179
Enter Blocked Intersection No No No No No No No	, ,	17/	775	Е	າາ	1/15	00	0	100	0	212	າາ	170
Left Left Right Left Right Left Right Left Left Right Left Left Right Left Right Left Right													
Median Width(ft) 12 13 14 16 10 10 10 10 10 10 10 10 10 10 10													
Link Offset(ft)t) 0 0 0 0 Crosswalk Width(ft)th 16 18 18 18 18 18 18 18 18 18 18 18 18 19 15 9		Leit		Right	Leit		Right	Leit		Right	Len		Right
Crosswalk Width(fft) 16	• •												
Two way Left Turn Lane Headway Factor 1.00	, ,												
Headway Factor 1.00	` '		10			10			10			10	
Turning Speed (mph) 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Number of Detectors			1.00			1.00			1.00			1.00	
Detector Template			0			•			0	9		•	
Leading Detector (ft) 20 100 20 20 100 20 20 100 20 100 20 Trailing Detector (ft) 0													
Trailing Detector (ft) 0													
Detector 1 Position(ft) 0													
Detector 1 Size(fit) 20 6 20 20 6 20 20 6 20 6 20 6 20 6 2													
Detector 1 Type CI+Ex													
Detector 1 Channel Detector 1 Extend (s) 0.0													
Detector 1 Extend (s) 0.0		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Queue (s) 0.0													
Detector 1 Delay (s) 0.0	` ,												
Detector 2 Position(ft) 94 94 94 94 Detector 2 Size(ft) 6 6 6 6 Detector 2 Type Cl+Ex Cl+Ex Cl+Ex Cl+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type Prot NA Perm Prot NA Perm Split NA Perm Protected Phases 7 4 3 8 2 2 2 6 6 Permitted Phases 4 8 8 6 6 6													
Detector 2 Size(ft) 6 6 6 6 6 Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type Prot NA Perm Prot NA Perm Split NA Perm Protected Phases 7 4 3 8 2 2 6 6 Permitted Phases 4 8 6 6		0.0		0.0	0.0		0.0	0.0			0.0		0.0
Detector 2 Type CI+Ex									94			94	
Detector 2 Channel Detector 2 Extend (s) 0.0													
Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type Prot NA Perm Split NA Split NA Perm Protected Phases 7 4 3 8 2 2 6 6 Permitted Phases 4 8 8 6 6			CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Turn TypeProtNAPermProtNAPermSplitNASplitNAPermProtected Phases74382266Permitted Phases486													
Protected Phases 7 4 3 8 2 2 6 6 Permitted Phases 4 8 6	, ,												
Permitted Phases 4 8 6		Prot	NA	Perm	Prot	NA	Perm	Split	NA		Split	NA	Perm
	Protected Phases	7	4		3	8		2	2		6	6	
Detector Phase 7 4 4 3 8 8 2 2 6 6 6	Permitted Phases			4			8						6
	Detector Phase	7	4	4	3	8	8	2	2		6	6	6

Fullerton Ranch IS/MND 4:00 pm 08/01/2017 Cumulative Plus Project Conditions Fehr & Peers

Lanes,	Volumes,	Timings	

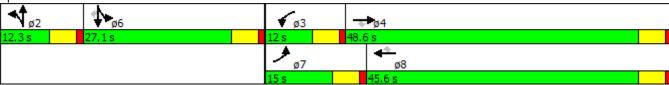
	•	-	•	•	←	•	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Minimum Split (s)	12.0	27.1	27.1	12.0	27.1	27.1	12.0	12.0		27.1	27.1	27.1
Total Split (s)	15.0	48.6	48.6	12.0	45.6	45.6	12.3	12.3		27.1	27.1	27.1
Total Split (%)	15.0%	48.6%	48.6%	12.0%	45.6%	45.6%	12.3%	12.3%		27.1%	27.1%	27.1%
Maximum Green (s)	10.0	43.6	43.6	7.0	40.6	40.6	7.3	7.3		22.1	22.1	22.1
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0		5.0		5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag						
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	Min	Min		Min	Min	Min
Walk Time (s)		5.0	5.0		5.0	5.0				5.0	5.0	5.0
Flash Dont Walk (s)		17.1	17.1		17.1	17.1				17.1	17.1	17.1
Pedestrian Calls (#/hr)		10	10		10	10				10	10	10
Act Effct Green (s)	10.0	48.8	48.8	6.5	40.7	40.7		7.0		16.4	16.4	16.4
Actuated g/C Ratio	0.11	0.52	0.52	0.07	0.43	0.43		0.07		0.17	0.17	0.17
v/c Ratio	0.93	0.42	0.01	0.27	0.93	0.12		0.67		0.69	0.07	0.42
Control Delay	93.2	16.9	0.0	48.9	37.9	1.5		50.4		48.7	32.1	8.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0
Total Delay	93.2	16.9	0.0	48.9	37.9	1.5		50.4		48.7	32.1	8.4
LOS	F	В	А	D	D	Α		D		D	С	Α
Approach Delay		30.7			36.0			50.4			30.4	
Approach LOS		С			D			D			С	

Area Type: Other

Cycle Length: 100

Actuated Cycle Length: 94.2

Natural Cycle: 100


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.93

Intersection Signal Delay: 34.1 Intersection LOS: C
Intersection Capacity Utilization 74.9% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 1: Lakeside Drive & Nicolaus Road

	→	*	•	+	1	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	† Þ		ሻ	^	ሻ	7
Volume (vph)	955	4	6	1400	13	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)		0	150		0	25
Storage Lanes		0	1		1	1
Taper Length (ft)			60		60	
Lane Util. Factor	0.95	0.95	1.00	0.95	1.00	1.00
Frt	0.999					0.850
Flt Protected			0.950		0.950	
Satd. Flow (prot)	3536	0	1770	3539	1770	1583
Flt Permitted			0.950		0.950	
Satd. Flow (perm)	3536	0	1770	3539	1770	1583
Link Speed (mph)	30			30	30	
Link Distance (ft)	1030			2067	308	
Travel Time (s)	23.4			47.0	7.0	
Peak Hour Factor	0.71	0.71	0.71	0.71	0.71	0.71
Adj. Flow (vph)	1345	6	8	1972	18	28
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1351	0	8	1972	18	28
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		9	15		15	9
Sign Control	Free			Free	Stop	
Intersection Summary						
<i>3</i> I	Other					
Control Type: Unsignalized						
Intersection Delay 1.6				L	evel of Se	ervice A
Analysis Period (min) 15						

Fullerton Ranch IS/MND 4:00 pm 08/01/2017 Cumulative Plus Project Conditions Fehr & Peers

	۶	→	•	•	←	•	•	†	<i>></i>	\	↓	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	ሻ	^	7	ሻ	414	7	7	41∱	7
Volume (vph)	41	662	272	60	742	180	604	120	130	140	200	60
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	193		193	0		81	210		210	151		151
Storage Lanes	1		1	1		1	1		1	1		1
Taper Length (ft)	60			60			60			60		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	0.91	0.91	1.00	0.91	0.91	1.00
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950	0.965		0.950	0.994	
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1610	3272	1583	1610	3370	1583
Flt Permitted	0.950			0.950			0.950	0.965		0.950	0.994	
Satd. Flow (perm)	1770	3539	1583	1770	3539	1583	1610	3272	1583	1610	3370	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			296			131			141			131
Link Speed (mph)		35			35			40			35	
Link Distance (ft)		2067			258			1053			928	
Travel Time (s)		40.3			5.0			17.9			18.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	45	720	296	65	807	196	657	130	141	152	217	65
Shared Lane Traffic (%)							50%			21%		
Lane Group Flow (vph)	45	720	296	65	807	196	328	459	141	120	249	65
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	, i		12	, i		12	, i		12	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Split	NA	Perm	Split	NA	Perm
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases			4			8			2			6
Detector Phase	7	4	4	3	8	8	2	2	2	6	6	6

Fullerton Ranch IS/MND 4:00 pm 08/01/2017 Cumulative Plus Project Conditions Fehr & Peers

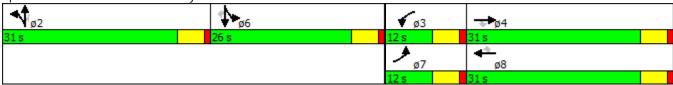
	•	→	•	•	←	•	4	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	12.0	26.0	26.0	12.0	26.0	26.0	28.0	28.0	28.0	26.0	26.0	26.0
Total Split (s)	12.0	31.0	31.0	12.0	31.0	31.0	31.0	31.0	31.0	26.0	26.0	26.0
Total Split (%)	12.0%	31.0%	31.0%	12.0%	31.0%	31.0%	31.0%	31.0%	31.0%	26.0%	26.0%	26.0%
Maximum Green (s)	7.0	26.0	26.0	7.0	26.0	26.0	26.0	26.0	26.0	21.0	21.0	21.0
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag						
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	Min	Min	Min	Min	Min	Min
Walk Time (s)		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Flash Dont Walk (s)		16.0	16.0		16.0	16.0	18.0	18.0	18.0	16.0	16.0	16.0
Pedestrian Calls (#/hr)		5	5		5	5	5	5	5	5	5	5
Act Effct Green (s)	6.8	23.5	23.5	6.9	26.0	26.0	22.6	22.6	22.6	13.0	13.0	13.0
Actuated g/C Ratio	0.08	0.28	0.28	0.08	0.31	0.31	0.27	0.27	0.27	0.16	0.16	0.16
v/c Ratio	0.31	0.72	0.45	0.45	0.73	0.34	0.76	0.52	0.27	0.48	0.48	0.18
Control Delay	48.0	34.1	6.1	52.4	33.2	12.4	42.9	30.1	6.7	42.2	37.5	1.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	48.0	34.1	6.1	52.4	33.2	12.4	42.9	30.1	6.7	42.2	37.5	1.1
LOS	D	С	Α	D	С	В	D	С	Α	D	D	Α
Approach Delay		26.9			30.6			31.1			33.3	
Approach LOS		С			С			С			С	

Area Type: Other

Cycle Length: 100

Actuated Cycle Length: 83.8

Natural Cycle: 95


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.76

Intersection Signal Delay: 29.9 Intersection LOS: C
Intersection Capacity Utilization 63.6% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 3: Joiner Parkway & Nicolaus Road

	۶	→	•	•	—	•	•	†	<i>></i>	/	ţ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f)		7	£		7	∱ î≽		7	∱ ∱	
Volume (vph)	50	60	103	80	15	55	44	879	60	85	522	30
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	145		0	145		0	150		0	150		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	60			60			60			60		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor		0.99			0.98			1.00			1.00	
Frt		0.905			0.882			0.990			0.992	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1665	0	1770	1617	0	1770	3496	0	1770	3505	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1770	1665	0	1770	1617	0	1770	3496	0	1770	3505	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		90			58			9			7	
Link Speed (mph)		35			35			40			40	
Link Distance (ft)		594			669			959			2007	
Travel Time (s)		11.6			13.0			16.3			34.2	
Confl. Peds. (#/hr)			5			5			5			5
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	53	63	109	84	16	58	46	925	63	89	549	32
Shared Lane Traffic (%)												
Lane Group Flow (vph)	53	172	0	84	74	0	46	988	0	89	581	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12	J		12			12	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (ft)	20	100		20	100		20	100		20	100	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Detector 1 Position(ft)	0	0		0	0		0	0		0	0	
Detector 1 Size(ft)	20	6		20	6		20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	

Fullerton Ranch IS/MND 4:00 pm 08/01/2017 Cumulative Plus Project Conditions Fehr & Peers

	۶	→	\rightarrow	•	←	•	4	†	<i>></i>	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases												
Detector Phase	7	4		3	8		5	2		1	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	16.0	21.0		16.0	21.0		16.0	21.0		16.0	21.0	
Total Split (s)	16.0	21.0		16.0	21.0		16.0	32.0		16.0	32.0	
Total Split (%)	18.8%	24.7%		18.8%	24.7%		18.8%	37.6%		18.8%	37.6%	
Maximum Green (s)	11.0	16.0		11.0	16.0		11.0	27.0		11.0	27.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		None	Min		None	Min	
Walk Time (s)		5.0			5.0			5.0			5.0	
Flash Dont Walk (s)		11.0			11.0			11.0			11.0	
Pedestrian Calls (#/hr)		5			5			5			5	
Act Effct Green (s)	7.9	9.6		8.7	12.8		7.6	28.5		8.8	32.0	
Actuated g/C Ratio	0.11	0.14		0.12	0.18		0.11	0.41		0.13	0.46	
v/c Ratio	0.27	0.56		0.38	0.22		0.24	0.69		0.40	0.36	
Control Delay	36.0	23.8		37.4	13.3		36.0	24.6		37.7	17.0	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	36.0	23.8		37.4	13.3		36.0	24.6		37.7	17.0	
LOS	D	С		D	В		D	С		D	В	
Approach Delay		26.7			26.1			25.1			19.8	
Approach LOS		С			С			С			В	

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 69.9

Natural Cycle: 80

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.69

Intersection Signal Delay: 23.6 Intersection LOS: C
Intersection Capacity Utilization 62.5% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 4: Joiner Parkway & 5th Street

Same Group											•	oluli 100 ₁	
Lane Configurations		•	→	•	•	←	•	4	†	/	-	ţ	4
Valume (uph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Valume (upin)	Lane Configurations	ሻ	*	7	Ť	*	7	ሻ	↑ 1>		ሻ	♦ %	
Ideal Frow (rephips)	ŭ .									60			40
Storage Length: (ft)		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Lanes													
Taper Length (ff)													
Lane UIL Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95 0.95 0.95 0.95 Ped Bike Factor 0.850 0.850 0.850 0.990 0.990 0.992 Fill Prolected 0.950 0.950 0.950 0.950 0.950 Fill Prolected 0.950 0.950 0.950 0.950 0.950 Satd. Flow (prot) 1770 1863 1552 1770 1863 1552 1770 3501 0.970 0.950 0.950 Satd. Flow (prot) 1770 1863 1552 1770 1863 1552 1770 3501 0.970 0.950 0		60			60						60		
Ped Bike Factor			1.00	1.00		1.00	1.00		0.95	0.95		0.95	0.95
Fith Frote Fith													
File Principated 0.950 0													
Satis Flow (prof) 1770 1863 1583 1770 1863 1583 1770 1863 1583 1770 3501 0 1770 3505 0		0.950		0.000	0.950		0.000	0.950	0.77.		0.950	0.772	
Fit Permitted			1863	1583		1863	1583		3501	0		3505	0
Satis Flow (perm) 1770 1863 1552 1770 1863 1552 1770 3501 0 1770 3505 0 1761 1762 1765			.000									0000	
Right Turn on Red Yes Ye			1863	1552		1863	1552		3501	0		3505	0
Satid. Flow (RTOR)	4 /	1770	1000		1770	1000		1770	0001		1770	0000	
Link Distance (mph)	· ·								8	103		7	103
Link Distance (ft)			35	134		35	101					•	
Travel Time (s)													
Confile Peds. (#/hr)													
Peak Hour Factor 0.92 0.			10.7	5		11.0	5		13.4	5		10.5	5
Adj. Flow (vph)	· ,	0.02	0.02		0.02	0.02		0.02	0.02		0.02	0.02	
Shared Lane Traffic (%) Lane Group Flow (vph) 65 76 76 76 87 87 76 43 1139 0 76 800 0													
Lame Group Flow (vph)		00	70	70	07	07	70	43	1074	00	70	737	43
Enter Blocked Intersection	, ,	/ [7/	7/	07	07	7/	42	1120	0	7/	000	0
Left Left Left Right Ri													
Median Width(ft)													
Link Offset(fft)		Leit		Right	Leit		Right	Leit		Right	Leit		Right
Crosswalk Width(fft)													
Two way Left Turn Lane Headway Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Headway Factor 1.00	` ,		16			16			16			16	
Turning Speed (mph)	3	1.00	4.00	4.00	4.00	4.00	1.00	4.00	4.00	4.00	4.00	1.00	4.00
Number of Detectors 1 2 1			1.00			1.00			1.00			1.00	
Detector Template										9			9
Leading Detector (ft) 20 100 20 20 100 20 20 100 20 100 Trailing Detector (ft) 0		•		•	•								
Trailing Detector (ft) 0													
Detector 1 Position(ft) 0	· · ·												
Detector 1 Size(ft) 20 6 20 20 6 20 20 6 Detector 1 Type CI+Ex CI+Ex<													
Detector 1 Type CI+Ex	. ,												
Detector 1 Channel Detector 1 Extend (s) 0.0													
Detector 1 Extend (s) 0.0		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Queue (s) 0.0													
Detector 1 Delay (s) 0.0	, ,												
Detector 2 Position(ft) 94 94 94 94 Detector 2 Size(ft) 6 6 6 6 Detector 2 Type CI+Ex CI+Ex CI+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 0.0 Turn Type Prot NA Perm Prot NA Perm Prot NA	Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 2 Size(ft) 6 6 6 6 6 Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type Prot NA Perm Prot NA Perm Prot NA	Detector 1 Delay (s)	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	0.0	
Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type Prot NA Perm Prot NA Perm Prot NA	Detector 2 Position(ft)		94			94			94			94	
Detector 2 Channel 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Turn Type Prot NA Perm Prot NA Perm Prot NA Prot NA NA Prot NA <td>Detector 2 Size(ft)</td> <td></td> <td>6</td> <td></td> <td></td> <td>6</td> <td></td> <td></td> <td>6</td> <td></td> <td></td> <td>6</td> <td></td>	Detector 2 Size(ft)		6			6			6			6	
Detector 2 Channel 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Turn Type Prot NA Perm Prot NA Perm Prot NA Prot NA	Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Turn Type Prot NA Perm Prot NA Perm Prot NA Prot NA	Detector 2 Channel												
Turn Type Prot NA Perm Prot NA Perm Prot NA Prot NA	Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
71		Prot	NA	Perm	Prot	NA	Perm	Prot	NA		Prot	NA	

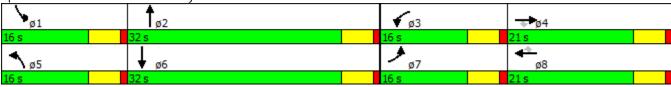
	۶	→	•	•	+	•	•	†	~	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases			4			8						
Detector Phase	7	4	4	3	8	8	5	2		1	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Minimum Split (s)	16.0	21.0	21.0	16.0	21.0	21.0	16.0	21.0		16.0	21.0	
Total Split (s)	16.0	21.0	21.0	16.0	21.0	21.0	16.0	32.0		16.0	32.0	
Total Split (%)	18.8%	24.7%	24.7%	18.8%	24.7%	24.7%	18.8%	37.6%		18.8%	37.6%	
Maximum Green (s)	11.0	16.0	16.0	11.0	16.0	16.0	11.0	27.0		11.0	27.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None	None	None	None	None	None	Min		None	Min	
Walk Time (s)		5.0	5.0		5.0	5.0		5.0			5.0	
Flash Dont Walk (s)		11.0	11.0		11.0	11.0		11.0			11.0	
Pedestrian Calls (#/hr)		5	5		5	5		5			5	
Act Effct Green (s)	8.2	9.1	9.1	8.7	12.1	12.1	7.5	33.6		8.4	36.8	
Actuated g/C Ratio	0.12	0.13	0.13	0.13	0.18	0.18	0.11	0.49		0.12	0.53	
v/c Ratio	0.31	0.31	0.22	0.39	0.27	0.19	0.22	0.67		0.35	0.43	
Control Delay	36.0	33.5	1.5	37.1	30.8	1.1	35.4	24.4		36.6	17.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	36.0	33.5	1.5	37.1	30.8	1.1	35.4	24.4		36.6	17.5	
LOS	D	С	Α	D	С	Α	D	С		D	В	
Approach Delay		23.1			23.9			24.8			19.2	
Approach LOS		С			С			С			В	

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 69.1

Natural Cycle: 80


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.67

Intersection Signal Delay: 22.6 Intersection Capacity Utilization 57.1% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 5: Joiner Parkway & 3rd Street

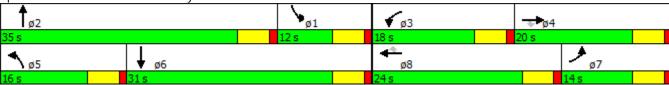
											rolullies,	ge
	•	→	\rightarrow	•	←	•	4	†	/	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ች	1	7	ሻ	đβ		*	∱ ∱	
Volume (vph)	70	70	280	160	140	61	160	997	130	51	613	131
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	124	.,	124	129	.,,,,	129	111	.,,,	0	169		0
Storage Lanes	1		1	1		1	1		0	1		0
Taper Length (ft)	60		•	60			60			60		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt			0.850			0.850		0.983	0.70		0.974	0.70
Flt Protected	0.950		0.000	0.950		0.000	0.950	0.700		0.950	0.77	
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3479	0	1770	3447	0
Flt Permitted	0.950	1000	1000	0.950	1000	1000	0.950	0177	J	0.950	0117	J
Satd. Flow (perm)	1770	1863	1583	1770	1863	1583	1770	3479	0	1770	3447	0
Right Turn on Red	1770	1000	Yes	1770	1000	Yes	1770	0177	Yes	1770	0117	Yes
Satd. Flow (RTOR)			304			218		18	103		31	103
Link Speed (mph)		30	304		30	210		30			30	
Link Distance (ft)		1101			816			875			912	
Travel Time (s)		25.0			18.5			19.9			20.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	76	76	304	174	152	66	174	1084	141	55	667	142
Shared Lane Traffic (%)	70	70	304	1/4	132	00	1/4	1004	141	55	007	142
Lane Group Flow (vph)	76	76	304	174	152	66	174	1225	0	55	809	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left		Left	Left		Left	Left	
Median Width(ft)	Leit	12	Rigiti	Leit	12	Right	Leit	12	Right	Leit	12	Right
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9
Number of Detectors	13	2	1	10	2	1	13	2	9	13	2	9
	Left	Thru		Left			Left	Thru		Left	Thru	
Detector Template	20	100	Right 20		Thru 100	Right 20	20					
Leading Detector (ft)				20				100		20	100	
Trailing Detector (ft)	0	0	0	0	0	0	0	0		0	0	
Detector 1 Position(ft)	0 20	0	0 20	0 20	0	0 20	0 20	0		0 20	0	
Detector 1 Size(ft)		6 CL Ev						6			6 CL Ev	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6 CL Ev			6 CL Ev			6 CL Ev			6 CL Ev	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		0.0			0.0			0.0			0.0	
Detector 2 Extend (s)	Б.	0.0	D	Б,	0.0	D.	Б.	0.0		Б.	0.0	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases			4			8	_					
Detector Phase	7	4	4	3	8	8	5	2		1	6	

	•	→	•	•	←	•	4	†	~	>	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Minimum Split (s)	12.0	20.0	20.0	12.0	20.0	20.0	12.0	31.0		12.0	31.0	
Total Split (s)	14.0	20.0	20.0	18.0	24.0	24.0	16.0	35.0		12.0	31.0	
Total Split (%)	16.5%	23.5%	23.5%	21.2%	28.2%	28.2%	18.8%	41.2%		14.1%	36.5%	
Maximum Green (s)	9.0	15.0	15.0	13.0	19.0	19.0	11.0	30.0		7.0	26.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Lead/Lag	Lag	Lag	Lag	Lead	Lead	Lead	Lead	Lead		Lag	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None	None	None	None	None	None	Min		None	Min	
Walk Time (s)		5.0	5.0		5.0	5.0		5.0			5.0	
Flash Dont Walk (s)		10.0	10.0		10.0	10.0		21.0			21.0	
Pedestrian Calls (#/hr)		5	5		5	5		5			5	
Act Effct Green (s)	8.9	9.2	9.2	11.4	11.4	11.4	10.5	31.7		6.7	22.6	
Actuated g/C Ratio	0.12	0.12	0.12	0.15	0.15	0.15	0.14	0.43		0.09	0.30	
v/c Ratio	0.36	0.33	0.66	0.64	0.53	0.15	0.70	0.82		0.35	0.75	
Control Delay	37.4	35.3	11.7	43.4	37.4	8.0	49.3	27.1		41.5	28.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	37.4	35.3	11.7	43.4	37.4	8.0	49.3	27.1		41.5	28.0	
LOS	D	D	В	D	D	Α	D	С		D	С	
Approach Delay		19.9			33.9			29.9			28.9	
Approach LOS		В			С			С			С	

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 74.1


Natural Cycle: 80

Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.82 Intersection

Signal Delay: 28.5 Intersection LOS: C
Intersection Capacity Utilization 64.3% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 4: Joiner Parkway & 1st Street

Came Group		۶	-	•	•	←	•	•	†	~	>	↓	✓
Volume (vph) 150 1447 20 50 812 126 15 10 30 91 10 95	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Volume (vph) 150 1447 20 50 812 126 15 10 30 91 10 95	Lane Configurations	*	*	7	*	*	7		43-		*	•	7
Ideal Flow (vphpp) 1900								15		30			
Storage Length (fit)	, , ,			1900	1900	1900		1900	1900	1900	1900		1900
Storage Lanes	` 1 1 <i>i</i>												
Taper Length (III)										0	1		
Lane Utili, Factor		-			-						60		·
Ped Bike Factor 0.87	3 1		0.95	1 00		0.95	1 00		1 00	1 00		1 00	1 00
Fit Protected 0,950 1,			0.70			0.70							
Filt Protected													
Satid. Flow (prot) 1770 3539 1583 1770 3539 1583 0 1686 0 1770 1863 1583 11870 1770 1780 1853 1583 1870		0.950		0.000	0.950		0.000				0.950		0.000
Fit Permitted			3539	1583		3539	1583	0		0		1863	1583
Satid. Flow (perm) 1770 3539 1531 1770 3539 1552 0 1683 0 1770 1863 1551 1811 1700 1700 1863 1551 1811 1700 1700 1803 1551 1811	, ,		0007			0007							
Page			3539	1531		3539	1552	0		0		1863	1551
Said. Flow (RTOR) 131 131 137 33 33 33 Link Speed (mph) 330 132 330 428 612 Link Distance (ft) 1129 1330 428 612 Travel Time (s) 25.7 133 139 15 13.9 Confl. Peds. (#/hr) 5 5 5 5 5 2 </td <td>4 ,</td> <td></td> <td>0007</td> <td></td> <td></td> <td>0007</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	4 ,		0007			0007							
Link Speed (mph)	· ·								33	. 00			
Link Distance (ft)			30			30						30	
Travel Time (s)													
Confil. Peds. (#/hr) 5 5 5 5 2 3 137 16 11 33 99 11 10	• • • • • • • • • • • • • • • • • • • •												
Confil Bikes (#/hr) 2 4 833 137 16 11 33 99 11 103 Shared Lane Traffic (%) Lane Group Flow (vph) 163 1573 22 54 883 137 0 60 0 99 11 103 Enter Blocked Intersection No <	` ,		2017	5		20	5	5					5
Peak Hour Factor 0.92 0.	. ,									2			
Adj. Flow (vph) 163 1573 22 54 883 137 16 11 33 99 11 103	, ,	0.92	0.92		0.92	0.92		0.92	0.92		0.92	0.92	
Shared Lane Traffic (%) Lane Group Flow (yph) 163 1573 22 54 883 137 0 60 0 99 11 103 Enter Blocked Intersection No No No No No No No													
Lane Group Flow (vph) 163 1573 22 54 883 137 0 60 0 99 11 103	, , ,		.0,0		0.						.,		
Enter Blocked Intersection No No No No No No No		163	1573	22	54	883	137	0	60	0	99	11	103
Left Alignment Left Left Right Left Left Right Left Left Right Left Left Right Left Right Left Left Right Left Left Right Left Left										No			
Median Width(fft)													
Link Offset(ft)	· ·			9			9			J			3
Crosswalk Width(ft) 16 16 16 16 16 16 16 Two way Left Turn Lane Two way Left Turn Lane Headway Factor 1.00	` ,												
Headway Factor 1.00	, ,												
Headway Factor 1.00	. ,												
Turning Speed (mph) 15 9 Detector of Textend (ft) 20 10 0		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Number of Detectors 1 2 1 1 2 1 1 2 1 1 2	,												
Leading Detector (ft) 20 100 20 20 100 20 20 100 20 100 20 Trailing Detector (ft) 0	0 1 1 7		2	1		2	1	1	2			2	
Leading Detector (ft) 20 100 20 20 100 20 20 100 20 100 20 Trailing Detector (ft) 0	Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru		Left	Thru	Right
Trailing Detector (ft) 0	·			U			•						
Detector 1 Position(ft) 0				0		0	0		0			0	
Detector 1 Size(ft) 20 6 20 20 6 20 20 6 20 6 20 6 20 6 20 6 20 6 20 6 20 6 20 6 20 6 20 6 20 6 20 6 20 6 20 20 6 20 6 20 6 20 6 20 6 20 20 6 20	Detector 1 Position(ft)	0	0	0	0	0		0			0	0	0
Detector 1 Channel Detector 1 Extend (s) 0.0		20	6	20	20	6	20	20	6		20	6	20
Detector 1 Extend (s) 0.0	Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Queue (s) 0.0	Detector 1 Channel												
Detector 1 Delay (s) 0.0	Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Detector 2 Position(ft) 94 94 94 94 Detector 2 Size(ft) 6 6 6 6	Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Detector 2 Position(ft) 94 94 94 94 Detector 2 Size(ft) 6 6 6 6	Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
			94			94			94			94	
	. ,		6			6			6			6	
DOTOGO OITEN OITEN OITEN	Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel													
Detector 2 Extend (s) 0.0 0.0 0.0 0.0			0.0			0.0			0.0			0.0	
Turn Type Prot NA Perm Prot NA Perm Split NA Split NA Perm		Prot		Perm	Prot		Perm	Split			Split		Perm

	ᄼ	→	•	•	←	•	•	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases			4			8						6
Detector Phase	7	4	4	3	8	8	2	2		6	6	6
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Minimum Split (s)	12.0	27.1	27.1	12.0	27.1	27.1	12.0	12.0		27.1	27.1	27.1
Total Split (s)	15.0	48.6	48.6	12.0	45.6	45.6	12.3	12.3		27.1	27.1	27.1
Total Split (%)	15.0%	48.6%	48.6%	12.0%	45.6%	45.6%	12.3%	12.3%		27.1%	27.1%	27.1%
Maximum Green (s)	10.0	43.6	43.6	7.0	40.6	40.6	7.3	7.3		22.1	22.1	22.1
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0		5.0		5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag						
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	Min	Min		Min	Min	Min
Walk Time (s)		5.0	5.0		5.0	5.0				5.0	5.0	5.0
Flash Dont Walk (s)		17.1	17.1		17.1	17.1				17.1	17.1	17.1
Pedestrian Calls (#/hr)		10	10		10	10				10	10	10
Act Effct Green (s)	10.2	44.4	44.4	6.7	35.7	35.7		6.5		11.4	11.4	11.4
Actuated g/C Ratio	0.12	0.53	0.53	0.08	0.42	0.42		0.08		0.14	0.14	0.14
v/c Ratio	0.76	0.84	0.03	0.38	0.59	0.19		0.37		0.41	0.04	0.32
Control Delay	62.8	25.0	0.1	48.8	21.0	3.9		30.2		39.6	32.8	6.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0
Total Delay	62.8	25.0	0.1	48.8	21.0	3.9		30.2		39.6	32.8	6.2
LOS	Е	С	Α	D	С	Α		С		D	С	Α
Approach Delay		28.2			20.2			30.2			23.1	
Approach LOS		С			С			С			С	

Area Type: Other

Cycle Length: 100 Actuated Cycle Length: 84.1 Natural Cycle: 100

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.84 Intersection Signal Delay: 25.1 Intersection Capacity Utilization 68.6% Analysis Period (min) 15

Intersection LOS: C
ICU Level of Service C

	-	*	•	—	4	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑ ↑		ሻ	^	ሻ	7
Volume (vph)	1555	13	23	980	8	13
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)		0	150		0	25
Storage Lanes		0	1		1	1
Taper Length (ft)			60		60	
Lane Util. Factor	0.95	0.95	1.00	0.95	1.00	1.00
Frt	0.999					0.850
Flt Protected			0.950		0.950	
Satd. Flow (prot)	3536	0	1770	3539	1770	1583
Flt Permitted			0.950		0.950	
Satd. Flow (perm)	3536	0	1770	3539	1770	1583
Link Speed (mph)	30			30	30	
Link Distance (ft)	1030			2067	308	
Travel Time (s)	23.4			47.0	7.0	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	1690	14	25	1065	9	14
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1704	0	25	1065	9	14
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12	-		12	12	_
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		9	15		15	9
Sign Control	Free			Free	Stop	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized						

Control Type: Unsignalized Intersection Delay 0.5 Analysis Period (min) 15

										Larios, i	rolanios	riiriii
	۶	→	•	•	←	•	1	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	^	7	ሻ	414	7	ሻ	41∱	7
Volume (vph)	36	704	828	50	627	130	345	160	60	80	240	31
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	193		193	0		81	210		210	151		151
Storage Lanes	1		1	1		1	1		1	1		1
Taper Length (ft)	60		•	60			60		•	60		·
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	0.91	0.91	1.00	0.91	0.91	1.00
Ped Bike Factor	1.00	0.70	0.98	1.00	0.70	0.98	0.71	0.71	0.98	0.71	0.71	0.98
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950		0.000	0.950		0.000	0.950	0.975	0.000	0.950	0.998	0.000
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1610	3305	1583	1610	3383	1583
Flt Permitted	0.950	3337	1303	0.950	3337	1000	0.950	0.975	1000	0.950	0.998	1303
Satd. Flow (perm)	1770	3539	1551	1770	3539	1551	1610	3305	1552	1610	3383	1553
Right Turn on Red	1770	3337	Yes	1770	3337	Yes	1010	3303	Yes	1010	3303	Yes
Satd. Flow (RTOR)			655			131			131			131
Link Speed (mph)		35	000		35	131		40	131		35	131
Link Distance (ft)		2067			258			1053			928	
Travel Time (s)		40.3			5.0			17.9			18.1	
` ,		40.3	5		5.0			17.9	_		10.1	5
Confl. Peds. (#/hr)			2			5 2			5 2			5
Confl. Bikes (#/hr)	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00	0.00
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	39	765	900	54	682	141	375	174	65	87	261	34
Shared Lane Traffic (%)	20	7/5	000	F 4	(00	1 11	50%	2/2	/ -	10%	070	2.4
Lane Group Flow (vph)	39	765	900	54	682	141	187	362	65	78	270	34
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	2	1	1	2	1	1	2	1	1	2	1
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Leading Detector (ft)	20	100	20	20	100	20	20	100	20	20	100	20
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft)	20	6	20	20	6	20	20	6	20	20	6	20
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Split	NA	Perm	Split	NA	Perm
JT:						*****	-			-		

	۶	→	•	•	←	*	1	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Protected Phases	7	4		3	8		2	2		6	6	
Permitted Phases			4			8			2			6
Detector Phase	7	4	4	3	8	8	2	2	2	6	6	6
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	12.0	26.0	26.0	12.0	26.0	26.0	28.0	28.0	28.0	26.0	26.0	26.0
Total Split (s)	12.0	31.0	31.0	12.0	31.0	31.0	31.0	31.0	31.0	26.0	26.0	26.0
Total Split (%)	12.0%	31.0%	31.0%	12.0%	31.0%	31.0%	31.0%	31.0%	31.0%	26.0%	26.0%	26.0%
Maximum Green (s)	7.0	26.0	26.0	7.0	26.0	26.0	26.0	26.0	26.0	21.0	21.0	21.0
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag						
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	Min	Min	Min	Min	Min	Min
Walk Time (s)		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Flash Dont Walk (s)		16.0	16.0		16.0	16.0	18.0	18.0	18.0	16.0	16.0	16.0
Pedestrian Calls (#/hr)		5	5		5	5	5	5	5	5	5	5
Act Effct Green (s)	6.7	27.0	27.0	6.8	27.0	27.0	15.7	15.7	15.7	12.5	12.5	12.5
Actuated g/C Ratio	0.09	0.35	0.35	0.09	0.35	0.35	0.20	0.20	0.20	0.16	0.16	0.16
v/c Ratio	0.25	0.62	0.93	0.35	0.55	0.22	0.57	0.54	0.15	0.30	0.49	0.09
Control Delay	43.2	26.9	26.1	45.3	25.6	7.1	36.6	31.6	8.0	34.5	34.3	0.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	43.2	26.9	26.1	45.3	25.6	7.1	36.6	31.6	0.8	34.5	34.3	0.5
LOS	D	С	С	D	С	Α	D	С	Α	С	С	Α
Approach Delay		26.9			23.8			29.9			31.3	
Approach LOS		С			С			С			С	

Area Type: Other

Cycle Length: 100 Actuated Cycle Length: 77.2 Natural Cycle: 95

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.93 Intersection Signal Delay: 27.1 Intersection Capacity Utilization 75.9% Analysis Period (min) 15

Intersection LOS: C
ICU Level of Service D

, ,

Splits and Phases: 3: Joiner Parkway & Nicolaus Road

Lane Group											Larios	•	
Table Tabl		•	-	\rightarrow	•	←	•	4	†	/	-	ţ	4
Volume (pyh)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Volume (pyh)	Lane Configurations	ሻ	ĵ,		ሻ	ĵ.		ሻ	ተ ጌ		ሻ	1 13	
Ideal Flow (rophp)	Ţ.			50			60			110			50
Storage Length (ff)		1900		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Lanes							0						
Taper Length (If)				0									
Lane UNI. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95 0.95 0.95 0.95 Fed Bike Factor 0.999 0.991 0.995 0.995 0.995 Fill Prolected 0.950 0.950 0.950 0.950 0.950 Fill Prolected 0.950 0.950 0.950 0.950 0.950 Satd. Flow (prot) 1770 1652 0 1770 1656 0 1770 3431 0 1770 3509 0 Fill Prolected 0.950 0.950 0.950 0.950 0.950 0.950 0.950 Satd. Flow (prot) 1770 1652 0 1770 1656 0 1770 3431 0 1770 3509 0 Fill Prolected 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 Satd. Flow (prot) 1770 1652 0 1770 1656 0 1770 3431 0 1770 3509 0 Fill Prolected 0.950 0.		60			60						60		
Ped Bike Factor			1.00	1.00		1.00	1.00		0.95	0.95		0.95	0.95
Fith													
Filt Protected													
Satis Flow (prot) 1770 1652 0 1770 1656 0 1770 3431 0 1770 3509 0 181 Permitted 0,950 0,95		0.950	0.077		0.950	0.70		0.950	0.,,0		0.950	0.770	
Fit Permitted			1652	0		1656	0		3431	0		3509	0
Satis Flow (perm) 1770 1652 0 1770 1656 0 1770 3431 0 1770 3509 0 1768	4 /		.002			.000			0.0.			0007	
Right Turn on Red Sate Flow F			1652	0		1656	0		3431	0		3509	0
Satid. Flow (RTOR)	4 ,	1770	1002		1770	1000		1770	0101		1770	0007	
Link Speed (mph)	- C		53	103		63	103		29	103		6	103
Link Distance (ft) 9.8													
Travel Time (s)													
Confil Peds. (#/hr)	. ,												
Peak Hour Factor	. ,		7.0	5		11.0	5		10.2	5		34.2	5
Adj. Flow (vph) 26 26 53 63 32 63 101 574 116 42 1166 53	, ,	0.05	0.05		0.05	0.05		0.05	0.05		0.05	0.05	
Shared Lane Traffic (%) Lane Group Flow (vph) 26 79 0 63 95 0 101 690 0 42 1219 0													
Lane Group Flow (vph) 26		20	20	53	03	32	03	101	5/4	110	42	1100	53
Enter Blocked Intersection	, ,	2/	70	0	/ 2	OΓ	0	101	/00	0	40	1010	0
Left Left Left Right Right Left Right Right Left Right R													
Median Width(fit)													
Link Offset(fft) 0 0 0 0 0 Crosswalk Width(fft) 16 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00 </td <td></td> <td>Leit</td> <td></td> <td>Right</td> <td>Leit</td> <td></td> <td>Right</td> <td>Leit</td> <td></td> <td>Right</td> <td>Leit</td> <td></td> <td>Right</td>		Leit		Right	Leit		Right	Leit		Right	Leit		Right
Crosswalk Width(fft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00													
Two way Left Turn Lane Headway Factor 1.00	` '												
Headway Factor 1.00	` '		16			16			16			16	
Turning Speed (mph) 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 15 9 Number of Detectors 1 2 1 0 0<		1.00	4.00	4.00	1.00	4.00	4.00	4.00	4.00	4.00	1.00	1.00	1.00
Number of Detectors 1 2 1 2 1 2 1 2 Detector Template Left Thru Left Thru Left Thru Left Thru Leading Detector (ft) 20 100 20 100 20 100 20 100 Trailing Detector (ft) 0			1.00			1.00			1.00			1.00	
Detector Template Left Thru Left Thru Left Thru Left Thru Leading Detector (ft) 20 100 20 100 20 100 Trailing Detector (ft) 0 0 0 0 0 0 0 Detector 1 Position(ft) 0 0 0 0 0 0 0 Detector 1 Position(ft) 20 6 20 6 20 6 20 6 Detector 1 Size(ft) 20 6 20 6 20 6 20 6 Detector 1 Type Cl+Ex Cl-Ex Cl-Ex </td <td></td> <td></td> <td>0</td> <td>9</td> <td></td> <td>0</td> <td>9</td> <td></td> <td>0</td> <td>9</td> <td></td> <td>0</td> <td>9</td>			0	9		0	9		0	9		0	9
Leading Detector (ft) 20 100 20 100 20 100 20 100 Trailing Detector (ft) 0					•						•		
Trailing Detector (ft) 0													
Detector 1 Position(ft) 0 0 0 0 0 0 0 0 Detector 1 Detector 1 Size(ft) 20 6 20 </td <td>` ,</td> <td></td>	` ,												
Detector 1 Size(ft) 20 6 20 6 20 6 Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Channel Detector 1 Extend (s) 0.0													
Detector 1 Type CI+Ex	` '												
Detector 1 Channel Detector 1 Extend (s) 0.0	` ,												
Detector 1 Extend (s) 0.0		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Queue (s) 0.0 Turn Type Prot NA Prot NA Prot NA Prot NA													
Detector 1 Delay (s) 0.0 Turn Type Prot NA Prot NA </td <td>` ,</td> <td></td>	` ,												
Detector 2 Position(ft) 94 94 94 94 Detector 2 Size(ft) 6 6 6 6 Detector 2 Type CI+Ex CI+Ex CI+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 0.0 Turn Type Prot NA Prot NA Prot NA	` ,												
Detector 2 Size(ft) 6 6 6 6 6 Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type Prot NA Prot NA Prot NA		0.0			0.0			0.0			0.0		
Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type Prot NA Prot NA Prot NA Prot NA			94			94			94			94	
Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type Prot NA Prot NA Prot NA	` ,												
Detector 2 Extend (s) 0.0 0.0 0.0 0.0 Turn Type Prot NA Prot NA Prot NA	Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Turn Type Prot NA Prot NA Prot NA Prot NA	Detector 2 Channel												
Turn Type Prot NA Prot NA Prot NA Prot NA	Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
		Prot	NA		Prot	NA		Prot	NA		Prot	NA	
					3			5					

	۶	→	\rightarrow	•	←	•	4	†	<i>></i>	>	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases												
Detector Phase	7	4		3	8		5	2		1	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Minimum Split (s)	16.0	21.0		16.0	21.0		16.0	21.0		16.0	21.0	
Total Split (s)	16.0	21.0		16.0	21.0		16.0	37.0		16.0	37.0	
Total Split (%)	17.8%	23.3%		17.8%	23.3%		17.8%	41.1%		17.8%	41.1%	
Maximum Green (s)	11.0	16.0		11.0	16.0		11.0	32.0		11.0	32.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		None	Min		None	Min	
Walk Time (s)		5.0			5.0			5.0			5.0	
Flash Dont Walk (s)		11.0			11.0			11.0			11.0	
Pedestrian Calls (#/hr)		5			5			5			5	
Act Effct Green (s)	7.1	8.4		8.4	11.4		9.4	41.2		7.7	37.2	
Actuated g/C Ratio	0.10	0.12		0.12	0.17		0.14	0.60		0.11	0.54	
v/c Ratio	0.14	0.32		0.29	0.29		0.42	0.33		0.21	0.64	
Control Delay	37.0	18.9		37.1	15.9		38.7	13.9		36.8	21.4	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	37.0	18.9		37.1	15.9		38.7	13.9		36.8	21.4	
LOS	D	В		D	В		D	В		D	С	
Approach Delay		23.4			24.4			17.0			21.9	
Approach LOS		С			С			В			С	

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 68.9

Natural Cycle: 90

Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.64 Intersection

Signal Delay: 20.4 Intersection LOS: C
Intersection Capacity Utilization 60.6% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 4: Joiner Parkway & 5th Street

•										Larios, i	•	Tillings
	ᄼ	→	\rightarrow	•	←	•	4	†	/	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†	7	ሻ	†	7	ሻ	∱ }		ሻ	∱ }	
Volume (vph)	30	170	50	80	50	50	70	740	80	50	1168	40
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	145		145	150		150	140		0	140		0
Storage Lanes	1		1	1		1	1		0	1		0
Taper Length (ft)	60			60			60			60		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor			0.98			0.98		1.00			1.00	
Frt			0.850			0.850		0.985			0.995	
Flt Protected	0.950		0.000	0.950		0.000	0.950	0.700		0.950	0.,,0	
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3474	0	1770	3517	0
Flt Permitted	0.950	.000		0.950			0.950	0		0.950	55.7	J
Satd. Flow (perm)	1770	1863	1549	1770	1863	1549	1770	3474	0	1770	3517	0
Right Turn on Red	1770	1000	Yes	1770	1000	Yes	1770	0171	Yes	1770	0017	Yes
Satd. Flow (RTOR)			125			125		14	103		4	103
Link Speed (mph)		35	120		35	120		40			40	
Link Distance (ft)		615			555			910			953	
Travel Time (s)		12.0			10.8			15.5			16.2	
Confl. Peds. (#/hr)		12.0	5		10.0	5		13.3	5		10.2	5
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	32	181	53	85	53	53	74	788	85	53	1243	43
Shared Lane Traffic (%)	32	101	33	00	ეა	33	/4	700	00	ეა	1243	43
Lane Group Flow (vph)	32	181	53	85	53	53	74	873	0	53	1286	0
Enter Blocked Intersection	No	No	No	No	No	No	No	0/3 No	No	No	No	No
	Left	Left		Left	Left					Left	Left	
Lane Alignment	Leit	12	Right	Leit	12	Right	Left	Left 12	Right	Len	12	Right
Median Width(ft) Link Offset(ft)												
` '		0 16			0 16			0 16			0 16	
Crosswalk Width(ft)		10			10			10			10	
Two way Left Turn Lane	1 00	1.00	1.00	1 00	1.00	1 00	1.00	1 00	1 00	1.00	1 00	1.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	2	9	15	2	9	15	2	9	15	2	9
Number of Detectors	1	2	1	1	2	1	1	2		1	2	
Detector Template	Left	Thru	Right	Left	Thru	Right	Left	Thru		Left	Thru	
Leading Detector (ft)	20	100	20	20	100	20	20	100		20	100	
Trailing Detector (ft)	0	0	0	0	0	0	0	0		0	0	
Detector 1 Position(ft)	0	0	0	0	0	0	0	0		0	0	
Detector 1 Size(ft)	20	6	20	20	6	20	20	6		20	6	
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Detector 2 Position(ft)		94			94			94			94	
Detector 2 Size(ft)		6			6			6			6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	

	•	→	•	•	←	•	4	†	/	>	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Permitted Phases			4			8						
Detector Phase	7	4	4	3	8	8	5	2		1	6	
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Minimum Split (s)	16.0	21.0	21.0	16.0	21.0	21.0	16.0	21.0		16.0	21.0	
Total Split (s)	16.0	21.0	21.0	16.0	21.0	21.0	16.0	52.0		16.0	52.0	
Total Split (%)	15.2%	20.0%	20.0%	15.2%	20.0%	20.0%	15.2%	49.5%		15.2%	49.5%	
Maximum Green (s)	11.0	16.0	16.0	11.0	16.0	16.0	11.0	47.0		11.0	47.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None	None	None	None	None	None	Min		None	Min	
Walk Time (s)		5.0	5.0		5.0	5.0		5.0			5.0	
Flash Dont Walk (s)		11.0	11.0		11.0	11.0		11.0			11.0	
Pedestrian Calls (#/hr)		5	5		5	5		5			5	
Act Effct Green (s)	7.6	13.5	13.5	9.5	17.5	17.5	9.2	43.0		8.5	42.4	
Actuated g/C Ratio	0.09	0.15	0.15	0.11	0.20	0.20	0.10	0.49		0.10	0.48	
v/c Ratio	0.21	0.64	0.15	0.45	0.14	0.13	0.40	0.51		0.31	0.76	
Control Delay	47.5	50.7	1.0	51.1	36.3	0.7	49.9	19.2		48.3	25.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	47.5	50.7	1.0	51.1	36.3	0.7	49.9	19.2		48.3	25.5	
LOS	D	D	Α	D	D	Α	D	В		D	С	
Approach Delay		40.4			33.0			21.6			26.4	
Approach LOS		D			С			С			С	

Area Type: Other

Cycle Length: 105 Actuated Cycle Length: 88.4

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.76

Intersection Signal Delay: 26.5 Intersection LOS: C
Intersection Capacity Utilization 68.2% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 5: Joiner Parkway & 3rd Street

→ → ← ← ← ↑ ↑ / / / / / / / / / / / / / / /	·	4
Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SE	L SBT	SBR
Lane Configurations \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ካ ተኈ	
Volume (vph) 40 60 210 140 50 61 170 809 110 8		40
Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 190	0 1900	1900
Storage Length (ft) 124 129 129 111 0 16		0
Storage Lanes 1 1 1 1 1 0	1	0
Taper Length (ft) 60 60 60	0	
Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95 1.0		0.95
Frt 0.850 0.850 0.982	0.995	
Flt Protected 0.950 0.950 0.950 0.950		
Satd. Flow (prot) 1770 1863 1583 1770 1863 1583 1770 3476 0 177		0
Flt Permitted 0.950 0.950 0.950 0.950		J
Satd. Flow (perm) 1770 1863 1583 1770 1863 1583 1770 3476 0 177		0
Right Turn on Red Yes Yes Yes	0 0022	Yes
Satd. Flow (RTOR) 228 185 19	4	103
Link Speed (mph) 30 30 30	30	
Link Distance (ft) 1101 816 875	912	
Travel Time (s) 25.0 18.5 19.9	20.7	
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92		0.92
	8 1301	43
Shared Lane Traffic (%)	0 1301	43
Lane Group Flow (vph) 43 65 228 152 54 66 185 1000 0 8	8 1344	0
Enter Blocked Intersection No		No
Lane Alignment Left Left Right R	ft Left 12	Right
•		
Link Offset(ft) 0 0 0	0	
Crosswalk Width(ft) 16 16 16	16	
Two way Left Turn Lane	0 100	1.00
Headway Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0		1.00
	5	9
Number of Detectors 1 2 1 1 2 1 1 2 Detectors Translation Three Births 1 2 1 1 2	1 2	
Detector Template Left Thru Right Left Thru Right Left Thru Left T		
	0 100	
Trailing Detector (ft) 0 0 0 0 0 0 0	0 0	
	0 0	
	0 6	
Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex	x CI+Ex	
Detector 1 Channel		
Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
Detector 2 Position(ft) 94 94 94	94	
Detector 2 Size(ft) 6 6	6	
Detector 2 Type CI+Ex CI+Ex CI+Ex	CI+Ex	
Detector 2 Channel		
Detector 2 Extend (s) 0.0 0.0 0.0	0.0	
Turn Type Prot NA Perm Prot NA Perm Prot NA Pr		
Protected Phases 7 4 3 8 5 2	1 6	
Permitted Phases 4 8		
Detector Phase 7 4 4 3 8 5 2	1 6	

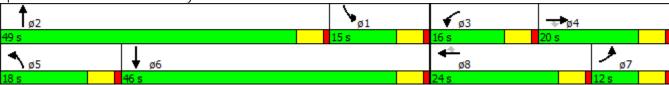
	۶	→	•	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Minimum Split (s)	12.0	20.0	20.0	12.0	20.0	20.0	12.0	31.0		12.0	31.0	
Total Split (s)	12.0	20.0	20.0	16.0	24.0	24.0	18.0	49.0		15.0	46.0	
Total Split (%)	12.0%	20.0%	20.0%	16.0%	24.0%	24.0%	18.0%	49.0%		15.0%	46.0%	
Maximum Green (s)	7.0	15.0	15.0	11.0	19.0	19.0	13.0	44.0		10.0	41.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Lead/Lag	Lag	Lag	Lag	Lead	Lead	Lead	Lead	Lead		Lag	Lag	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None	None	None	None	None	None	Min		None	Min	
Walk Time (s)		5.0	5.0		5.0	5.0		5.0			5.0	
Flash Dont Walk (s)		10.0	10.0		10.0	10.0		21.0			21.0	
Pedestrian Calls (#/hr)		5	5		5	5		5			5	
Act Effct Green (s)	9.1	9.1	9.1	10.6	12.1	12.1	12.4	40.2		14.4	39.6	
Actuated g/C Ratio	0.10	0.10	0.10	0.12	0.13	0.13	0.13	0.44		0.16	0.43	
v/c Ratio	0.25	0.35	0.63	0.75	0.22	0.18	0.77	0.65		0.32	0.88	
Control Delay	42.9	44.7	13.8	64.0	40.0	1.1	62.3	24.2		39.9	33.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	42.9	44.7	13.8	64.0	40.0	1.1	62.3	24.2		39.9	33.1	
LOS	D	D	В	Е	D	Α	Е	С		D	С	
Approach Delay		23.5			43.9			30.1			33.5	
Approach LOS		С			D			С			С	

Area Type: Other

Cycle Length: 100

Actuated Cycle Length: 91.9

Natural Cycle: 90


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.88

Intersection Signal Delay: 32.1 Intersection LOS: C
Intersection Capacity Utilization 70.7% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 4: Joiner Parkway & 1st Street

Appendix L

Sewer and Water Demand Analysis

PRELIMINARY SANITARY SEWER DEMAND ANALYSIS

The purpose of this analysis is to present the results of the wastewater flow analysis and to quantify the sanitary sewer generation resulting from the Fullerton Ranch Planned Development Project. The following analysis was based on the land use proposed in the URS "Village Alternative" model, which was developed as an update to the City of Lincoln 1998 General Plan.¹

The average dry weather flow (ADWF) at the City's Wastewater Treatment and Reclamation Facility (WWTRF) from the City of Lincoln at General Plan buildout is estimated at 26.4 million gallons per day (MGD). An additional 8 MGD from the Placer Nevada Wastewater Authority (PNWWA) communities is estimated during the same horizon. As shown in Table 1 below, the total ADWF to be conveyed to and treated by the WWTRF is approximately 34.4 MGD, with a total peak wet weather flow (PWWF) of 120 MGD.

TABLE 1: PROJECTED WWRTF FLOWS

	ADWF ⁽¹⁾ (MGD)	PWWF ⁽²⁾ (MGD)
1998 General Plan Buildout	10.97	38.4
City of Lincoln Village Alternatives (New General Plan)	13.51	47.3
Other ⁽³⁾	1.86	6.51
PNWWA (Regional)	8.00	28.0
TOTAL	34.40	120

Notes:

Source: Sewer Constraints Analysis and Sewer Facilities Cost Estimate (Appendix G of General Plan Update EIR), Table 3.

As shown in Table 2 below, the total projected ADWF to be conveyed to and treated by the WWTRF from Lincoln is approximately 26.4 MGD at General Plan buildout. This would provide excess capacity of an estimated 8.0 MGD. The total projected PWWF is 92.2 MGD at General Plan buildout, which would result in an excess of 27.8 MGD. Expansion of the WWTRF to provide capacity for General Plan buildout has been previously envisioned for the main WWTRF components, with the exception of the maturation basin and effluent storage basin. A facility plan for the first WWTRF expansion would increase capacity from the current 4.2 MGD to 6.3 or 8.4 MGD.

⁽¹⁾ Average Dry Weather Flow, in million gallons per day (MGD).

⁽²⁾ Peak Wet Weather Flow, in million gallons per day (MGD).

⁽³⁾ Area within the sphere of influence but not within a village or the General Plan boundary.

¹ City of Lincoln. Appendix G: Sewer Constraints Analysis and Sewer Facilities Cost Estimate. February 24, 2006.

TABLE 2: PROJECTED WWRTF FLOWS⁽¹⁾ FROM CITY OF LINCOLN

1/11/105	RESIDENTIAL	COMMERCIAL	PUBLIC	INDUSTRIAL	ADWF	PWWF
VILLAGE	EDU ⁽²⁾	ACRES	ACRES	ACRES	(MGD)	(MGD)
V-1	3,507	20	48	0	1.09	3.81
V-2	3,874	12	0	0	1.08	3.78
V-3	4,841	70	0	0	1.50	5.25
V-4	5,421	12	0	0	1.48	5.18
V-5	5,779	12	0	0	1.59	5.57
V-6	5,083	12	0	0	1.38	4.83
V-7	2,898	5	0	0	0.78	2.73
SUD-A	1,623	1,170	0	142	2.56	8.96
SUD-B	426	413	0	0	0.77	2.70
SUD-C	0	0	0	644	1.29	4.52
Other	286	257	603	387	1.86	6.51
1998 GP	21.046	252	660	1.024	10.97	38.4
Buildout	21,846	352	000	1,834	10.97	38.4
TOTAL	55,587	2,335	1,311	3,007	26.4	92.2

Notes:

Source: Sewer Constraints Analysis and Sewer Facilities Cost Estimate (Appendix G of General Plan Update EIR), Table 4.

The Fullerton Ranch Planned Development Project includes 8-inch sewer lines in the rights-of-way of the proposed residential roads. Sewer service would be provided by the City of Lincoln. Table 3 summarizes the projected sanitary sewer flow resulting from the Fullerton Ranch Planned Development Project.

TABLE 3: PROPOSED PROJECT SANITARY SEWER GENERATION

LAND USE / UNIT COUNT	FLOW / UNIT	TOTAL PROJECT FLOW
81 residential dwelling units	250 gpd/du	20,250 gpd

Note: gpd/du = gallons per day per dwelling unit.

Source: Sewer Constraints Analysis and Sewer Facilities Cost Estimate (Appendix G of General Plan Update EIR), Table 2.

Although the project would generate the additional demand for wastewater collection, conveyance, and treatment, the recently completed Chambers Drive and Nicolaus Road Sewer Improvement Project and WWTRF would provide sufficient capacity to serve the project. Conveyance of wastewater to the WWTRF would ensure that wastewater generated by the project meets the Regional Water Quality Control Board's treatment requirements because the WWTRF maintains applicable permits for the treatment of wastewater separate from this project.

Table 4 compares the existing and projected sanitary sewer flow resulting from the Fullerton Ranch Planned Development Project.

⁽¹⁾ Village Alternatives model.

⁽²⁾ Equivalent dwelling units.

TABLE 4: EXISTING AND PROJECTED SANITARY SEWER FLOW

	ADWF ⁽¹⁾ (MGD)	ADWF ⁽¹⁾ (GALLONS/DAY)
Existing	2.7	2,700,000
Existing + Approved Projects + Planned Projects ⁽²⁾	0.1	100,000
Proposed Project	0.02025	20,250
TOTAL	2.82025	2,820,250

Notes:

Source: Sewer Constraints Analysis and Sewer Facilities Cost Estimate (Appendix G of General Plan Update EIR), Table 2 and Table 4.

Assuming 250 gpd for each of the proposed 81 single-family residences, the project would produce 20,250 gallons of wastewater per day. The WWTRF can treat dry weather flows of 4.2 MGD, and currently treats an average daily dry weather flow of approximately 2.7 MGD.² The City's most recent estimates of wastewater generated by existing, approved, and planned projects would increase average daily dry weather flows to approximately 2,800,000 gallons per day (2.8 MGD) at the City WWTRF.³ As shown in Table 4, the wastewater generated by the Fullerton Ranch Planned Development Project would increase ADFW to approximately 2,820,250 gallons per day (2.82025 MGD) at the City WWTRF when considering the existing, approved, and planned projects. According to the Background Report prepared for the 2013-2021 Housing Element (City of Lincoln 2013), there is more than adequate capacity at the treatment plant to serve build-out of anticipated residential land in the city, and the distribution system operates at acceptable levels and has been designed to accommodate expansions and service extensions. The proposed project wastewater would not exceed the current capacity of the plant. The project applicant would be required to pay applicable connection fees.

PRELIMINARY WATER DEMAND ANALYSIS

The purpose of this analysis is to present the results of the water demand analysis and to quantify the water demand resulting from the Fullerton Ranch Planned Development Project. The following analysis was based on the City's 2015 Urban Water Management Plan, as well as the SB 610 Water Supply Assessment prepared for the Independence at Lincoln Development Project EIR.

Table 5 summarizes the City's estimated existing and planned future water demands, inclusive of non-revenue water needs, for each 5-year increment to 2040. As shown in the table, the estimated City water supplies in 2040 is approximately 20,336 acre-feet (AF).

⁽¹⁾ Average Dry Weather Flow, in million gallons per day (MGD) and gallons per day (gallons/day).

⁽²⁾ Existing includes pending and approved projects in the City of Lincoln.

² City of Lincoln. Draft Environmental Impact Report – Independence at Lincoln Development Project (page 4.9-14). September 30, 2016.

³ Ibid.

TABLE 5: EXISTING AND PLANNED FUTURE WATER DEMANDS (CURRENT - 2040)

	ECTIMATED DEMAND (AE/VD)									
CATEGORY		ESTIMATED DEMAND (AF/YR)								
CATEGORI	CURRENT	2020	2025	2030	2035	2040				
Current Customer Use	10,174	10,174	9,645	9,115	8,585	8,055				
Projects Underway	0	53	247	324	332	479				
Other Proposed Project	0	1,822	3,344	5,616	7,955	10,337				
GPU Land Use Growth	0	0	0	0	0	1,224				
Independence Project	0	241	241	241	241	241				
TOTAL DEMAND	10,174	12,291	13,478	15,296	17,113	20,336				

Note: SF/yr = acre-feet per year.

Source: Independence Development Project SB 610 Water Supply Assessment, Table 3-2. September 2016.

Table 6 summarizes the projected water demand resulting from the Fullerton Ranch Planned Development Project. As shown in the table, the estimated water demand for the proposed project would be 37.26 AF per year (AF/yr).

TABLE 6: PROPOSED PROJECT WATER DEMAND

LAND USE / UNIT COUNT	DEMAND / UNIT	TOTAL PROJECT DEMAND		
81 low density residential dwelling units	0.46 AF/account/yr	37.26 AF/yr		

Note: AF/account/yr = acre-feet per account per year.

Source: Lincoln 2015 Urban Water Management Plan, Table 4-5.

The proposed project falls within assumed GPU Land Use Growth and the City is not projecting a shortage in its water supplies during either a single-dry or multiple dry year periods.⁴

The City of Lincoln is working closely with the Placer County Water Agency (PCWA) and the Nevada Irrigation District (NID) to implement short-term and long-range infrastructure projects to meet the City's water demand projections throughout implementation of the City's General Plan, which includes the project. PCWA has reflected the City's growth and water demand projections in its implementation of water infrastructure projects (i.e., transmission mains, water treatment plants, water rights, etc.). To meet the City's growth projections anticipated in the General Plan, PCWA and the City are on-track with implementation of projects to ensure adequate water supplies and distribution infrastructure are commissioned in advance of need.

In a March 2016 letter, PCWA indicated that unused capacity in their existing treatment plants could be used by the City to meet future growth needs. This is estimated to be about 4.5 MGD that the City currently has rights to but is not using. As of this year (2016), an additional 3.86 MGD is available, on a first come first serve basis, in PCWA's existing facilities.⁵

PCWA is required to deliver raw water to its treatment plants prior to treating and delivering the water to the City. The PCWA's Ophir Pipeline Project, constructed in 2014, will enable PCWA to deliver an additional 22,000 AF from the American River to its treatment facilities (Tully & Young 2016: 5-12).

It should be noted that there is sufficient capacity in existing PCWA transmission mains to deliver all of the City's current contract water (18.5 MGD), plus at least another 5 MGD of additional capacity. The City's

⁴ City of Lincoln. City of Lincoln 2015 Urban Water Management Plan (page 6-6). Public Review Draft June 2016.

⁵ City of Lincoln. City of Lincoln 2015 Urban Water Management Plan (page 3-4). Public Review Draft June 2016.

distribution system has a physical limitation to receive water in excess of 17.7 MGD until completion of the Phase 3 Pipeline and Metering Station, which provides a secondary point of connection for the City distribution system to PCWA transmission mains. This project is anticipated to be operating by January 2018, prior to buildout of the project.

Water service would be provided by the City of Lincoln, through its partnership with PCWA. PCWA does not reserve water for specific projects. Commitments for service are made only upon the execution of a pipeline extension or service order agreement to construct any necessary on- or offsite pipelines or other facilities and the payment of all required fees, including the Plant Expansion and Replacement Charges. In Lincoln, payment of such fees occurs in conjunction with building permits.

This water demand analysis demonstrates that adequate water supply would be available to serve the project and other existing and planned future water demands. As a condition of approval, the City shall require a final written verification that there is sufficient water supply as required by Government Code Section 66473.7(a)(1). Further, adequate treatment and distribution infrastructure is available or would be available prior to buildout of the project.